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Abstract

Motivation: For genetic studies, statistically significant variants explain far less trait variance than

‘sub-threshold’ association signals. To dimension follow-up studies, researchers need to accurately

estimate ‘true’ effect sizes at each SNP, e.g. the true mean of odds ratios (ORs)/regression coeffi-

cients (RRs) or Z-score noncentralities. Naı̈ve estimates of effect sizes incur winner’s curse biases,

which are reduced only by laborious winner’s curse adjustments (WCAs). Given that Z-scores esti-

mates can be theoretically translated on other scales, we propose a simple method to compute

WCA for Z-scores, i.e. their true means/noncentralities.

Results:WCA of Z-scores shrinks these towards zero while, on P-value scale, multiple testing ad-

justment (MTA) shrinks P-values toward one, which corresponds to the zero Z-score value. Thus,

WCA on Z-scores scale is a proxy for MTA on P-value scale. Therefore, to estimate Z-score noncen-

tralities for all SNPs in genome scans, we propose FDR Inverse Quantile Transformation (FIQT). It

(i) performs the simpler MTA of P-values using FDR and (ii) obtains noncentralities by back-

transforming MTA P-values on Z-score scale. When compared to competitors, realistic simulations

suggest that FIQT is more (i) accurate and (ii) computationally efficient by orders of magnitude.

Practical application of FIQT to Psychiatric Genetic Consortium schizophrenia cohort predicts a

non-trivial fraction of sub-threshold signals which become significant in much larger

supersamples.

Conclusions: FIQT is a simple, yet accurate, WCA method for Z-scores (and ORs/RRs, via simple

transformations).

Availability and Implementation: A 10 lines R function implementation is available at https://

github.com/bacanusa/FIQT.

Contact: sabacanu@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Genome-wide association studies (GWAS) represent a powerful and

widely used tool for detecting associations between genetic variants

and complex traits. In such studies, researchers directly assay and

statistically impute (Li et al., 2010) genotypes for one to several mil-

lion single nucleotide polymorphisms (SNPs), respectively. The

GWAS paradigm has been very successful in identifying genetic vari-

ants associated with a range of phenotypes (Dewan et al., 2006;

Hindorff et al., 2009; Wellcome Trust Case Control Consortium,

2007). However, as seen in GWAS of psychiatric disorders (Purcell

et al., 2009; Sklar et al., 2011), a considerable portion of the pre-

dicted genetic contribution is contributed by numerous moderate

signals which are not deemed significant at accepted genome-wide

levels, i.e. ‘suggestive’ signals. With the advent of large-scale, whole-

exome and -genome sequencing studies, the field will likely see an

exponential increase in the number of such suggestive signal.

To successfully dimension future studies, e.g. for detecting as sig-

nificant a certain number of signals which are only ‘suggestive’ in

current cohorts, there is a need for statistical methods that accur-

ately estimate unbiased effect-sizes for suggestive signal SNPs and,

even, all variants from genome scans (henceforth denoting not only

extant GWAS and whole-exome sequencing but emergent whole-

genome sequencing studies as well). Given that effect size estimates

such as Z-scores, ORs and RRs can be theoretically translated from

one scale to another, in this paper we concentrate on estimating the

true means/noncentrality of Z-scores at each SNP.

When estimating the true effect sizes, it is well established that

the largest signals are generally the most affected by the bias known

as ‘winner’s curse’ (Zollner and Pritchard, 2007), i.e. their apparent

effect size is (sometimes much) larger than their true values. This is

due to statistics with the largest magnitude having an extreme value

distribution (Jenkinson, 1955), as opposed to the Gaussian distribu-

tion we commonly assume for a random SNP Z-score. By incorrectly

assuming a Gaussian distribution, naı̈ve estimators of extreme statis-

tics have a tendency to overestimate the magnitude of these statistics

(Zollner and Pritchard, 2007). In statistical genetics, researchers

proposed a multitude of methods to perform winner’s curse adjust-

ment (WCA) for studies with one-stage (discovery) (Faye et al.,

2011; Ghosh et al., 2008; Sun et al., 2011; Xiao and Boehnke,

2011; Xu et al., 2011; Zhong and Prentice, 2007, 2008;) and two-

stage (discovery and replication) studies (Bowden and Dudbridge,

2009; Zhong and Prentice, 2008). For Z-scores, these WCA esti-

mates, i.e. their noncentralities or true means, are obtained by

shrinking the Z-scores towards their null value of zero. However, a

majority of these methods are only designed to handle mostly signifi-

cant signals.

Recently, two new tools for estimating the mean/noncentrality

of all statistics in genome scans were proposed. The first, the

Empirical Bayes (EB) method based on Tweedie’s formula (Efron,

2009), was adapted from a general purpose statistical method.

Because it employs empirical estimates of the density/histogram

(120 bins by default) of scan statistics, it is well suited for the large

number of statistics from a genome scan (albeit less suited to in-

stances in which the number of statistics is much smaller). In the

context of genome scans, this method was used by Ferguson et al.

(2013), who found that the empirical histogram is less precise in the

extreme tails off the distribution, where tail adjustment (TA) meth-

ods (Ghosh et al., 2008; Zhong and Prentice, 2008) provide better

accuracy. Based on these observations, the authors proposed an

interesting adaptive combination of EB and TA which, at the cost of

increased computational burden, combines the best attributes of

both methods. The second of these new tools is a computationally

efficient, soft threshold method (Bacanu and Kendler, 2012) which

adjusts statistics such that their sum of squares do not overestimate

the true mean. Because this method does not use empirical density

estimation, it is applicable even to a small number of statistics.

Similar to WCA, naı̈ve use of SNP P-values as a measure of asso-

ciation for SNPs will overestimate their statistical significance. This

is due to the fact that, due to the large number of tests, many SNPs

will attain very low P-values even under the null hypothesis of no as-

sociation between trait and genotypes. Thus, to be used in assessing

genome-wide significance of SNPs, individual P-values need to be

first adjusted for multiple testing (Benjamini and Hochberg, 1995;

Dudbridge and Gusnanto, 2008). After multiple testing adjustment

(MTA), the adjusted P-values are much larger than the original

ones, i.e. they are ‘shrunken’ towards the null value of one. Given

that WCA shrinks Z-scores towards zero and MTA shrinks the

P-values towards one (which corresponds to a value of zero on the

Z-score scale), we argue that WCA for effect sizes is very similar in

spirit with, if not downright the homologue of, MTA for P-values.

Thus, MTA can be considered, if not identical to, a very good proxy

for the WCA for P-values.

To accurately estimate the WCA of Z-scores from a genome

scan, i.e. their true means/noncentralities, we propose a novel two-

step method, which is inspired by the strong similarity between

MTA and WCA. First, we perform a MTA for P-values, e.g. by

using a False Discovery Rate (FDR) approach (Benjamini and

Hochberg, 1995). Second, we estimate the noncentrality of Z-scores

by back-transforming the adjusted P-value on the Z-score scale

using an inverse Gaussian cumulative distribution function (cdf).

When compared to competing methods, we show that the proposed

procedure has very good performance in terms of (i) squared error

loss, (ii) fraction of the variability in true means of univariate statis-

tics explained and (iii) computational efficiency. A practical applica-

tion of this approach shows that, due to their good performance, the

proposed estimators can be used to predict with reasonable accuracy

the number and location of subtreshold signals that are likely to be-

come significant in much larger cohorts.

2 Methods

As mentioned above, the main issue we address in this paper per-

tains to the estimation, as opposed to testing, of Z-score noncentral-

ities for all SNPs in a genome scan. Below, we first present our

proposed method and its competitors, including extensions of these

competitors proposed by us. Subsequently, we describe simulation

setup and genetic data used for our chosen practical application.

2.1 Notation
Let Xi � N li; 1ð Þ; i ¼ 1; . . . ;k; be the normally distributed univari-

ate statistics from a genome scan and li and pi; i ¼ 1; . . . ; k; their

associated noncentralities and P-values, respectively. If not reported,

Xi can be easily computed based on other reported summary statis-

tics [see Supplementary Material (SM)].

2.2 Novel method based on P-value adjustment
Given the extreme value distribution of scan statistics in the upper

and lower tails and different distributions elsewhere, it is unclear

(or, at least, very complicated) how to properly WCA Z-scores, i.e.

estimate their noncentralities, for all SNPs in a genome scan.

However, it is extremely simple to MTA the P-values for the
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genome-wide multiple testing. The Invariance Principle of

Mathematical Statistics (Casella and Berger, 1990) implies that a le-

gitimate, and thus not merely ad-hoc, statistical approach is to per-

form the winner’s curse adjustment on any scale/transformed

variable and transform the adjusted quantities on the original scale.

Based on the Invariance Principle and the argument in the

Introduction, stating that MTA is a (very) good proxy for WCA on

the P-value scale, we thus propose to (i) adjust SNP P-values for

multiple testing, e.g. using FDR as in this paper and (ii) obtain the

Z-score noncentrality estimates for each SNP as the Gaussian quan-

tiles (with the appropriate sign) associated with these adjusted P-val-

ues (also denoted as FDR q-values). [While the FDR procedure

might be anticonservative for the extreme scenario of numerous

negatively correlated variables (Benjamini and Hochberg, 1995), in

genetics FDR is widely used because (i) Z-scores are only locally cor-

related and (ii) we do not expect these local correlations to be mostly

negative.]

In mathematical notation, let pi
�; i ¼ 1; . . . ;k be the q-values

(FDR adjusted P-values). Then, we can estimate the noncentralitiy

of Z-scores,dXi
� ; i ¼ 1; . . . ; k, bydXi

� ¼ sign Xið Þ U�1 1� pi
�

2

� �
, where / is the cdf of a Gaussian

distribution.

While we chose FDR as a simple, and less conservative than

most, P-value adjustments for multiple testing, homologous meth-

ods can be constructed using other P-value MTA methods. Many

such adjustments are already available in the same p.adjust R func-

tion, which we employed for the FDR adjustment. Among others,

p.adjust implements more conservative family-wise error rate type

of adjustments, such as Bonferroni, pi
� ¼ maxðkpi;1Þ, or Holm’s

(1979). While we believe that methods based on the above MTA

methods will provide rather similar mean Z-score estimates, the as-

sessment of non-FDR based methods are outside the scope of this

paper.

2.3 EB extensions
EB uses all genome scan statistics to (i) empirically estimate their

density and (ii) use the derivatives of the empirical densities to esti-

mate the mean of the statistics and their variance. However, scan

statistics are often rather correlated locally (i.e. as a consequence of

linkage disequilibrium). This is likely to (i) affect the density esti-

mate (which assumes independent statistics) and (ii) underestimate

the variance of mean statistics. To eliminate (most of) the local cor-

relations we propose an EB extension which (i) divides the statistics

into n equally spaced non-overlapping sets (e.g. first set contains

statistics with indices 1; nþ 1; 2nþ 1; . . . ; and the second those

with indices 2;nþ 2; 2nþ 2; . . . ;), (ii) estimates the density for

each set, (iii) uses each set density to estimate a set-specific noncen-

tralities for all scan statistics and (iv) estimates the overall noncen-

tralities of scan statistics as the average set-specific means. We

denote this estimator as EB-n, i.e. when using 100 non-overlapping

sets the EB extension is denoted as EB-100. The obvious disadvan-

tage of EB-n over EB is its increased computational burden, as the

computationally intensive estimation of density and its derivatives

are computed n times.

2.4 Methods used for comparison
For comparison, we use the naı̈ve maximum likelihood estimator

(MLE), i.e. the statistics themselves, classical EB (EB-1 in the above

set notation) and EB-n (n¼10, 50, 100). (Because the soft threshold

method (Bacanu and Kendler, 2012) was found to slightly underper-

form EB-1, for brevity, we omit it from our results.) Due to it

sometimes outperforming EB in the tails, we also include the tail ad-

justment (TA) method (Ghosh et al., 2008; Zhong and Prentice,

2008). The original TA adjusts all statistics above a preset (and gen-

erally significant) threshold, which results in two unusual features

for our presentation of results. First, given that remaining methods

adjust all statistics in a genome scan, we employed TA outside its in-

tended purposes, e.g. even for (very) non-significant thresholds.

Second, given TA’s approach of computing the bias for all statistics

above a signal threshold, we present the performance of tested meth-

ods (MSE and R2 in Section 3) in a cumulative manner, i.e. for all

statistics with unadjusted P-values below a large range of

thresholds.

2.5 Implementation and assessment of performance
We implemented all described methods using the R statistical pro-

gramming environment. For FDR, FIQT employed the p.adjust base

function with the ‘fdr’ option specified for method (10-line FIQT

implementation in R, which is available in SM). Based on the de-

scriptions from (Efron, 2009; Ferguson et al., 2013), EB type meth-

ods were implemented in three steps. First, the range of Z-score

vector, Z, is divided into120 equally sized bins. Second, we used

gam function in gam package to estimate the probability density

function, PðzÞ, as the predicted curve from a smoothed (using nat-

ural splines) Poisson regression of bin counts on bin midpoints.

Third, the Z-score means are estimated numerically for each

observed value of Z ¼ z as d ln P Zð Þ½ �f g
dz . The running time of tested

methods was assessed using the second entry (i.e. ‘system’) from the

output of system.time R function.

2.6 Simulations
We simulate a complex height-like trait by patterning our simula-

tions on the observed effect sizes of the m ¼ 180 significant signals

from the large mega-analysis of human height (MHH), which ana-

lyzed around 180; 000 subjects (Lango et al., 2010). We assumed

that the trait under investigation has m1 causal loci which represent

a fraction cc � 1 of the number of significant loci (m ¼ 180) in

height study (Table 1), i.e. m1 ¼ cc m. When cc < 1, the m1 causal

loci are chosen at random from the significant loci in MHH. Given

that simulating genome scan statistics starting from genotypes is la-

borious and very time consuming, we simulate scan statistics by add-

ing to subsets of above selected (and scaled) effect sizes, and their

LD-induced decay in neighboring SNPs, ARMA (3,4) residuals [for

more information see Simulation model in Supplementary Material

(SM) and Table 1]. This model for residuals was found to be

Table 1. Simulation design parameters. MHH is the abbreviation

for mega-analysis of human height

Parameter name Parameter Design levels

ARMA(3,4) model AR vector f0:8716; 0:9782; � 0:851g
MA vector f�0:665; � 0:998; 0:659; 0:025g

Number of simulated

autosome SNPs

k 2; 866; 105 (1 SNP=Kbp)

Phenotyped sample

size (thousands)

n1 f22:5; 45; 90; 180; 360g
(fraction of MHH sample:

cs ¼ 1
8 ;

1
4 ;

1
2 ; 1; 2

� �
)

Number of causal

SNPs

m1 f6; 11; 23; 45; 90; 180g
(fraction of MHH number

of causal SNPs:

cc ¼ 0; 1
32 ;

1
16 ;

1
8 ;

1
4 ;

1
2 ; 1

� �
)
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adequate for simulating statistics for markers with a density of ap-

proximately 1 SNP/kbp (Bacanu and Kendler, 2012).

To assess the performance of methods for underpowered studies,

we performed simulations under H0. Under this scenario cc ¼ 0, i.e.

the simulated statistics are identical to an ARMA (3,4) realization of

unit variance. We simulated sample sizes equaling a fraction

cs 2 1
8 ; 2
� �

of the MHH sample size ðn � 180; 000Þ. [While the

chosen sample sizes (>22 500 subjects) might appear too large, these

cohorts (i) consist of unselected/population subjects and (ii) are

roughly the sizes of the more powerful selected (case–control) sub-

jects needed to detect a non-trivial number of signals in multi-site

psychiatric genetic cohorts (Ripke et al., 2013; Ripke et al., 2011;

Sklar et al., 2011).] Additional details regarding the relationship be-

tween mean of the statistics and cs, are available in the Simulation

model subsection in SM. For every parameterization given in

Table 1, we performed 250 simulations.

2.6 Practical application
To underline FIQT accuracy and its usefulness in genetics, we

applied it to the summary statistics from the discovery phase of the

2005 Psychiatric Genomics Consortium (PGC) GWAS of schizo-

phrenia (PGC-SCZ1) (Ripke et al., 2011). PGC-SCZ1 FIQT esti-

mates were used to predict the genomic regions harboring statistics

which are expected to attain significance in the four-fold larger dis-

covery phase of the 2014 PGC SCZ study (henceforth denoted as

PGC-SCZ2) (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014). Our inference is a point prediction,

as opposed to a testing procedure. It is based solely on the predicted

noncentrality estimates in PGC-SCZ2, as opposed to association

P-values from PGC-SCZ1. The inference relies on the fact that the

Z-score noncentrality increases with the square root of the sample

size. Thus, the noncentrality (true mean) of Z-score for SNPs in

PGC-SCZ2 are estimated simply as the double of their PGC-SCZ1

homologues. We predict as significant in PGC-SCZ2 only those

SNPs for which the P-value associated with their predicted Z-score

noncentrality is lower than the commonly used 5� 10�8 threshold.

3 Results

Among EB-n methods, we tested EB-1, EB-10, EB-50 and EB-100.

EB-10 and EB-50 have intermediate performance between EB-1 and

EB-100, with EB-10 closer to EB-1 and EB-50 closer to EB-100

(data not shown). Consequently, we present only the results for EB-

1 and EB-100. Measures of prediction accuracy for all of the above

methods are assessed based on the simulated and estimated noncen-

tralities for all SNPs in genome scans.

Under H0, i.e. the surrogate for underpowered studies, FIQT has

the best mean square error (MSE) performance everywhere, except

for the (very small) region of extremely low P-values, where EB-1

slightly outperforms it (Fig. 1). Among the remaining methods, EB-

1 performs best over the entire parameter space and, as expected,

MLE has the largest MSE. We note that, in marked contrast to the

alternative hypothesis results that follow, EB-1 thoroughly outper-

forms EB-100.

Under the alternative, Ha, FIQT has better MSE performance for

settings with moderate to large number of signals and larger sample

sizes (Fig. 2). Its performance improvement over competitors is

sometimes substantial, e.g. for large sample sizes and medium num-

ber of signals. EB-1 does not outperform FIQT under any Ha scen-

arios. EB-100 only nominally outperforms FIQT at smaller sample

sizes. Surprisingly, even though it was designed only as a tail bias

adjustment, TA performs reasonably well. Under certain scenarios,

e.g. large sample sizes, it outperforms EBs for statistics with nomin-

ally significant P-values and even slightly outperforms FIQT for a

very narrow range of moderately small P-values. The better per-

formance of FIQT is mostly due to the lower variance of this estima-

tor [Fig. S1 in Supplementary Material (SM)], because, when

compared with EB (and especially TA) methods, the bias is often

somewhat larger (Fig. S2). (However, FIQT conservativeness at low

P-values (negative bias in S2), opens the possibility of future im-

provement which take into account the local LD of statistics, as

Fig. 1. Null hypothesis mean square error (MSE) of Z-scores noncentrality es-

timates for SNPs having negative log unadjusted P-values below -log10

P. Methods abbreviations: MLE – original statistics, TA – tail adjustment, EB-1

– Empirical Bayes, EB-100 – Empirical Bayes 100 subsets and FIQT – our pro-

posed method (FDR Inverse Quantile Transformation)

Fig. 2. Alternative hypothesis MSE of Z-scores noncentrality estimates

(see Fig. 1 for background/notation). cs � relative ðto MHHÞ sample size;

cc - number of causal signals relative to the 180 significant MHH signals

Simple yet accurate correction for winner’s curse 2601

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw303/-/DC1


alluded in Discussion.) When measuring accuracy by R2, i.e. the ex-

plained variability of the Z-score noncentralities, FIQT practically

outperforms all other methods (Fig. 3), albeit EB-100 only nomin-

ally so.

Due to its very simple computation, FIQT has much faster run-

ning times than competitors. When compared to the next most ac-

curate method, EB-100, the proposed method is faster by more than

four orders of magnitude [Fig. S2 in Supplementary Material (SM)].

FIQT is also faster than the less accurate EB-1 by almost two orders

of magnitude (data not shown).

Practical application. Given that discovery phase of PGC-SCZ2

has around four times the sample size of its PGC-SCZ1 homolog,

then the Z-score noncentrality in PGC-SCZ2 are expected to be

twice as large as the PGC-SCZ1 FIQT estimates (see Fig. S4 for rela-

tionships between these estimators and PGC-SCZ1 statistics). By

computing, under a Gaussian distribution assumption, the P-values

associated with estimated PCC_SCZ2 noncentralities, we predict 46

regions (Supplementary Table S1) to attain significance in PGC-

SCZ2, as opposed to only 11 present in PGC-SCZ1. The 46 regions

were obtained by clustering together predicted significant signals

within 250 Kb. Of these significant regions, a very high number, 34

(�75%), overlap the 105 independent chromosomal regions re-

ported by PGC-SCZ2. A total of 18 predicted PGC-SCZ2 regions

overlap the extended MHC region (25–33 Mb) on chromosome 6p

from the actual PGC-SCZ2 findings, as opposed to only 5 reported

by PGC-SCZ1. Of the overall of 34 overlapping regions, 16 are in

loci outside MHC regions, as opposed to just 6 reported by PGC-

SCZ1.

4 Conclusions

We propose a novel approach, FIQT, to extract information from

genome scan statistics by estimating noncentrality (true mean)

of Z-scores by performing a winner’s curse adjustment (WCA) on

Z-scores. Due to the high degree of similarity between WCA on

Z-score scale and multiple testing adjustment (MTA) on P-value

scale, we propose a two stage procedure. First, use FDR for the

MTA of P-values. Second, transform the adjusted P-values to upper

tail Z-scores and assign to it the sign of the original statistics. When

compared to competing methods, FIQT estimators are shown to (i)

have a smaller mean squared error loss, (ii) explain a higher propor-

tion of the true means of the statistics and (iii) have substantially

faster running times. The practical application to PGC-SCZ1 data

show that FIQT estimators are useful for highlighting, with reason-

able specificity, genomic regions likely to attain significance only in

much larger supersamples.

Empirical Bayes, EB, and similar methods are currently some of

the state-of-the-art approaches for accurately estimating the noncen-

trality of scan statistics. However, all EB methods are computation-

ally and skill intensive and, due to the need of empirically estimating

the probability density of statistics, they might not be appropriate

when the number of statistics is reasonably small. Our proposed

method, FIQT, eliminates these disadvantages while maintaining a

similar (to sometimes much better) prediction accuracy. Its perform-

ance advantage over EB based methods is especially notable at high

sample sizes and a moderate to large number of true signals. [While,

the accuracy was assessed only on the Z-score scale, Delta Method

(a first order Taylor approximation) from statistical theory states

that the relative performance of methods should be similar on other

scales (Casella and Berger, 1990), e.g. RRs or ORs.]

FIQT practical application to PGC SCZ summary statistics, were

used to predict a large fraction of future signals discovered in a four

times larger cohort. This underscores its useful in predicting moder-

ately large, even if non-significant, signals. While ranking regions

and predicting as possibly significant in the future a set number of

them, in practice the decision on the magnitude of such number is

both complex and subjective. In contrast, FIQT can help to object-

ively determine the number of signals that likely to be significant in

the future based on the (i) estimated non-centralities and the (ii) in-

crease in sample size. Such estimates can be used to adequately de-

sign well-powered follow-up studies.

FIQT estimates the noncentralities for all Z-scores in a genome

scan. Sometimes, Z-scores are not available and the researchers need

to estimate them from other summary data (see SM). Conversely,

the adjusted Z-scores (e.g. FIQT estimates of their noncentrality)

can be subsequently used to estimate the adjusted values for the

summary statistics of interest. For instance, if summary data contain

only log odds ratio, lnðORÞ, and their standard error, br, then

the vector of Z-scores is X ¼ lnðORÞ
r . Subsequently, we can use the

adjusted Z-scores (FIQT estimates), X�, to estimate the adjusted

odds ratio, e.g. as lnðORÞ� ¼br X�(1) or lnðORÞ� ¼ X�

X ln ORð ).

lnðORÞ� can be interpreted as the vector of unbiased (winner’s curse

corrected) lnðORÞ. However, it can be argued that the winner’s

curse might be due to underestimation of br, for instance. While ad-

justment for this scenario is more complex, a helpful idea might be

to substitute br in (1) by its average over the (reasonably tight) allele

frequency bin which includes the SNP under investigation.

In its present form, FIQT is conservative and provides only point

estimates, i.e. it does not compute the standard deviation (SD) of

Z-score noncentrality estimates. In the future we plan to extend

FIQT to be both less conservative and provide such estimates.

Heuristically, for each SNP, such a plan might (i), similarly to EB-n,

compute FIQT-n mean Z-score noncentrality estimates by using

only (quasi-independent) SNPs spaced n lags apart and (ii) obtain n-

1 estimates of its SNP Z-score noncentrality by interpolation using

all FIQT-n which do not include this SNP in its support.

Subsequently, for each SNP, (i) the Z-score noncentrality might be

Fig. 3. The alternative hypothesis variability (R2) in Z-score noncentrality for

SNPs having negative log (unadjusted) P-values below -log10 P. See Figures 1

and 2 for background and notations
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estimated as the mean of its n-1 FIQT-n noncentralities and (ii) the

SD of the mean of FIQT-n scores can be estimated assuming that the

n� 1 FIQT-n Z-scores follow a (circular) AR time series. When

compared to the original application to SNPs in high LD, the quasi-

independence of SNPs in a FIQT-n set ensures that FDR q-values are

much less conservative and, in turn, the updated FIQT estimates be-

come less conservative.

FIQT is a very simple yet powerful method. However, in its pre-

sent form, it is more of a proof-of-concept and we believe it can be

further improved. One direction would be to extend FIQT to accur-

ately estimate other variables besides Z-score noncentralities. For in-

stance, shrinkage estimators are widely used for correlation/

covariance matrices (Daniels and Kass, 2001). Given that the sample

correlations are normally distributed with variances dependent only

on the sample size, FIQT can be extended to the estimation of cor-

relation matrices. The extension might involve shrinking the magni-

tudes of correlation matrix entries toward zero.

FIQT has the potential to be used in the personalized genomics,

e.g. the prediction of subject level risk based on whole genome data.

Methods for predicting subject level risk typically use summary statis-

tics as input, e.g. LDpred extension (http://biorxiv.org/content/early/

2015/03/04/015859) of LD score method (Bulik-Sullivan et al.,

2015). Thus an increased accuracy of signal estimation used as input

might result in more accurate estimates of an individual’s risk/trait

mean.

5 Software

FIQT is available from GitHub and Supplementary Material. It will

also be implemented in DISTMIX (Lee et al., 2015), our group’s dir-

ect imputation software for cosmopolitan cohorts (http://dleelab.

github.io/distmix/). (DISTMIX imputes the statistics at the unmeas-

ured SNPs based only on the statistics at the measured SNPs and the

LD patterns estimated from a cosmopolitan reference panel.)

Funding

This work was supported by R25DA026119 (D.L.), R21MH100560 (B.P.R.

and S.A.B.) and R21AA022717 (V.I.V. and S.A.B.).

Conflict of Interest: none declared.

References

Bacanu,S.A. and Kendler,K.S. (2012) Extracting actionable information from

genome scans. Genet Epidemiol, 37, 48–59.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B

(Methodological), 57, 289–300.

Bowden,J. and Dudbridge,F. (2009) Unbiased estimation of odds ratios: com-

bining genomewide association scans with replication studies. Genet.

Epidemiol., 33, 406–418.

Bulik-Sullivan,B.K. et al. (2015) LD Score regression distinguishes confound-

ing from polygenicity in genome-wide association studies. Nat. Genet., 47,

291–295.

Casella,G. and Berger, R.L. (1990) Statistical Inference. Brooks/Cole

Publishing Company, Pacific Grove, USA.

Daniels,M.J. and Kass,R.E. (2001) Shrinkage estimators for covariance matri-

ces. Biometrics, 57, 1173–1184.

Dewan,A. et al. (2006) HTRA1 promoter polymorphism in wet age-related

macular degeneration. Science, 314, 989–992.

Dudbridge,F. and Gusnanto,A. (2008) Estimation of significance thresholds

for genomewide association scans. Genet. Epidemiol., 32, 227–234.

Efron,B. (2009) Empirical bayes estimates for large-scale prediction problems.

J. Am. Stat. Assoc., 104, 1015–1028.

Faye,L.L. et al. (2011) A flexible genome-wide bootstrap method that accounts

for ranking and threshold-selection bias in GWAS interpretation and repli-

cation study design. Stat. Med., 30, 1898–1912.

Ferguson,J.P. et al. (2013) Empirical Bayes correction for the Winner’s Curse

in genetic association studies. Genet. Epidemiol., 37, 60–68.

Ghosh,A. et al. (2008) Estimating odds ratios in genome scans: an approxi-

mate conditional likelihood approach. Am. J. Hum. Genet., 82,

1064–1074.

Hindorff,L.A. et al. (2009) Potential etiologic and functional implications of

genome-wide association loci for human diseases and traits. Proc. Natl.

Acad. Sci. USA, 106, 9362–9367.

Holm,S. (1979) A simple sequentially rejective multiple test procedure. Scand.

J. Stat., 6, pp. 65–70.

Jenkinson,A.F. (1955) The frequency distribution of the annual maximum (or

minimum) of meteorological elements. Q. J. R. Meteorogical. Soc., 81,

158–161.

Lango,A.H. et al. (2010) Hundreds of variants clustered in genomic loci and

biological pathways affect human height. Nature, 467, 832–838.

Lee,D. et al. (2015) DISTMIX: Direct imputation of summary statistics for un-

measured SNPs from mixed ethnicity cohorts. Bioinformatics, 31, 3099–3104.

Li,Y. et al. (2010) MaCH: using sequence and genotype data to estimate

haplotypes and unobserved genotypes. Genet. Epidemiol., 34, 816–834.

Purcell,S.M. et al. (2009) Common polygenic variation contributes to risk of

schizophrenia and bipolar disorder. Nature, 460, 748–752.

Ripke,S. et al. (2013) Genome-wide association analysis identifies 13 new risk

loci for schizophrenia. Nat. Genet., 45, 1150–1159.

Ripke,S. et al. (2011) Genome-wide association study identifies five new

schizophrenia loci. Nat. Genet., 43, 969–976.

Schizophrenia Working Group of the Psychiatric Genomics Consortium.

(2014) Biological insights from 108 schizophrenia-associated genetic loci.

Nature, 511, 421–427.

Sklar,P. et al. (2011) Large-scale genome-wide association analysis of bipolar

disorder identifies a new susceptibility locus near ODZ4. Nat. Genet., 43,

977–983.

Sun,L. et al. (2011) BR-squared: a practical solution to the winner’s curse in

genome-wide scans. Hum. Genet., 129, 545–552.

Wellcome Trust Case Control Consortium. (2007) Genome-wide association

study of 14,000 cases of seven common diseases and 3,000 shared controls.

Nature, 447, 661–678.

Xiao,R. and Boehnke,M. (2011) Quantifying and correcting for the winner’s

curse in quantitative-trait association studies. Genet. Epidemiol., 35,

133–138.

Xu,L. et al. (2011) Bayesian methods to overcome the winner’s curse in genetic

studies. Ann. Appl. Stat., 5, 201–231.

Zhong,H. and Prentice,R.L. (2008) Bias-reduced estimators and confidence

intervals for odds ratios in genome-wide association studies. Biostatistics.,

9, 621–634.

Zollner,S. and Pritchard,J.K. (2007) Overcoming the winner’s curse: estimat-

ing penetrance parameters from case-control data. Am. J. Hum. Genet., 80,

605–615.

Simple yet accurate correction for winner’s curse 2603

http://biorxiv.org/content/early/2015/03/04/015859
http://biorxiv.org/content/early/2015/03/04/015859
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw303/-/DC1
http://dleelab.github.io/distmix/
http://dleelab.github.io/distmix/

