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Why is Clinical fMRI in a Resting
State?
Erin E. O’Connor* and Thomas A. Zeffiro*

Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD,

United States

While resting state fMRI (rs-fMRI) has gained widespread application in neuroimaging

clinical research, its penetration into clinical medicine has beenmore limited.We surveyed

a neuroradiology professional group to ascertain their experience with rs-fMRI, identify

perceived barriers to using rs-fMRI clinically and elicit suggestions about ways to

facilitate its use in clinical practice. The electronic survey also collected information about

demographics and work environment using Likert scales. We found that 90% of the

respondents had adequate equipment to conduct rs-fMRI and 82% found rs-fMRI data

easy to collect. Fifty-nine percent have used rs-fMRI in their past research and 72%

reported plans to use rs-fMRI for research in the next year. Nevertheless, only 40% plan

to use rs-fMRI in clinical practice in the next year and 82% agreed that their clinical fMRI

use is largely confined to pre-surgical planning applications. To explore the reasons for the

persistent low utilization of rs-fMRI in clinical applications, we identified barriers to clinical

rs-fMRI use related to the availability of robust denoising procedures, single-subject

analysis techniques, demonstration of functional connectivity map reliability, regulatory

clearance, reimbursement, and neuroradiologist training opportunities. In conclusion,

while rs-fMRI use in clinical neuroradiology practice is limited, enthusiasm appears to

be quite high and there are several possible avenues in which further research and

development may facilitate its penetration into clinical practice.

Keywords: rs-fMRI, network, individuals, FDA, CPT code, ASFNR, survey

INTRODUCTION

Techniques for quantifying spatial and temporal brain activity have developed rapidly since the
first demonstrations that MRI could be used to measure modulations in blood oxygen level
dependent (BOLD) tissue contrast (1). The observation that MRI could be used to monitor
temporally correlated low-frequency activity fluctuations in spatially remote brain areas led to
widespread use of resting state functional magnetic resonance imaging (rs-fMRI) to evaluate resting
state network (RSN) properties. While BOLD-contrast is an indirect measure of neural activity,
similar inter-regional coherent spontaneous neural activity correlations have been observed
with electrophysiological techniques (2), suggesting that rs-fMRI networks can provide useful
information about the macroscopic organization of neural processing systems. The methods and
possible uses of rs-fMRI have recently been reviewed (3, 4).

Establishing that rs-fMRI can identify spontaneous brain activity patterns resembling those seen
with tasks (5) has led to its widespread acceptance, and a rapid expansion in rs-fMRI publications.
Nearly 10,000 rs-fMRI papers are currently listed in PubMed. The most rapidly developing type
of functional connectivity research involves investigations of disease-related group differences
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in brain network structure, enabled by the relative simplicity of
data collection from large samples. As a result, atypical resting-
state connectivity has been demonstrated in a wide range of
neuropsychiatric disorders, including epilepsy, schizophrenia,
attention deficit hyperactivity disorder, Alzheimer’s disease,
stroke, and traumatic brain injury.

rs-fMRI has several advantages over task-fMRI in clinical
contexts. First, data acquisition is less complex. Second, if
mapping multiple neural systems is needed, rs-fMRI can
identify them simultaneously, saving time. Finally, rs-fMRI can
be performed in individuals unable to cooperate for fMRI
tasks, such as young, sedated, paralyzed, comatose, aphasic,
or cognitively impaired patients. In addition to its utility in
detecting changes in group network properties, rs-fMRI can also
be used to detect individual differences (6–10).

Although the first reports of rs-fMRI clinical applications
appeared 10 years ago (11), rs-fMRI use in clinical
neuroradiology practice remains in a nascent stage, limited
mainly to pre-surgical planning (4, 12) and is typically
performed in conjunction with task-fMRI. Given the rapid rise
and widespread use of rs-fMRI in neuroimaging clinical research,
it might be expected that rs-fMRI would already be widely used in
clinical practice, particularly in academic centers. Nevertheless,
this is not the case and the reasons for the relatively weak
penetration of rs-fMRI methods into neuroradiology practice
are not entirely clear. To determine attitudes toward the use of
rs-fMRI use in neuroradiology research and practice, we recently
queried the American Society for Functional Neuroradiology
(ASFNR) membership. In this article we will discuss the results
of this survey, covering opinions about the current state of
rs-fMRI acquisition, analysis, and interpretation methods. We
then address existing barriers to using rs-fMRI in clinical practice
and propose possible solutions, presenting examples of typical
group and individual subject rs-fMRI analyses using public
domain data.

METHODS

After obtaining a human subjects research exemption, an
invitation to participate in a 20 item electronic survey was sent
to ASFNR members to collect information concerning their use
of rs-fMRI in clinical research and practice, demographics, and
work environment. Responses were collected using 5-point Likert
items and deidentified prior to analysis.

Because a majority of respondents expressed concerns that
substantial analysis and interpretation problems need to be
solved before rs-fMRI can be widely used in clinical practice,
we next explored examples of typical rs-fMRI analysis variations
using the publicly available NYU CSC TRT dataset (www.
nitrc.org/projects/nyu_trt), processed using the CONN Toolbox
(13), a popular open-source rs-fMRI analysis program (www.
nitrc.org/projects/conn). In one example, we explored the serial

Abbreviations: BOLD, blood oxygen level dependence; rs-fMRI, resting state

functional magnetic resonance imaging; ASFNR, American Society of Functional

Neuroradiology; RSNs, resting state networks; ICA, independent component

analysis; ROI, region of interest.

influence of time series preprocessing algorithms on language
network detection using an inferior frontal gyrus ROI. Effects
of applying global signal regression, incorporating head motion
estimates, using anatomical CompCorr, and outlier elimination
were examined in a group level analysis of 25 healthy participants.
Next, we explored the effects of denoising on single participant
data. The exercise revealed large effects that processing variations
can have on the detection of domain-specific maps at the
group or single-subject level. These results are presented in the
discussion of existing barriers related to increasing rs-fMRI use
in clinical practice.

RESULTS

The response rate was 24% (71/294). Of these, the majority
were involved in both clinical and research activities. Twenty-
one percent were female. Eighty-seven percent held MD, MBBS,
or MD PhD degrees; the others were PhDs. Only two of the
respondents were exclusively involved in research. The median
time since training was 12 years.

Ninety-two percent of the ASFNR respondents reported
having adequate MRI equipment to conduct rs-fMRI and 82%
indicated that rs-fMRI was relatively easy to collect.

Eighty percent reported using task-fMRI and 59% reported
using rs-fMRI in their past research. Seventy-two percent
reported plans to use rs-fMRI for research in the next year.
Yet, only 40% agreed, or strongly agreed, that they would
use rs-fMRI in clinical practice in the next year. Eighty-two
percent of respondents agreed or strongly agreed that task-fMRI
and rs-fMRI clinical use are largely confined to pre-surgical
planning, mentioning seizure focus detection as other promising
application. Thirty-two percent agreed, or strongly agreed, that
rs-fMRI is currently useful in pre-surgical planning and 68%
agreed, or strongly agreed, that it will be useful in future surgical
planning (Supplement Table 1).

While respondents expressed strong interest in rs-fMRI
clinical applications, they expressed concerns that may explain
its lack of penetration into clinical practice. For example,
66% agreed, or strongly agreed, that rs-fMRI data are difficult
to analyze. Twenty-four percent expressed concern about the
reliability and reproducibility of rs-fMRI in identifying canonical
brain networks. Seventy-seven percent agreed, or strongly agreed,
that there are substantial analysis problems to be solved before
rs-fMRI can be widely used in clinical practice. In addition,
77% agreed, or strongly agreed, that there are substantial
interpretation problems to be solved before rs-fMRI can be
widely used in clinical practice (Figure 1).

DISCUSSION

In summary, while most respondents had experience with fMRI
in both clinical and research contexts, have adequate MRI
systems at their institutions and are relatively enthusiastic about
incorporating rs-fMRI into clinical protocols, a number of
concerns appear to be slowing the translation of rs-fMRI from
research to practice. Some barriers to rs-fMRI implementation
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FIGURE 1 | Survey responses.

in clinical practice, and possible ways to circumvent them, are
addressed below.

Barrier 1: Precision Medicine Agenda
Functional MRI used in research settings typically averages
participant data in order to detect differences in regional task
effects between clinical and healthy groups. In clinical medicine,
however, diagnostic inferences and treatment recommendations
are made for single cases.

As most publications describe acquisition and analysis
methods optimized to detect between-group effects, better
methods to characterize rs-fMRI maps in individuals are needed.
Acquisition technology advances, such as higher magnetic field
strength, multi-channel coils, and faster image acquisition have
led to substantial sensitivity improvements, making the study of
individual resting state networks possible (14).

One simple way to improve network detection sensitivity is
to lengthen scan time. While some canonical RSNs, such as the
default mode or sensorimotor networks, can be reliably detected
at the group level using 5–6min scans, longer sampling times,
on the order of 12–30min, can substantially improve detection
of networks exhibiting lower average connectivity (15, 16).
Since rs-fMRI data is dominated by physiological noise, longer
sampling times with short TRs allow more effective physiological
denoising and more sensitive neural signal detection. While
most analysis techniques assume static connectivity effects
between pairs of network nodes, dynamic connectivity
estimates can benefit even more from longer sampling times.
Dynamic connectivity analysis, while relatively new to rs-fMRI,
holds promise in providing quantitative estimates of time-
varying connection phenomena that may be altered in brain
disease (17).

Variance in intrinsic connectivity contributed by cognitive
state and mood, rather than disease effects, may be responsible

for individual network structure variation (18). Nevertheless,
moderate-to-high test-retest reliability of rs-fMRI indices
challenges these concerns (19). In addition, longer sampling
times, as discussed above, can facilitate detection of individual
static network structure in the face of moderate dynamic
variations in connectivity.

While rs-fMRI is currently being used for preoperative
planning in a few centers (20), other clinical applications are
not as common. High within-subject reproducibility of RSNs
suggests that they might serve as biomarkers for monitoring
disease progression in individual patients (21).

Finally, tools comparing individual to group maps are needed.
Structural templates based on normative data sets that take
into account age, sex, magnetic field strength, and data quality
have been developed (22). Standardizing rs-fMRI acquisition
protocols, then collecting normative comparative data, would
greatly facilitate rs-fMRI clinical use by allowing comparison of
individuals to age, sex, and IQ adjusted norms. For example, a
clinically relevant target, the left hemisphere language network,
when identified using a left inferior gyrus ROI, exhibits
substantial between-subject variability, even when averaging
across three collection sessions (Supplement Figure 1). Of
greater concern is the fact that the majority of patients referred
for pre-surgical mapping have space occupying lesions that
distort both local and global anatomy, making mapping
to standard anatomical spaces difficult or impossible using
conventional spatial normalization techniques. Moreover,
slowly growing tumors may dynamically alter inter-regional
connectivity, making comparisons to functional group maps
derived from healthy participants difficult to interpret. In
pre-surgical planning, precisely determining the details of
how an individual patient’s functional anatomy differs from a
typical spatial distribution may be important in determining
treatment recommendations.
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Barrier 2: Diversity of Measures
Numerous methods can characterize regional intrinsic
connectivity, including ROI->ROI correlations, ROI->voxel
correlations, independent component analysis (ICA) of
canonical networks, dynamic functional connectivity analysis,
and graph theory analysis [see (3, 23) for recent reviews].
These different connectivity modeling techniques may measure
fundamentally different aspects of inter-regional coupling.

It is also unclear which connectivity measures are sensitive
to specific pathologies and therefore are most appropriate to
particular clinical questions. ROI->ROI analysis is useful for
identifying low spatial resolution network properties and is
computationally efficient due to the low number of correlations
computed. ROI->voxel approaches reveal more spatial detail,
at the cost of greatly increased calculation time. Voxel->voxel
methods, such as ICA, are the most computationally demanding,
but do not require a priori anatomical assumptions, and thus
may be better suited for exploratory studies of network structure
(14). In addition, techniques for ICA network identification have
not been standardized and are quite sensitive to specification
of the maximum number of identified components. Increasing
the maximum number can cause large networks to split
into smaller subsets. A major limitation of network analysis
methods based on graph theory metrics is that group sizes
larger than 40–50 are required to obtain stable estimates of
network properties using short acquisition protocols, making
them difficult to use in characterizing individual patients (24).
Nevertheless, novel indices, like the hub disruption index, may
be useful in characterizing an individual’s relationship to a group
(25). For all of these techniques, compensating for anatomical
distortion from space occupying lesions presents a substantial
analytical challenge.

Barrier 3: Reliability and Reproducibility
Recently, there has been growing concern about the reliability
and reproducibility of biomedical research (26). Our survey
demonstrates that the neuroradiology community shares this
concern with respect to rs-fMRI.

Identifying reliable and reproducible canonical brain
networks has received great attention in the rs-fMRI literature,
with studies showing reproducible networks in both adults and
children (27, 28). Yet, the neuroradiology community remains
uncertain about how these findings translate to individual
patients. More individual participant test-retest studies may be
needed to address this area of uncertainty.

Large test-retest data sets, focusing on rs-fMRI from over 36
laboratories around the world, have been made publicly available
by the Consortium for Reliability and Reproducibility (CoRR)
through the International Data-sharing Neuroimaging Initiative
(29). The individual scans composing the large aggregate
dataset have been collected using different acquisition parameters
and experimental designs, allowing investigators to assess rs-
fMRI reliability and reproducibility. In addition, the impact
of commonly encountered artifacts, such as motion, on inter-
individual variation can be explored (29). Publicly available
datasets from the NIH supported Human Connectome Project
(http://humanconnectome.org) are also being used to evaluate

the reliability of rs-fMRI and functional connectivity summary
measures (30).

In addition, there have not yet been any large scale validation
studies to determine if the cognitive domains commonly mapped
using intraoperative cortical stimulation can be identified using
rs-fMRI. Most rs-fMRI validation studies compare to task-fMRI
results, which are expected to have better specificity for specific
functions, making simple comparisons difficult. Comparisons
between cortical stimulation and other functional imaging
modalities have previously shown good between modality
correspondence (31), suggesting that this strategy may be useful.

Barrier 4: rs-fMRI Analysis Issues
While a majority of survey respondents indicated that rs-fMRI
data are relatively easy to collect, the majority also believed that
rs-fMRI data are relatively difficult to process.

Resting state data analysis can be time intensive and, therefore,
not always feasible during a typical demanding day on clinical
service. Automatic transfer of images to a clinical image archiving
system, followed by automated analysis, could facilitate clinical
workflows. One popular analysis program, the CONN Toolbox
(13), while well suited for automated analysis of group rs-fMRI
data, has limited options for single subject statistical analysis.
Nevertheless, a CONN Toolbox script optimized for clinical use
and running on a typical laboratory computer requires 10–15min
to process data from a single subject, in addition to the time
required to transfer images from PACS. Other toolboxes designed
for clinical practitioners, such as CLINICA (32), are not yet
widely used, but do hold promise for single subject analysis.

Hemodynamic signal artifacts resulting from physiological
noise, including head motion, cardiac pulsation, and respiratory
effects can severely compromise efforts to detect regional
modulations in neural activity.

Participant head motion is particularly problematic, as it
can bias estimated activity correlations between regions. Visual
examination of a participant’s scan immediately after completion,
using a movie loop, allows a clinician to repeat scans when
excessive head motion is detected. Nevertheless, even small
inter-scan head movements (<0.5mm) can bias correlation
estimates, influencing between-group effect estimates (33). For
this reason, motion correction using rigid body realignment is
an obligate part of the rs-fMRI preprocessing pipeline, followed
by inclusion of motion estimates in subsequent single-subject
statistical modeling (34).

Even images from cooperative patients will have physiologic
confounds that need to be addressed. Cardiac pulsation and
respiration can cause spurious connectivity patterns (35). Band-
pass filtering to remove fluctuations outside the frequency range
of interest mitigates cardiac and respiratory effects and does not
require external physiological recordings. Filtering frequencies
lower than ∼0.01Hz and > ∼0.2Hz, reduces the effects of
non-neuronal physiologic processes (36).

Global signal regression (20) is another method sometimes
used for physiologic noise reduction (37). GSR uses a denoising
covariate that contains information from both physiological
noise and neural signal. Its re-centers the mean of the
inter-regional correlation distribution, so that some positive
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FIGURE 2 | Denoising effects on functional connectivity estimates. (A) Additive effects of denoising sources on detection of seed connectivity in a group of 25 healthy

participants studied during three sessions. GSR, global signal regression; ACC, anatomical CompCorr; HM, head motion estimates; OUT, head motion and global

intensity outliers. Display threshold p < 0.001. Original data from NYU CSC TRT: subjects 1–25, sessions 1–3. (B) Denoising reduces structured noise in individuals.

Left–Connectivity values histograms in a single healthy participant before (gray) and after (yellow) denoising including WM signal, CSF signal, estimated head motion,

and outlier removal. Middle–Global signal variation before and after denoising. Right–carpet plot of voxel signal variation before (top) and after (bottom) denoising.

Original data from NYU CSC TRT: subject 16, session 1. (C) Denoising increases sensitivity to, and specificity for, the language network. Effects of including denoising

sources on detection of left inferior frontal gyrus seed connectivity are seen in a single participant. WM, white matter; CSF, cerebrospinal fluid; HM, head motion

estimates; Outliers, head motion and global intensity outliers. Display threshold r = 0.4. Original data from NYCSC TRT: subject 16, session 1.

correlations appear to be negative. Its use may therefore
confound attempts to distinguish sets of regions whose activity
are either positively or negatively associated (38). For this reason,
noise reduction techniques like anatomical CompCorr, that
exclude the cortical signal from the denoising procedure, may be
preferred in most circumstances (13) (Figure 2).

Systemic carbon dioxide (CO2) fluctuations alter BOLD-
contrast and contribute to respiratory induced signal variation
(39). To reduce CO2 fluctuation effects, end-tidal CO2 can

be measured with a face-mask or nasal cannula and the
measurements incorporated into the denoising pipeline (39).

Temporal signal-to-noise ratio (tSNR), the ratio of the mean
signal over its temporal standard deviation (SD), reflects the
ability to detect BOLD-contrast signal changes (40), and thus can
be used in quality assurance. More recently, the Physiological
Contributions in Spontaneous Oscillations index has been
proposed as a more sensitive measure of functional connectivity
strength (41).
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These denoising techniques are not only effective at the
group level (Figures 2A,B), but also can improve sensitivity
and specificity for detecting networks at the individual level
(Figure 2C).

In summary, the inter-regional associations estimated with
rs-fMRI may be relatively weak compared to the customary
task-fMRI effects, often being masked by physiological noise.
The reproducibility of the two modalities may also differ.
Varying acquisition and processing parameters can profoundly
affect detection sensitivity (42) and there is ongoing debate
regarding the role of GSR in pre-processing (43–45). Further,
different data analysis families such as ROI-based correlation
analysis, independent component analysis (ICA) detection
of canonical networks, and graph theory metrics used to
quantify local and global network properties, are likely to be
sensitive to very different aspects of inter-regional functional
connectivity (3).

To allow readers to reproduce the denoising pipeline
variations shown in Figure 2, links are provided to scripts
that preprocess and model the NYU CSC TRT dataset (www.
neurometrika.org/tutorials/fc-denoising).

Barrier 5: User Training
Traditionally, diagnostic radiology has been primarily an
anatomical medical specialty. Functional MRI acquisition
and interpretation is more physiological and statistical
in nature and may therefore may require somewhat
different training.

While many academic programs briefly expose trainees
to the principles of functional MRI, it is presently not
part of the standard curriculum in diagnostic radiology
residency or neuroradiology fellowship programs in the U.S.
More training in software systems for rs-fMRI analysis will
facilitate clinical practice implementation. Relevant curricular
offerings in systems neuroscience and statistical modeling
could help trainees gain a deeper understanding of the
origins of instrumental and physiological noise in rs-fMRI
data and thereby optimize their data acquisition, analysis, and
interpretation efforts.

Barrier 6: Standardization, Regulatory, and
Financial Issues
The lack of standardization of rs-fMRI acquisition and analysis
methods may reflect a lack of consensus regarding the best
approach to maximize inter-individual signal variability while
concomitantly minimizing intra-subject measure variability
(46). As task-fMRI analysis methods are relatively mature
compared to their rs-fMRI counterparts, more vigorous
engagement of professional societies with the rs-fMRI research
community will promote achieving agreement concerning
rs-fMRI analysis standards.

Of great importance from a practical viewpoint, there is
currently no FDA-cleared software for rs-fMRI analysis on
MRI consoles. Obtaining FDA marketing authorization for
rs-fMRI clinical use will require validating its intended use
as a “tool type” device and more clearly determining what
the statistical information derived from rs-fMRI means for

patient diagnosis and treatment. Overcoming these hurdles
will require a concerted effort from the interested academic
and commercial parties. MRI system vendors could have
a major role in these activities, working with academic
investigators to develop software tools and techniques in
accordance with standard medical device development
practices, thereby speeding the transition from research
to practice.

Acquiring the expertise needed for rs-fMRI acquisition,
analysis, and interpretation requires a substantial time
commitment. Busy clinicians may be more motivated to obtain
such training, and their associated hospitals be more willing to
support them, if rs-fMRI had an associated Current Procedural
Terminology (CPT) code. Before this can happen, however,
rs-fMRI protocols must be standardized by neuroradiologists.
Task-fMRI received a CPT code in the U.S. after relative
standardization of the processing and analysis techniques.
Societies such as the RSNA, ASNR, and ASFNR may be more
likely to pursue the process of obtaining an rs-fMRI CPT code
after clinical validation and standardization has been achieved.

Even after standardization and regulatory hurdles are
overcome, it will be necessary to identify the clinical applications
for which rs-fMRI can provide useful information to referring
physicians from neurosurgery, neurology and psychiatry. For
example, preoperative mapping of motor and language brain
function, the most common clinical application of fMRI and
rs-fMRI, has been widely integrated into pre-surgical planning
protocols in academic centers (32, 47). While resting-state pre-
surgical maps can reliably identify sensorimotor function (12,
48, 49), larger scale validation studies are still needed, and
solving problems related to substantial subject level variability
remains for language mapping (50, 51) (Supplement Figure 1).
Individual subject level reliability still needs to be addressed
with large studies before clinical services will routinely request
rs-fMRI for clinical practice.

LIMITATIONS

Our study has limitations. First, our response rate was 24% of
the ASFNR membership and respondents may have tended to
be more enthusiastic about using rs-fMRI in their research and
clinical practice than non-respondents. Second, surveys were
only sent to the ASFNR membership and thus non-member
neuroradiologists who use rs-fMRI were not sampled. Third,
for practical reasons, our survey was confined to members of
an American professional organization. It will be of interest
to survey a broader and more international sample of the
neuroimaging community to assess the generality of our findings
and interpretations.

CONCLUSIONS

Despite some perceived impediments to expanding clinical rs-
fMRI use, neuroradiologists were generally enthusiastic about
rs-fMRI in research and clinical applications, believing that
their current workplace MRI systems are suitable for rs-fMRI
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acquisition. Many of the concerns associated with using rs-fMRI
in clinical contexts are related to: (1) developing better methods
for minimizing physiological noise effects, (2) improving
methods for detecting the spatial characteristics of clinically-
relevant brain processing systems in individual patients,
and (3) overcoming remaining standardization, training, and
regulatory hurdles.
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