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Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not
been globally assessed. We therefore produced an extensive small RNA sequencing data set to analyze male and female
miRNA expression profiles in mouse, opossum, and chicken. Our analyses uncovered numerous cases of somatic sex-biased
miRNA expression, with the largest proportion found in the mouse heart and liver. Sex-biased expression is explained
by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of
intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across
tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased
miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system,
expression output of genes on the Z Chromosome is expected to be male-biased, since there is no global dosage compen-
sation mechanism that restores expression in ZW females after almost all genes on the W Chromosome decayed.
Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner,
due to the unusual retention of aW-linked copy. Another Z-linkedmiRNA, the male-biased miR-2954-3p, shows conserved
preference for dosage-sensitive genes on the Z Chromosome, based on computational and experimental data from chicken
and zebra finch, and acts to equalize male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish
miRNA regulation as a novel gene-specific dosage compensation mechanism.

[Supplemental material is available for this article.]

Phenotypic variation between males and females of the same spe-
cies, also known as sexual dimorphism, is thought to arise largely
as a consequence of sex-biased gene expression (Grath and Parsch
2016; Mank 2017). Studies addressing the genetic underpinning
of sexual dimorphism from the perspective of protein-coding
genes have revealed thousands of sex-biased genes in mammals
and birds (Yang et al. 2006; Itoh et al. 2010; Harrison et al. 2015;
Melé et al. 2015). Less attention has been given to the potential
impact of sex-biased microRNAs (miRNAs)—short regulatory
RNAs (∼21 nt) that enable expression fine-tuning of target
mRNAs through transcript degradation or translational inhibition
(Jonas and Izaurralde 2015). Because each miRNA can potentially
target many hundred mRNAs (Baek et al. 2008; Selbach et al.
2008), it has been proposed that miRNAs might have widespread
effects that contribute to shapingmale and female transcriptomes,
both in healthy and diseased tissues (Morgan and Bale 2012; Dai
and Ahmed 2014; Sharma and Eghbali 2014).

In some cases, sex-biased miRNA expression might arise as
a consequence of differential gene dosage (number of gene

copies) between the sexes. In most mammals, females have
two X Chromosomes, whereas males have one X and one Y
Chromosome (Cortez et al. 2014; Graves 2016), resulting in sex-
specific gene dosage of X-linked and Y-linked genes. For themajor-
ity of genes, the effect on expression is mitigated through a dosage
compensationmechanism in which one of the X Chromosomes is
inactivated, although a fraction of genes are able to escape inacti-
vation, thereby becomingmore highly expressed in females (Deng
et al. 2014). Even so, the X Chromosome is generally associated
with male-biased expression and is enriched for young, testis-ex-
pressed miRNAs (Guo et al. 2009; Meunier et al. 2013). Contrary
to mammals, birds do not have global dosage compensation and
they therefore display more pervasive transcriptomic differences
between the sexes: The bird Z Chromosome is present in two cop-
ies inmales, whereas females carry one Z and oneWChromosome,
and Z-linked protein-coding genes are, on average, expressed at
1.5-fold higher levels in males (Ellegren et al. 2007; Itoh et al.
2007; Mank and Ellegren 2009; Julien et al. 2012). Consistent
with incomplete dosage compensation, the Z-linked miRNA
miR-2954-3p was found to be male-biased in birds (Zhao et al.
2010; Luo et al. 2012), and studies in zebra finch suggested a role
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for the miRNA in sex-specific song response (Gunaratne et al.
2011; Lin et al. 2014). The role of miR-2954-3p in non-singing
species, such as chicken, has not been extensively explored,
although its strongly male-biased expression throughout chicken
development hints at a contribution of the miRNA toward the
establishment of sex identity in individual cells, especially as this
feature is not dependent on gonadal hormones in chicken (Zhao
et al. 2010).

Alternatively, sex-biased miRNA expression can be achieved
through various types of sex-biased regulation. In the perhaps
simplest scenario, miRNAs that are located in the introns of
protein-coding genes (Baskerville and Bartel 2005) could potential-
ly become sex-biased indirectly if they are coexpressed with a sex-
biased host (Marco 2014). Many intronic miRNAs, as well as those
that are intergenic, are nevertheless transcribed from their own
promoters (Ozsolak et al. 2008) and would require targeted sex-
biased regulation, for example by hormones, to become differen-
tially expressed between males and females. In Drosophila, hor-
monal regulation by ecdysone promotes sex-biased expression of
the miRNA locus let-7-C, which was found to contribute to sexual
identity (Fagegaltier et al. 2014). Concordant with this finding,
the expression of many human miRNAs, including members of
the let-7 family, is regulated by sex hormones (Yang and Wang
2011; Klinge 2012). Other hormones can also be secreted in a
sex-biased manner, such as growth hormone, which contributes
to sexual dimorphism of the mammalian liver (Waxman and
O’Connor 2006), including differential expression of miRNAs
(Cheung et al. 2009). Although some miRNAs are primary targets
of nuclear hormone receptors (Bhat-Nakshatri et al. 2009), sex-bi-
ased regulation is in other instances mediated through hormonal-
ly regulated transcription factors (Castellano et al. 2009). Finally,
the expression of key factors involved in the processing of primary
miRNA transcripts into mature miRNAs (Ha and Kim 2014) has
also been found to be sensitive to sex hormones (Bhat-Nakshatri
et al. 2009; Nothnick et al. 2010), suggesting an additional layer
of post-transcriptional, sex-biased regulation.

Taken together, previous studies suggest that sex-biased
miRNA expression might be widespread and have potentially pro-
found functional implications. Even so, previous efforts to identify
sex-biased miRNAs in mammals and birds were restricted to a
single species and typically also to a single tissue, and many had
limited resolution, because they were based on microarray tech-
nology and/or lacked biological replicates (Mishima et al. 2008;
Bannister et al. 2009; Cheung et al. 2009; Ciaudo et al. 2009;
Chiang et al. 2010; Luo et al. 2012; Mujahid et al. 2013; Murphy
et al. 2014; Ziats and Rennert 2014; Kwekel et al. 2015, 2017;
Link et al. 2017). To provide a more complete view of mammalian
and avian sex-biasedmiRNAs,wehave conducted the first compre-
hensive survey of male and female miRNA transcriptomes based
on small RNA sequencing of somatic and gonadal tissues from
mouse, opossum, and chicken. Our results highlight the diverse
mechanisms underlying sex-biased miRNA expression across tis-
sues and species and establish a role for miR-2954-3p regulation
in gene-specific dosage compensation in birds.

Results

Identification of miRNAs with sex-biased expression in mouse,
opossum, and chicken

To identify miRNAs with sex-biased expression in mouse, gray
short-tailed opossum, and chicken (red jungle fowl), we prepared

and sequenced a total of 72 small RNA libraries corresponding
to brain, heart, liver, and gonad (ovary and testis) samples from
three male and three female adult individuals per species
(Methods). To mitigate the extensive sequencing biases that
have been identified for standard library preparation methods
(Sorefan et al. 2012; Baran-Gale et al. 2015), we chose to prepare
the libraries with the NEXTflex Small RNA-seq Kit (Methods),
which improves the ligation step through the use of partially
degenerate adapters (Baran-Gale et al. 2015). We found that
this protocol allowed substantially broader coverage of expressed
miRNAs compared to standard methods (Supplemental Fig. S1).
After adapter trimming and filtering based on quality scores and
read length, each library was represented by an average of 19.4
million high-quality reads with a size of 15–28 nt. Novel miRNA
precursors were predicted for each library using miRDeep2
(Friedländer et al. 2012), with a cutoff score of 5, corresponding
to a signal-to-noise ratio of at least 10:1 in all tissues except chicken
testis (Methods). Only precursors that were identified in at least
three of six tissue replicates (male or female) and that did not over-
lap with other noncoding RNAs (ncRNAs) were kept for further
analysis (Methods). Genomic coordinates of all known and puta-
tive novel miRNA loci investigated in this study are provided in
Supplemental Table S1. All novel miRNAs loci have furthermore
been submitted to miRBase (Kozomara and Griffiths-Jones 2014)
and their assigned miRBase IDs are listed in Supplemental Table
S2. After an additional filtering step performed by miRBase, 40
mouse, 220 opossum, and 135 chicken miRNA precursors were
added to the database.

Next, we estimated miRNA expression levels by remapping
all reads to the respective genome using Bowtie (Langmead
et al. 2009) and a sequence of decreasingly stringent settings
(Methods) to allow for mismatches due to miRNA editing
and 3′ modifications (Kawahara et al. 2007; Burroughs et al.
2010; Chiang et al. 2010; Warnefors et al. 2014). Because some
miRNAs belong to multicopy families with high sequence similar-
ity, it was not always possible to pinpoint the precise genomic lo-
cus from which a miRNA read was derived. We therefore grouped
mature miRNAs into multimap groups (MMGs; Methods), which
were thereafter treated as single expression units (Robert and
Watson 2015). We chose a relatively conservative MMG cutoff of
5%, meaning that if a miRNA shared >5% of its total reads with
another miRNA, these two miRNAs were assigned to the same
MMG. Reads thatmapped twoMMGs (i.e., <5% cutoff) were divid-
ed equally between theMMGs. The 843mouse, 893 opossum, and
564 chicken MMGs are listed in Supplemental Table S3. MMGs
were considered expressed in a given tissue if they contributed at
least 10 transcripts per million miRNA-mapped reads (TPM) in
three of six replicates.

For each tissue and species, we then used DESeq2 (Love et al.
2014) to identify miRNAs with sex-biased expression at a global
false discovery rate (FDR) of 5% (Methods). Differential expression
between ovary and testis samples was analyzed and corrected sep-
arately due to the mixture of sex-related and tissue-related effects,
which otherwise reduced the stringency of the significance test for
the somatic samples (Methods). An overview of sex-biased miRNA
expression per tissue is given in Figure 1, with complete details
available in Supplemental Table S4. The most male-biased
and most female-biased miRNA for each species and tissue are
listed in Table 1. We did not identify any individual miRNAs
that were sex-biased in a somatic tissue in more than one species
(Discussion), although several were sex-biased in multiple tissues
from a single species (Supplemental Table S4).
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Figure 1. Sex-biased miRNA expression in mouse, opossum, and chicken. Male-to-female (M:F) ratios were calculated for three male and three female
replicates per tissue and the significance assessed with DESeq2 (Love et al. 2014), with Benjamini-Hochberg correction for multiple tests (Benjamini and
Hochberg 1995) performed separately for somatic and gonadal samples. For display purposes, the log2-transformed M:F ratios were capped at −3 and 3,
with more extreme ratios replaced by these values. Each data point corresponds to a multimap group (MMG) comprised of one or more mature miRNAs
(see main text), and MMGs were considered sex-linked if they included at least one sex-linked member. Expression values correspond to the mean nor-
malized counts provided by DESeq2. The most sex-biased miRNAs per tissue are listed in Table 1. The Z-linked and W-linked miRNA miR-122-5p is visible
as the rightmost data point in the chicken liver panel. All data shown in this figure are included in Supplemental Table S4.

Table 1. The most sex-biased miRNAs per tissue

Tissue

Most female-biased miRNA Most male-biased miRNA

miRNA Chr Log2(M:F) Padj miRNA Chr Log2(M:F) Padj

Mouse brain mmu-miR-412-5p 12 –0.69 0.017 — — — —

Mouse heart mmu-miR-708-5p 7 –1.49 0.018 mmu-miR-451a-5p 11 2.01 4.0 × 10−4

Mouse liver mmu-miR-132-3p 11 –1.79 7.2 × 10−5 mmu-miR-1948-5p 18 2.79 3.8 × 10−15

Mouse gonads mmu-miR-708-3p 7 –9.84 7.7 × 10−23 mmu-miR-7217-5p 17 14.72 4.1 × 10−43

Opossum brain mdo-novel-112-5pa 4 –0.97 0.019 — — — —

Opossum heart mdo-miR-7398f-3p X –1.50 9.1 × 10−4 mdo-miR-12323-5p 2 1.21 0.040
Opossum liver mdo-miR-9a-1-5pb 1 –1.59 4.7 × 10−6 mdo-miR-7246-5p 1 0.99 6.5 × 10−4

Opossum gonads mdo-miR-12340-5p 3 –9.05 4.8 × 10−23 mdo-miR-7266-3p 2 10.88 2.4 × 10−32

Chicken brain gga-mir-7b W –7.29 1.7 × 10−53 gga-miR-2954-3p Z 2.43 4.5 × 10−9

Chicken heart gga-mir-7b W –7.09 2.8 × 10−147 gga-miR-2954-3p Z 1.92 5.6 × 10−11

Chicken liver gga-mir-7b W –6.26 3.4 × 10−66 gga-miR-2954-3p Z 3.08 6.9 × 10−46

Chicken gonads gga-miR-1788-5p 7 –11.13 1.0 × 10−40 gga-miR-12222-5p 12c 13.42 8.0 × 10−14

Supplemental Table S4 provides full details regarding all investigated miRNAs.
aThe putative novel miRNA did not pass the low complexity filter and was not assigned a miRBase ID.
bThe miRNA belongs to an MMG with more than one member; see Supplemental Table S3 for details.
cFull name: chr12_NT_462054v1_random.
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Independent transcription drives sex-biased miRNA expression
in mouse tissues

We found evidence of sex-biasedmiRNA expression in all of the in-
vestigated somatic tissues (Fig. 1), with the largest proportion
found in mouse heart (13%, 33 significant MMGs of 253 tested)
and liver (8.6%; 19 of 222). These findings are consistent with
the large numbers of protein-coding genes that are expressed in
a sex-biased manner in various mouse tissues, notably with more
pronounced differences in liver compared to brain (Yang et al.
2006). Although it is well established that many X-linked
miRNAs are male-biased with high expression levels in the mouse
and opossum testis (Song et al. 2009;Meunier et al. 2013), and this
trend was visible also in our data (Fig. 1; Supplemental Table S4),
we found that most sex-biased miRNAs in somatic tissues were au-
tosomal (Fig. 1). The expression pattern of thesemiRNAs thus can-
not be explained by escape from X inactivation or other effects
immediately linked to the presence of sex chromosomes, but is in-
stead likely achieved through direct or indirect regulation by hor-
mones or other sex-biased factors.

We speculated that one regulatory route to sex-biasedmiRNA
expression might simply be coexpression with a sex-biased
protein-coding gene, especially since it is known that many
miRNAs, including both those generated via canonical and nonca-
nonical pathways, are locatedwithin the introns of protein-coding
genes and transcribed from the same promoter as their host
(Rodriguez et al. 2004; Baskerville and Bartel 2005; Berezikov

et al. 2007; Meunier et al. 2013). In our data, there was consider-
able potential for coexpression, with 9 of 33 (27%)MMGswith sig-
nificantly sex-biased expression inmouse heart having at least one
intronic member, and the corresponding numbers for mouse liver
were 7 sex-biased MMGs of 19 (37%). However, when we com-
pared the sex-biased expression of intronic miRNAs with that of
their host genes, based on expression data from Marin et al.
(2017) (see also Methods), we did not find any significant correla-
tion between miRNA and host gene male-to-female (M:F) ratios in
heart, and only a weak correlation in liver, which was no longer
significant after correction formultiple tests (Fig. 2A). These results
indicate that miRNA sex bias is not in general a secondary effect
caused by sex-biased regulation of protein-coding genes in somatic
tissues, although a stronger correlation was seen for the gonads
(Fig. 2A). The male-biased expression of miR-1948-5p/3p and
miR-455-5p/3p in mouse liver nevertheless appeared to constitute
an exception, since the host genes Ttc39c and Col27a1 were male-
biased to a similar degree (Fig. 2A). However, we found that both
miRNA loci were associated with mouse liver DNase I hypersensi-
tivity (DHS) sites identified by Ling et al. (2010) (Methods), which
is an indication that they possess independent regulatory elements
and can be transcribed separately from the host. Although the pos-
sibility remains that some miRNAs are transcribed from both
miRNA-specific and host-associated promoters (Ozsolak et al.
2008), these observations suggest that the sex bias we observe for
mouse miRNAs occurs in parallel to the sex bias of protein-coding
genes, but for the most part, is not a direct consequence thereof.

Figure 2. Transcriptional mechanisms underlying sex-biased miRNA expression. (A) Correlation between sex-biased expression of intronic miRNAs
(y-axis) and their host genes (x-axis). Male-to-female (M:F) expression ratios were calculated with DESeq2. For each tissue, the Spearman correlation
coefficient (rho) is given, together with its Benjamini-Hochberg corrected P-value (Benjamini and Hochberg 1995). (B) Overview of the two miRNA loci
that were associated with sex-biased DHS regions (Ling et al. 2010) in mouse liver. In both cases, a sequence of 1 kb is depicted. The displayed miRNA
precursor region corresponds to the 5p and 3p sequences with the intervening loop sequence. (C ) Expression levels in mouse liver of the 5p and 3pmature
miRNAs shown in B, for three female and threemale replicates. Raw read counts were normalized with DESeq2. Statistical significance: (∗) P < 0.05; (∗∗) P <
0.01; (∗∗∗) P < 0.001.
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Similar decoupling of intronicmiRNA expression from that of host
genes due to independent transcription and/or post-transcription-
al processing has previously been observed across mammalian tis-
sues (Ozsolak et al. 2008; Wen et al. 2015).

Although these analyses suggest that the majority of sex-bi-
ased miRNAs are transcribed from independent promoters, they
do not address whether these promoters are themselves targets
of sex-biased regulation. The DHS site that we were able to associ-
ate with the mir-1948 locus had previously been annotated as
male-biased (Ling et al. 2010), which would be consistent with
the male-biased expression of miR-1948-5p and -3p (Fig. 2A).
This finding was nevertheless somewhat surprising, given that
sex-biased regulation of protein-coding genes is thought to primar-
ily take place at distally located regulatory elements rather than
promoters, with 80% of all sex-biased DHS sites being located
>100 kb away from sex-biased genes (Ling et al. 2010). To investi-
gate the role of sex-biased promoters further, we intersected the
coordinates of all 185 liver-expressed single-member MMGs (i.e.,
miRNAs for whichmost sequencing readsmap to a single genomic
locus) with genome-wide DHS annotations from Ling et al. (2010)
(Methods). We could associate 95 miRNAs with 61 DHS sites with-
in 5 kb upstream or overlapping the miRNA (P < 0.001 based on
1000 permutations of the DHS site coordinates), and were able
to locate one additional miRNA-associated sex-biased DHS site,
this time a female-biased site associatedwith the equally female-bi-
asedmir-802 locus (Fig. 2B). In spite of the limited sample size, the
association between sex-biased DHS sites and sex-biased miRNA
loci was significant (two of two sex-biased and six of 59 unbiased
DHS sites were associated with sex-biased miRNAs, P = 0.015,
Fisher’s exact test), which suggests that, for a subset of miRNAs,
sex-biased expression is likely associated with differential promot-
er accessibility in males and females.

Overall, our findings point to diverse transcriptional mecha-
nisms behind sex-biased miRNA expression in the mouse, includ-
ing potential piggybacking on sex-biased host genes in gonads and
possibly liver, regulation at miRNA promoters, and presumably,
regulation at distally located regulatory elements, such as enhanc-
ers. Conceivably, an additional level of regulation might be
achieved through differential processing of miRNA transcripts
in males and females (Bhat-Nakshatri et al. 2009; Nothnick et al.
2010). Given that 5p/3p pairs from the same miRNA locus fre-
quently have highly similar M:F ratios (e.g., miR-1948-5p/3p,

miR-455-5p/3p, and miR-802-5p/3p) (Fig. 2), we consider it more
likely that such sex-biased regulation, if present, would affect the
general efficiency of miRNA biogenesis rather than modulate the
balance between 5p and 3p mature miRNAs through arm switch-
ing (Chiang et al. 2010).

Somatic miRNA sex bias mirrors gonadal expression in mouse
but not chicken

In addition to the sex-biased miRNA expression found in somatic
tissues, we consistently found pronounced sex differences in
the gonads (Fig. 1). The magnitude of these differences is not sur-
prising, given that ovary and testis transcriptomes are shaped by
sex-biased as well as tissue-biased factors (Discussion). Previous
studies have shown that the X Chromosome of mouse and opos-
sum is enriched for recently expanded testis-expressed miRNA
families, whereas no similar enrichment exists for the chicken Z
Chromosome (Guo et al. 2009; Meunier et al. 2013). The mecha-
nistic basis of this phenomenon has been amatter of intense study
(Song et al. 2009; Royo et al. 2015; Sosa et al. 2015). As previously
noted, the surplus of X-linked, testis-biased miRNAs in both
mouse and opossum was clearly visible also in our data (Fig. 1;
Supplemental Table S4). Even so, the majority of ovary-biased
and testis-biased miRNAs in our data set were autosomal, and a
large proportion of them could be detected in at least one somatic
tissue, although testis-biased autosomalmiRNAswere significantly
less likely to be somatically expressed (Fig. 3A). The relative lack of
shared miRNA expression between testis and somatic tissues fits
well with known expression patterns of mRNAs and long noncod-
ingRNAs,which aremore frequently testis-specific thanovary-spe-
cific in all three species investigated here (Necsulea et al. 2014).
However, it should be noted that ovary samples contain a larger
proportion of somatic cells, and the power to detect ovary-specific
miRNAs therefore might be reduced.

We were interested in whether miRNAs were consistently
sex-biased between gonads and somatic tissues, as might be the
case if they fulfilled sex-specific functions across a variety of con-
ditions. To this end, we compared the degree of somatic sex bias
for ovary-biased and testis-biased autosomal miRNAs (Fig. 3B),
while choosing the tissue with the strongest sex bias if a miRNA
was expressed in multiple somatic tissues (Methods). In mouse,
we found that ovary-biased miRNAs tended to be female-biased

Figure 3. Somatic expression of ovary-biased and testis-biasedmiRNAs. (A) Proportion of autosomalMMGswith ovary-biased or testis-biased expression
that are detected in at least one somatic tissue. (B) Somatic sex bias of ovary-biased and testis-biased miRNAs. If an MMG was detected in more than one
somatic tissue, the most extreme M:F ratio was chosen. Statistical significance: (∗∗) P < 0.01; (∗∗∗) P < 0.001; (n.s.) not significant.
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in somatic tissues (median M:F ratio: −0.29), whereas testis-
biased miRNAs tended to be male-biased (median M:F ratio:
0.13, P = 3.4 × 10−5, Mann-Whitney U test with Benjamini-
Hochberg correction [Benjamini and Hochberg 1995]). A similar,
although not significant trend was hinted at in the opossum
data (P = 0.30), but was not observed in chicken (P = 0.93). These
findings thus point to a more general coordination of sex-
biased expression in mouse, which is largely absent in the
other species, especially chicken, although we did notice that a
novel, autosomal miRNA (gga-miR-2184a-5p) was the second
most female-biased miRNA in chicken liver and was also signifi-
cantly female-biased in heart and gonads (Supplemental Table
S4). Although we were unable to address the root of the apparent
discrepancy between mouse and chicken with the present data, it
is tempting to speculate that hormonal regulation might facilitate
joint control of miRNA expression across tissues. Indeed, many
mammalian miRNAs are known to be regulated by gonadal hor-
mones (Yang andWang 2011; Klinge 2012). The majority of these
studies were carried out in human cell lines, but there is consider-
able overlap with the miRNAs for which we observe significant
sex-biased expression in our mouse data, including miR-17-3p
and miR-19a-3p from the mir-17-92 cluster (Castellano et al.
2009), and miR-451a-5p (Bergamaschi and Katzenellenbogen
2012). In contrast to the seemingly widespread contributions of
gonadal hormones to miRNA regulation in placental mammals,
they play a reduced role in the establishment of male and female
somatic tissues in chicken (Zhao et al. 2010), which would be con-
sistent with the lack of coordinated sex bias in this species. Global
studies of the hormonal impact on miRNA expression will howev-
er be required to determine whether the coordination of miRNA
sex bias is driven by gonadal hormones and whether the effect
is direct or indirect.

To search for functional commonalities of sex-biased miRNA
regulation across mouse tissues, we analyzed Gene Ontology
annotations of miRNA target genes using target predictions
from TargetScan (Agarwal et al. 2015) and the GOrilla tool
(Eden et al. 2009) (Methods). Only protein-coding genes with a
minimum expression of 1 FPKM (fragments per kilobase of tran-
script per millionmapped reads) in the tissue of interest were con-
sidered based on data from Marin et al. (2017). To avoid the
frequent false positives associated with functional analyses of
miRNA targets (Bleazard et al. 2015), we compared targets of
sex-biased miRNAs only to targets of unbiased miRNAs instead
of to all genes expressed in the tissue of interest (Methods). We
further chose to focus on mouse heart and liver for this analysis,
since the extent of sex-biased miRNA expression was too limited
in brain and too extensive in gonads to permit a reasonable divi-
sion of protein-coding genes into targets of male-biased, female-
biased, and unbiased miRNAs, respectively. Although we did
not observe any significant functional enrichment for targets of
female-biased miRNAs, we did identify a number of Gene
Ontology terms associated with male-biased miRNAs in both
heart and liver (Supplemental Table S5). These terms were highly
similar for the two tissues, with the top liver category “regulation
of cell communication” being the eleventh most enriched term in
heart, and the top heart category “positive regulation of cellular
process” being the fourth most enriched term in liver. The poten-
tial functional parallels between targets of sex-biased miRNAs in
heart and liver are noteworthy in light of the apparent coordina-
tion of sex-biased miRNA expression in the mouse and underline
the value of conducting screens for sex-biased genes across multi-
ple tissues.

Gene retention on the chicken W Chromosome allows nonbiased
expression of miR-122-5p

Unlikemouse and opossum, chicken does not have a global mech-
anism of dosage compensation, meaning that Z-linked protein-
coding genes generally tend to be more highly expressed in males
compared to females (Ellegren et al. 2007; Itoh et al. 2007; Mank
and Ellegren 2009; Julien et al. 2012). The most prominent exam-
ple of a Z-linked, male-biased miRNA was miR-2954-3p (Table 1;
see next section), but the association between Z linkage and
male-biased expression did not hold for all miRNAs on the chicken
Z Chromosome. A particularly striking exception was miR-122-5p,
which was the most abundant miRNA in the chicken liver and
almost completely unbiased between males and females (Fig. 1;
Supplemental Table S4). The expression pattern of miR-122-5p
in chicken is thus similar to miR-122-5p expression in mouse
and opossum (Supplemental Table S4), although themir-122 locus
is autosomal in these species. Given that miR-122-5p is expressed
at extreme levels (miR-122-5p contributed >60% of all miRNA-
mapped reads per chicken liver library), it is difficult to imagine
how sufficient dosage compensation could be achieved through
regulatory means.

However whenwe remappedmiRBasemiRNAs to themost re-
cent chicken genome release (galGal5) as part of our annotation
procedure, we were able to locate a copy of the mir-122 locus on
the updated W Chromosome, the presence of which likely grants
equalmiR-122-5p dosage in both sexes (a thirdmir-122 copy is pre-
sent on contig chrZ_NT_463593v1_random, although this might
be an assembly error). ThismiRNA therefore joins the highly select
group of dosage-sensitive genes that were retained on the W
Chromosome (Bellott et al. 2017). We did however detect signifi-
cant female bias for miR-122-5p in the chicken heart, which could
be due to sex-specific control or may indicate slight regulatory
diversification of the Z-linked and W-linked copies in this tissue.
Similar sex bias of miR-122-5p was previously observed in the
zebra finch heart based on a comparison of one male and one
female individual (Luo et al. 2012). In addition, remapping con-
firmed W linkage of the mir-7b locus (Ayers et al. 2013), which
belongs to a family with both Z-linked and autosomal members.
Given that the chicken W Chromosome is thought to host only
28 protein-coding genes (Bellott et al. 2017), miRNAs thus make
up a sizable fraction of the total W-linked gene repertoire.

Beyondmir-122 andmir-7b, we did not detect any additional
W-linked or Y-linked miRNAs in any species using remapping
of known miRNAs (Methods) or de novo annotation with
miRDeep2, although the latter did predict two novel miRNAs
(gga-mir-12266-2 and gga-mir-12266-3) on W-labeled contigs.
Because these methods would not pick up miRNAs that lack an
equivalent on the X or Z Chromosome and were generated
through an atypicalmechanism (Yang et al. 2010), we additionally
probed the data set for sex-specific reads derived from the Y or W
Chromosomes (Methods). However, although we successfully
identified themir-7b locus in thismanner, we did not recover reads
from the putatively W-linked loci mentioned above, suggesting
they do not represent bona fide W-linked miRNA genes
(Supplemental Fig. S2). Although we did identify a number of
male-specific reads in mouse and opossum, many male-specific
reads were also present in chicken, indicating that most such reads
might not be Y-derived, but instead a consequence of the tran-
scriptional complexity of the testis (Soumillon et al. 2013).
Indeed, when we mapped the male-specific reads from mouse
to the Y Chromosome, not a single match was found
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(Supplemental Fig. S2).We therefore consider it unlikely that addi-
tional miRNAs, unique to the Y or W Chromosomes, are robustly
expressed in the tissues studied here.

Male-biased expression of miR-2954-3p serves as a gene-specific
dosage compensation mechanism in birds

Similar to previous reports (Zhao et al. 2010; Luo et al. 2012; Lin
et al. 2014), we observed male-biased expression of the Z-linked

miR-2954-3p (Fig. 4A) in all chicken tissues. Although the mir-
2954 locus is located within an intron of the XPA gene, XPA is
not male-biased to the same extreme degree (Methods; Marin et
al. 2017). Notably, the male bias of miR-2954-3p is considerably
more pronounced (up to almost eightfold in chicken liver) than
the maximally twofold difference that is expected between males
and females due to gene dosage alone (Lin et al. 2014). The high
expression in chicken males is therefore likely a result of increased
production and/or stability of miR-2954-3p, in combination

Figure 4. Role of miR-2954-3p in dosage compensation. (A) Expression of miR-2954-3p in chicken tissues. Raw read counts were normalized with
DESeq2. (B) Proportion of Z-linked genes among the genes that were predicted to be targets of miR-2954-3p and autosomal miRNAs. Target prediction
was performed with TargetScan and only 8-mer sites were considered. (C ) Log2-transformed M:F expression ratios for Z-linked target genes of miR-2954-
3p or autosomal miRNAs. (D) Proportion of annotated ohnologs between Z-linked targets of miR-2954-3p and autosomal miRNAs. (E) Log2-transformed
expression ratios for protein-coding genes following miR-2954-3p knockdown compared to control. Genes that are down-regulated by miR-2954-3p are
expected to have positive ratios. The first panel shows Z-linked genes in purple and autosomal genes in gray. The following two panels show Z-linked genes
predicted to bemore (light purple) or less (dark purple) dosage-sensitive based on chicken expression data and ohnolog annotations. Only genes that were
1-to-1 orthologs and located on the Z Chromosome in both chicken and zebra finch were included in the analyses. Statistical significance: (∗) P < 0.05; (∗∗)
P < 0.01; (∗∗∗) P < 0.001.
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with the dosage effect. The biological relevance of such extreme
male bias is nevertheless not currently understood. Although pre-
vious work in zebra finch has elucidated the involvement of miR-
2954-3p in song response (Gunaratne et al. 2011; Lin et al. 2014),
these observations cannot explain why miR-2954-3p is male-bi-
ased in neural as well as non-neural tissues both in zebra finch
and a non-songbird such as chicken (Fig. 4A). To understand the
functional impact of miR-2954-3p, we therefore used TargetScan
(Agarwal et al. 2015) to predict target genes in the chicken genome
(Methods). Consistent with an earlier study (Luo et al. 2012),
targets of miR-2954-3p were markedly enriched on the Z
Chromosome (Fig. 4B), particularly when we considered only 8-
mer sites, which are the strongest type of target site (Agarwal
et al. 2015). For this site type, 47 of the 129 (36.4%) predicted
miR-2954-3p targets were on the Z Chromosome, whereas the cor-
respondingnumber for targets of all autosomalmiRNAswas 327 of
7185 (4.6%), corresponding to an eightfold enrichment (P = 2.9 ×
10−58, χ2-test).

Although there is no chromosome-wide dosage compensa-
tion in chicken, Z-linked genes differ in theirM:F expression ratios,
with a tendency for dosage-sensitive genes to be more equally
expressed between the sexes (Zimmer et al. 2016), but the regula-
tory means through which this gene-specific dosage compensa-
tion is achieved are not fully understood (Discussion; Melamed
and Arnold 2007; Mank and Ellegren 2009; Itoh et al. 2010;
Livernois et al. 2013; Wang et al. 2017). We reasoned that miR-
2954-3p, with its strong male bias, broad expression, and prefer-
ence for Z-linked genes might provide an alternative path to
gene-specific dosage compensation. In order to evaluate whether
miR-2954-3p regulation is indeed associated with more similar ex-
pression patterns inmales and females, we calculatedM:F ratios for
all Z-linked protein-coding genes based on expression data from
Marin et al. (2017) and compared target genes of miR-2954-3p to
target genes of autosomal miRNAs (Methods). Consistent with
the dosage compensation hypothesis, we observed significantly
smaller M:F ratios for miR-2954-3p targets (Fig. 4C), indicating
that the miRNA compensates for gene dosage differences, leading
to more similar expression levels between males and females. As
expected, we did not observe a significant difference between
the two types of targets when we repeated the analysis for autoso-
mal genes (Supplemental Fig. S3A).

If down-regulation by miR-2954-3p serves as a dosage com-
pensation mechanism, we would furthermore expect an enrich-
ment of dosage-sensitive genes among its targets. A recent study
demonstrated that one class of dosage-sensitive genes known as
ohnologs (gene duplicates retained after whole genome duplica-
tion) are preferentially dosage-compensated compared to other
genes on the chicken Z Chromosome (Zimmer et al. 2016).
Drawing on this observation, we counted the number of reported
ohnologs (Singh et al. 2015) that were identified in our target pre-
diction analysis. We found that 25.5% (12 of 47) of Z-linked miR-
2954-3p targets were indeed ohnologs, whereas only 7.8% (15 of
192) of Z-linked genes targeted by autosomal miRNAs belonged
to this category (P = 0.0015, χ2-test) (Fig. 4D). No significant differ-
ence was found among autosomal target genes (Supplemental Fig.
3B). As expected under the dosage compensation hypothesis, our
data thus show that miR-2954-3p preferentially targets Z-linked
dosage-sensitive genes.

The results described abovemake a compelling case for the in-
volvement of miR-2954-3p in gene-specific dosage compensation,
but it should be noted that the targeting properties ofmiR-2954-3p
were so far determined based solely on computational predictions.

To extend our results to targets with experimental support, we
turned to a data set generated by Lin et al. (2014), who measured
mRNA expression following knockdown of miR-2954-3p in a
male zebra finch cell line.We first wished to verify the Z preference
ofmiR-2954-3p and therefore analyzed the degree of up-regulation
of Z-linked and autosomal mRNAs following miR-2954-3p knock-
down. Consistent with our target predictions in chicken, we found
that Z-linked genes in zebra finch were significantly more up-reg-
ulated than autosomal genes (Fig. 4E). The enrichment of Z-linked
miR-2954-3p targets was further underlined when we considered
only mRNAs with significant up- or down-regulation following
miR-2954-3p knockdown (FDR 5%): Among the autosomal genes,
only 45.2% (1296 of 2868) were up-regulated after knockdown,
suggesting that many autosomal genes might not be direct targets
of miR-2954-3p, whereas 62.0% (93 of 150) of Z-linked genes
were up-regulated, as expected if some Z-linked genes are directly
suppressed by miR-2954-3p (P = 8.0 × 10−5, χ2-test). Our findings
thus demonstrate that miR-2954-3p disproportionally targets Z-
linked genes in both chicken and zebra finch, which separated
over 70 million years ago (Prum et al. 2015).

As miR-2954-3p-induced dosage compensation appears to be
a conserved feature of bird genomes, we speculated that predic-
tions of dosage sensitivity derived from chicken data should be
reflected in the response to miR-2954-3p knockdown in zebra
finch, in spite of the evolutionary distance between the two spe-
cies. We therefore divided genes into those with above-median
and below-median M:F ratios, based on expression in the chicken
brain, and evaluated their response tomiR-2954-3p knockdown in
the zebra finch cell line, which was derived from a non-neural
head tumor (Lin et al. 2014). We found that genes with low M:F
ratios in chicken were more strongly up-regulated in zebra finch af-
ter knockdown (P = 2.2 × 10−4) (Fig. 4E), consistentwith a conserved
role ofmiR-2954-3p in gene-specific dosage compensation.We con-
firmed that the same effect was evident when we repeated the anal-
ysis based on zebra finchM:F ratios (P = 0.0027) (Supplemental Fig.
S4), again based on gene expression in the brain (Itoh et al. 2010).
Further to the conserved association with chicken M:F ratios, we
found that ohnolog annotations from the chicken genome also
correlated with the effects of miR-2954-3p in zebra finch, with
ohnologs being more strongly up-regulated after miR-2954-3p
knockdown (P = 0.0039) (Fig. 4E). Together, our findings thus
demonstrate that the strongly male-biased, ubiquitously expressed
miR-2954-3p preferentially targets and down-regulates dosage-
sensitive genes on the bird Z Chromosome. To our knowledge,
this is the first report of miRNA regulation as a means of dosage
compensation.

Discussion
Sex-biased gene expression has important implications for pheno-
typic variation between males and females (Grath and Parsch
2016; Mank 2017). Here, we have performed the first large-scale
study of sex-biased miRNA expression, by analyzing somatic and
gonadal tissues from mouse, opossum, and chicken. We chose to
focus on adult samples, which we consider especially suited for
the study of sex-biased miRNAs in somatic tissues that are largely
similar in males and females. Although we also identified ample
examples of ovary-biased and testis-biased miRNAs, their designa-
tion as sex-biased is less straightforward. In evolutionary terms,
these miRNAs are probably best viewed as sex-biased, as their
expression pattern likely causes them to have a higher impact on
fitness in one of the sexes. However, from a regulatory perspective,
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ovary-biased and testis-biased miRNAs may be better described as
tissue-biased, since male and female gonads start diverging from
a common tissue precursor in early development and have highly
distinct transcriptional programs in adulthood (Mank et al. 2010;
Necsulea et al. 2014). To study the regulatory origins of gonadal
miRNA expression, a more detailed investigation of sex-biased
miRNA expression throughout development would be a useful
first step (Bannister et al. 2009).

Our work revealed divergent regulatory regimes between
species, with an overarching coordination of sex bias across
tissues in mouse, which was not significant in opossum and fully
absent in chicken. Potentially these differences reflect the re-
duced reliance on gonadal hormones to establish sex identity
in chicken (Zhao et al. 2010). Given the regulatory divergence be-
tween the species studied here, it is perhaps not surprising that
we observe very limited evolutionary conservation of sex-biased
miRNA expression across species. In fact, we were not able to
identify a single case in which an orthologous (Kozomara and
Griffiths-Jones 2014; Fromm et al. 2015) mature miRNA showed
significant bias in the same direction and in the same somatic tis-
sue in two species (Supplemental Fig. S5). Among the overwhelm-
ing numbers of ovary- and testis-biased miRNAs, we did find
some shared instances, such as miR-34a-5p, which was testis-bi-
ased in all three species (Supplemental Table S4). However, we
also found multiple cases of miRNAs that had radically changed
their expression patterns, including miR-34b-5p and miR-34c-
5p, which were testis-biased in opossum and mouse, in which
knockout of the mir34b/c cluster has been shown to disrupt
spermatogenesis (Wu et al. 2014), but which were strongly ova-
ry-biased in chicken. Thus it appears that the evolutionary turn-
over of sex-biased miRNA expression is relatively fast, similar to
what has been observed for the expression of protein-coding
genes (Harrison et al. 2015).

One clear example of an evolutionarily conserved sex-biased
miRNA, the male-biased avian miRNA miR-2954-3p, was never-
theless evident in the data presented here (Table 1) and in previous
studies (Zhao et al. 2010; Luo et al. 2012). Our analyses of miR-
2954-3p targets in chicken and zebra finch revealed that the
miRNA plays a role in dosage compensation of the bird Z
Chromosome, by preferentially down-regulating Z-linked dos-
age-sensitive genes in males (Fig. 4). The need for dosage compen-
sation arises during sex chromosome evolution when increasingly
larger regions of the originally identical sex chromosomes cease to
recombine, leading to the gradual decay of onemember of the pair,
e.g., the female W Chromosome in birds (Graves 2016). Although
some genes, such as the mir-122 locus, are retained on the W
Chromosome and therefore are present in equal numbers inmales
and females, the number of W-linked genes in chicken is vanish-
ingly small (Bellott et al. 2017) and most Z-linked genes are there-
fore present in a single copy in ZW females and double copies in ZZ
males. The reduced gene dosage in ZW females, from two copies
prior toWdecay to the present single copy, is potentially problem-
atic, since Z-linked genesmight interact with autosomal genes that
remain in their ancestral double-copy state in both sexes. As a
coping strategy, many lineages have evolved various mechanisms
of dosage compensation, which typically involve equalization of
gene expression inmales and females in conjunctionwith the evo-
lution of adjusted expression ratios between sex-linked genes and
their autosomal partners (Julien et al. 2012; Graves 2016). Inmam-
mals, differences between males and females are reduced through
female global X inactivation (Deng et al. 2014), but birds lack any
such chromosome-wide dosage compensation mechanism, and

the resulting male-biased expression of Z-linked genes (Ellegren
et al. 2007; Itoh et al. 2007; Mank and Ellegren 2009; Julien et al.
2012) can therefore be assumed to prevent Z-linked and autosomal
gene expression levels from being optimally adjusted in both sex-
es. That said, previous work has demonstrated that M:F expression
ratios vary across Z-linked genes, such that the intrinsic male bias
is counteracted for a subset of dosage-sensitive genes (Zimmer et al.
2016), but it has not been clear how such gene-specific dosage
compensation is achieved. A handful of Z-linked genes may be
affected by local Z inactivation (Livernois et al. 2013), although
more extensive Z inactivation is not supported by patterns of al-
lele-specific expression (Wang et al. 2017). Additionally, it has
been suggested that a small region of the chicken Z Chromosome
might be enriched for dosage-compensated genes (Melamed and
Arnold 2007), but the pattern was not recapitulated in another
study (Mank and Ellegren 2009) and does not appear to be evolu-
tionarily conserved (Itoh et al. 2010).

Our finding that miR-2954-3p acts to equalize male and fe-
male expression levels of Z-linked, dosage-sensitive genes in two
distantly related bird species presents an alternative solution to
this long-standing problem and suggests that miR-2954-3p could
be an ancestral avian dosage compensation mechanism, which
might nevertheless be complemented by additional means of reg-
ulation, such as local Z inactivation in males or Z up-regulation in
females, in individual lineages. Notably, miRNA targeting proper-
ties might also provide a certain level of evolutionary flexibility,
given that the short target site sequences required for miR-2954-
3p recognition could evolve de novo or deteriorate quite easily,
thus providing an opportunity to fine-tune the extent of dosage
compensation on a gene-by-gene, or even transcript-by-transcript,
basis. In addition, the versatility of miRNA regulation might allow
this strongly male-biased miRNA to be co-opted for sex-specific
functions in individual lineages, as suggested by its involvement
in the zebra finch song response (Gunaratne et al. 2011; Lin
et al. 2014). Careful investigation of miR-2954-3p targets across a
range of bird species therefore promises to yield valuable insights
not only into the evolutionary dynamics of partial dosage com-
pensation, but also into the genetic architecture underlying sex-
specific characteristics.

Methods

Sequencing and processing of small RNA libraries

Total RNA for adult male and female tissue samples from mouse
(Musmusculus), gray short-tailed opossum (Monodelphis domestica),
and chicken (Gallus gallus) was extracted from10 to 20mgof tissue
using the RNeasy Micro Kit (Qiagen) with 350 µL lysis buffer RLT
containing 7 µL 2 M Dithiothreitol and wash buffer RWT, and
the miRNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. Total RNAwas quantifiedby aNanoDrop spectropho-
tometer (ThermoScientific). Thequalityof totalRNAwasmeasured
with a Fragment Analyzer (Advanced Analytical Technologies).
Small RNA 15–45 nt fraction was purified from 0.5–2 µg total
RNA by denaturing 15% TBE-Urea polyacrylamide gel electropho-
resis, treated with 0.3 M sodium chloride for 4 h at room tempera-
ture, and ethanol precipitated. Libraries were generated using the
NEXTflex Small RNA-Seq Kit (Bioo Scientific) according to the
manufacturer’s protocol. As a comparison, libraries were also pre-
pared from the small RNA fraction purified from 2 µg total RNA
of onemouse brain and onemouse liver sample using the lllumina
TruSeqSmallRNALibraryPrepKit (Illumina) according to theman-
ufacturer’s instructions, aswell as using theHDprotocol developed
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by Sorefan et al. (2012). The libraries were sequenced at the
Lausanne Genomic Technologies Facility on an Illumina HiSeq
2500 System (Illumina). Adapters were removed from the raw se-
quencing reads, and only trimmed reads in the size range 15–28
ntwithaminimumquality score of 20 at all positionswere retained
for further analysis.

Annotation of novel miRNAs

All analyses were carried out on the following genome releases,
which were downloaded from the UCSC Genome Browser
(Tyner et al. 2017): mm10 (mouse), monDom5 (opossum), and
galGal5 (chicken). For each library, we annotated novel miRNAs
using miRDeep2 and standard settings, including the randfold
step (Friedländer et al. 2012). Known miRNAs were downloaded
from miRBase release 21 (Kozomara and Griffiths-Jones 2014).
We found that the miRDeep2 algorithm performed better (detect-
ed more miRNAs at a given signal-to-noise cutoff) for single librar-
ies compared to when we pooled all reads from a species together.
We therefore assessed each library individually and set a cutoff
score of 5, which corresponded to a signal-to-noise ratio of 9.6–
23.3, with the exception of the three chicken testis libraries in
which the ratio was 4.6–5.2. Using a higher cutoff score for the
chicken testis libraries did not improve the signal-to-noise ratio.
Instead, we opted to improve the quality of our annotations fur-
ther by retaining only those miRNA precursors with a miRDeep2
score above the cutoff in at least three tissue replicates (male and
female). Ovary and testis were considered the same tissue for the
purpose of this filtering step. Overlapping precursors on the
same strand were merged provided that the mature and star se-
quences predicted by miRDeep2 also overlapped. In addition to
the score, miRDeep2 also provides graphical representations of
predicted miRNA precursors. A subset of these, corresponding to
all novel miRNA precursors that are further discussed in the
Results section, are provided in Supplemental File S1. The full set
of PDF files is available at http://www.zmbh.uni-heidelberg.de/
Kaessmann/Data_Resources.html, andmay be generated by rerun-
ning miRDeep2 for each sample, using standard settings as de-
scribed above.

Before combining the annotations for known and novel
miRNA precursors, we trimmed the coordinates for known precur-
sors to only include the 5p and 3pmature sequences as well as the
loop sequence. In addition, wemapped all known trimmedprecur-
sor sequences to the respective genomes with Bowtie release 1.1.2
(Langmead et al. 2009), with no allowed mismatches, in order to
remove the handful of known precursors that lacked a perfect
match in the genome and include known precursor sequences
that either lacked coordinates in miRBase or in which the coordi-
nates differed between miRBase and our mapping. Finally, we re-
moved all precursors that had been flagged by miRDeep2 as
potentially belonging to a different RNA class, as well as all precur-
sors that overlapped with annotated RNAs, including transfer
RNAs (tRNAs), ribosomal RNAs (rRNAs), and small nuclear RNAs
(snRNAs), from the UCSC Genome Browser RepeatMasker tracks
for each species (Tyner et al. 2017). Genome coordinates were in-
tersected with BEDTools (Quinlan 2014). The identified set of pu-
tative novel miRNA precursors, together with known precursors
from miRBase, formed the basis for all subsequent analyses.

Mature miRNA coordinates for both novel and known
miRNA precursors were defined by first mapping reads from all
libraries jointly to the relevant genome with Bowtie without
allowing any mismatches and then choosing the most frequent,
perfectly mapping read corresponding to the 5p and 3p ends
of the each precursor. If one of the 5p and 3p ends contributed
<0.1% of all mature reads for the precursor or had fewer than

100 perfect reads in total, no mature miRNA coordinates were
chosen.

Detection of sex-biased miRNA expression

We mapped all reads to the relevant genomes with Bowtie release
1.1.2 (Langmead et al. 2009), using a series of decreasingly strin-
gent settings to allow for post-transcriptional modifications
(Kawahara et al. 2007; Burroughs et al. 2010; Chiang et al. 2010;
Warnefors et al. 2014). In the first round, we allowed for zero
mismatches and did not trim any bases from the 3′ end. Next,
wemapped all the unmapped reads from the previous round, after
trimming first 1 and then 2 bases from the 3′ end. Finally, we re-
peated the procedure while allowing for one mismatch. Reads
that could not be mapped with any setting and reads with more
than 10 hits (using the first setting where any hits were found)
were discarded.

Because many miRNAs occur in multicopy families, the as-
signment of miRNA reads to individual genomic loci is not trivial,
especially in the presence of post-transcriptional modifications
and sequencing errors. A previous study estimated that up to
two-thirds of all reads in amiRNA sequencing experimentmapped
ambiguously if one mismatch was allowed (de Hoon et al. 2010).
Because most tools for miRNA quantification do not offer a robust
procedure for dealing with ambiguously mapped reads, we adapt-
ed the strategy ofmultimap groups (MMGs), whichwas previously
developed for protein-coding genes (Robert and Watson 2015).
Mature miRNAs were grouped into MMGs based on all mapped
reads from a given species and a cutoff of 5%, i.e., if a givenmature
miRNA shared at least 5%of its readswith anothermiRNA, the two
were assigned to the same MMG. We then summed the read
counts per library for each MMG. Any remaining multimapping
reads below the cutoff were distributed equally between the
mapped miRNA loci.

We estimated differential expression between males and fe-
males using DESeq2 (Love et al. 2014) and default settings, with
the exception that we turned off independent filtering of lowly
transcribed miRNAs. Instead, we performed our own expression
filtering such that only MMGs that were represented by at least
10 transcripts per million miRNA-mapped reads (TPM) in at least
three of six tissue replicates were included in the analysis. P-values
were adjusted jointly for all somatic tissues from all species using
the Benjamini-Hochberg method (Benjamini and Hochberg
1995). We opted to perform the P-value correction for the gonad
samples separately, as we found that the large number of small P-
values associated with these samples caused us to call more
miRNAs significant for the somatic samples.

Calculation of M:F expression ratios for protein-coding genes

Mouse and chicken expression data for protein-coding genes were
provided by Marin et al. (2017), who performed RNA sequencing
for two male and two female individuals and each of the tissues
for which we had miRNA data. We calculated M:F ratios for all ex-
pressed genes (>1 FPKM in all replicates from a given tissue) with
the DESeq2 package (Love et al. 2014) based on raw read counts.

Zebra finch data were available from the NCBI Gene
Expression Omnibus (GEO) under accession number GSE20035.
Genomic coordinates for GenBank ESTs that were represented
on the custom-made microarray were downloaded from Ensembl
and intersected with exons of annotated zebra finch genes. ESTs
that matchedmultiple genes were excluded. For each gene,M:F ra-
tios were calculated as the ratio between the averages of six male
and six female replicates.
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Association of miRNAs with upstream regulatory elements

Intronic miRNAs were identified based on positional overlap with
protein-coding genes in Ensembl version 88 (Aken et al. 2017).
Coordinates of 72,862 DHS sites in mouse liver, including 3378
sites that were identified as sex-biased with “standard stringency”
settings, were provided by Ling et al. (2010) and converted to the
mm10 genome release with the liftOver from the UCSC Genome
Browser (Tyner et al. 2017). DHS sites were considered likely
miRNA promoters if they occurred within 5 kb upstream of,
or overlapped, a liver-expressed intronic or intergenic miRNA
(>10 TPM in at least three replicates). This is a conservative cutoff,
given that some miRNA transcription start sites are located 20 kb
upstream of the miRNA precursor sequence (Ozsolak et al. 2008).
To ensure that we associated DHS sites with transcribed miRNA
loci, only miRNAs that belonged to single-member MMGs were
considered for this analysis. For the permutation test, 1000 sets
of randomized DHS coordinates were created with the shuffleBed
tool from BEDTools (Quinlan 2014).

Gene Ontology analysis of targets of sex-biased miRNAs
in mouse

Predicted targets with context++ scores below –0.1were download-
ed from TargetScanMouse release 7.1 (Agarwal et al. 2015). For
each tissue, we first filtered out target genes without robust expres-
sion (<1 FPKM), based on data from Marin et al. (2017), and then
divided the remaining target genes into targets of male-biased (tar-
geted by at least one male-biased miRNA, but no female-biased
miRNAs), female-biased, and unbiased miRNAs. Genes that were
predicted targets of both male-biased and female-biased miRNAs
were discarded. Enrichments of Gene Ontology categories among
targets of male-biased or female-biased miRNAs, compared to all
expressed genes targeted by sex-biased and/or unbiased miRNAs,
were investigated with the GOrilla tool (Eden et al. 2009).

Detection of putative Y-linked and W-linked miRNAs

We searched for putative Y-linked and W-linked miRNAs using a
transcriptome subtraction approach (Cortez et al. 2014), in which
we removed all reads that were found in both sexes and focused on
reads that were specific to the heterogametic sex (XY males or ZW
females), while using reads specific to the other sex as a control. For
a sequence to be included in the analysis, it had to be represented
by at least 100 reads in total and be detected in all three sex-specific
replicates from at least one tissue. Next, we mapped the filtered
reads using our sequential Bowtie pipeline to the respective
genome (while excluding the Y and W Chromosomes, if present)
to remove all reads that mapped loci that are present in bothmales
and females. Formouse and chicken, for which Y/WChromosome
assemblies are available, we finally checked whether the recovered
reads were Y/W-linked bymapping them to the full genome, again
relying on the sequential Bowtie pipeline.

Analysis of miR-2954-3p targets in chicken and zebra finch

Wedownloaded chicken3′ UTR sequences for Ensembl genes from
the UCSC Genome Browser (Tyner et al. 2017) (galGal5) and pre-
dicted target genes for all chickenmiRNAswith TargetScan version
7.0 (Agarwal et al. 2015). M:F expression ratios for target genes
were calculated as described above. Ohnolog status (strict data
set) for Z-linked genes was provided by Singh et al. (2015).
Expression data from the miR-2954-3p knockdown in zebra finch
was provided by Lin et al. (2014). For clarity, we reversed the sign of
their reported expression fold changes to be consistent with the
main text. Data were compared between chicken and zebra finch

based on 1-to-1 orthologs from Ensembl release 88 (Aken et al.
2017) that were Z-linked in both species. All statistical analyses
were performed in R version 3.2.2 (R Core Team 2015).

Data access
Raw and processed data sets from this study have been submitted
to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE102062. Novel
miRNAs have been submitted to miRBase (Kozomara and
Griffiths-Jones 2014).
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