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Discussion with Reviewers
Reviewer 1: Why would HIF1-alpha be downregulated in the absence of muscle contraction (suggested in the discussion)? Is there 
any work showing this or any mechanism hypothesised by the authors?
Authors: It was found that the nucleus pulposus was absent in two locations for one mdg sample at TS27, while no abnormalities have 
been observed at TS24 in any sample. This “resorption” of the NP is a similar outcome to that reported by Merceron et al. (2014) in 
which the hypoxia inducible factor-1α (HIF-1α) was absent. They found that the nucleus pulposus was present at TS24 but absent 
after birth. It has been shown in adults that increased muscle contractions (due to acute exercise) activate HIF-1α in skeletal muscle 
(Lindholm et al., 2015, additional reference). Based on this result and the present study, a link is hypothesised between the lack of 
muscle contractions prenatally and HIF-1α. It is possible that the nucleus pulposus would be affected at later stages of development. 
Further investigation is needed to understand the mechanisms leading to the loss of the nucleus pulposus at a late stage of 
development.
Reviewer 1: Do you anticipate Runx2 expression to be altered in intervertebral disc cells of mdg mutants before TS27?
Authors: Runx2 is a mechanosensitive gene which is known to play a role in IVD degeneration (Sato et al., 2008). Runx2 expression 
has also been observed in the embryonic intervertebral disc from E16.5 (equivalent to TS25) (Sato et al., 2008, additional reference). 
However, the role of Runx2 in IVD development is unclear and therefore it is difficult to theorise what effects might be observed in the 
IVD cells of mdg mice. However, effects on Runx2 expression in the ossification centres of the vertebral bodies would be expected to 
be seen. Muscle-less mouse embryos (Pax3Sp/Sp) display pronounced changes in Runx2 expression, compared to controls, in the 
humeri at TS24 and TS25 (Nowlan et al., 2012). In our study, a modification of the ossification pattern in the mdg group at TS27 was 
observed (Fig. 4e,g), which could potentially be correlated with an alteration in Runx2 expression at or before TS27.
Reviewer 1: The extracellular matrix proteins collagen type XII and XIV have been found to be uniquely expressed in fetal 
intervertebral discs. Given that they control fibrillogenesis and tissue mechanical properties during development, would you expect 
their expression to be altered in mdg mutants?
Authors: It would be interesting to look at the expression of collagens type XII and XIV in the annulus fibrosus between TS24 and 
TS27, to investigate if there is a link with the changes in AF lamellar structure and mechanical properties. It has been shown that 
collagen XII proteins are upregulated in embryonic fibroblasts cultured on attached (tensed) collagen gels, and rapidly (< 12 h) 
downregulated on floating (released) matrices (Flück et al., 2003, additional reference), indicating that collagen XII expression is 
mechanosensitive. While the authors are not aware of direct evidence of mechanoregulation of collagen XIV, given the disrupted 
fibrillogenesis observed in the AF, it is certainly possible that the expression of collagens type XII and XIV would be altered in the 
intervertebral disc in the absence of muscle contraction.
Reviewer 2: Can the authors comment on how the findings from this study should inform or be applied to advancing cell-based 
regeneration therapies for the intervertebral disc?
Authors: The authors believe that the key importance of the study, for advancing cell-based regeneration therapies for the IVD, is that 
mechanical loading is critical to maintenance and differentiation of different compartments of the IVD. Therefore, future therapies 
should consider how a patient would be loading their spine in the time following the procedure. In addition, future tissue engineering 
strategies will likely require mechanical conditioning. Computational models could be used to predict the biophysical environment of 
the regenerating tissues, and could inform physiotherapy regimes or tissue engineering construct optimisation. While this study 
highlights the critical nature of mechanical loading in the extreme scenario of completely absent muscle stimulation, there remains 
great scope for future research into defining optimal biomechanical environments for regeneration of the IVD in adults.
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Abstract

Embryonic muscle forces are necessary for normal vertebral development and spinal curvature, but 

their involvement in intervertebral disc (IVD) development remains unclear. The aim of the current 

study was to determine how muscle contractions affect (1) notochord involution and vertebral 

segmentation, and (2) IVD development including the mechanical properties and morphology, as 

well as collagen fibre alignment in the annulus fibrosus. Muscular dysgenesis (mdg) mice were 

harvested at three prenatal stages: at Theiler Stage (TS)22 when notochord involution starts, at 

TS24 when involution is complete, and at TS27 when the IVD is formed. Vertebral and IVD 

development were characterised using histology, immunofluorescence, and indentation testing. 

The results revealed that notochord involution and vertebral segmentation occurred independently 

of muscle contractions between TS22 and TS24. However, in the absence of muscle contractions, 

we found vertebral fusion in the cervical region at TS27, along with (i) a displacement of the 

nucleus pulposus towards the dorsal side, (ii) a disruption of the structural arrangement of collagen 

in the annulus fibrosus, and (iii) an increase in viscous behaviour of the annulus fibrosus. These 

findings emphasise the important role of mechanical forces during IVD development, and 

demonstrate a critical role of muscle loading during development to enable proper annulus 

fibrosus formation. They further suggest a need for mechanical loading in the creation of fibre-

reinforced tissue engineering replacement IVDs as a therapy for IVD degeneration.

Keywords

Intervertebral disc – development; spine – biomechanics; notochord; muscular dysgenesis; 
embryo; paralysis; ECM – collagens

Introduction

Intervertebral discs (IVDs), due to their unique structure, play an important role in the 

biomechanics of the spine, as they carry loads, dissipate energy and facilitate joint mobility 

(Smith et al., 2011). IVDs are comprised of a core gelatinous nucleus pulposus (NP) 

surrounded by a lamellar ring-like annulus fibrosus (AF). Both elements act synergistically 

to distribute and transmit loads between vertebral bodies. Degenerated IVDs display a 

decrease in their proteoglycan content, an increase in the percentage of denatured type II 

collagen, and a disorganised extracellular matrix (Antoniou et al., 1996). These changes alter 

the AF mechanical properties, in turn impairing the mechanical function of the IVD 

(Emanuel et al., 2018). IVD degeneration mainly affects cervical and lumbar regions, and is 

associated with neck and low back pain (reviewed in Kushchayev et al., 2018). In the 

absence of treatments to restore disc structure and mechanical functions, tissue engineering 

of replacement discs is a promising strategy. In the past few years, research has focused on 

deriving cartilage and bone tissue from undifferentiated cells by using biochemical and 

mechanical cues from development (Gadjanski et al., 2012); a process coined 
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“developmental engineering” (Alkhatib et al., 2018), and in the IVD, factors from 

development can promote regeneration and prevent painful conditions (Purmessur et al., 
2013). Application of this approach to the IVD is hampered by complexity of its structure 

and a lack of understanding of the mechanisms driving IVD development. Several studies 

have focused on the roles of specific genes and transcription factors in IVD development 

(reviewed in Alkhatib et al., 2018), as well as the contribution of extracellular matrix 

components, such as collagen XII and XIV and small leucine-rich proteoglycan, to tissue 

architecture and biomechanical properties of the intervertebral discs (Caldeira et al., 2017; 

Rajasekaran et al., 2021). By contrast, few studies have investigated the role of mechanical 

forces in driving IVD development (Aszódi et al., 1998). The importance of mechanical 

stimuli for tissue engineering other biological load-bearing tissues such as cartilage is well-

established (reviewed in Li et al., 2017 and Salinas et al., 2018). While mechanical 

overloading may promote maturation of notochordal cells (Guehring et al., 2010), detailed 

knowledge on the role of mechanical stimuli in IVD development is limited, but may inform 

and lead to advances in IVD tissue engineering.

Several lines of evidence indicate a role for mechanical factors during embryonic 

development of the NP and AF, which are formed concurrently but follow distinct 

developmental pathways (Smith et al., 2011). The NP, whose cells can be distinguished from 

AF and articular cartilage cells by their high expression of N-cadherin (Lv et al., 2013), is 

derived from the notochord, which contracts within the forming vertebral bodies and 

expands towards the future disc – a process called “involution” (Smith et al., 2011). 

Mechanical forces coming from the expansion of the amniotic cavity are important for the 

convergent extension of the notochord during morphogenesis (Imuta et al., 2014) and are 

hypothesised to also play a role in notochord involution (Williams et al., 2019). Indeed, in 

the absence of collagen II, which restrains the swelling pressure in the vertebral bodies and 

enables the cartilage to resist compressive forces, vertebral bodies of embryonic mice fail to 

form normally and the notochord retains its original continuous rod-like morphology 

(Aszódi et al., 1998). Similarly, when the notochord sheath is absent following removal of 

Sonic Hedgehog (Shh) in mice, notochord cells fail to migrate towards the future NP and 

become scattered within the vertebral bodies (Choi et al., 2008; Choi and Harfe, 2011). 

Based on these observations, a “pressure model” has been proposed (Choi and Harfe, 2011), 

suggesting that the internal swelling pressure of the forming vertebral bodies induces 

notochordal compression, and the notochord sheath constrains the notochord cells along the 

vertebral column. There is also some evidence to suggest that the lamellar structure of the 

AF may be, at least in part, mechanically determined. The AF, along with the vertebral 

bodies, is derived from the sclerotome, which adopts a metameric pattern of more and less 

condensed regions (Scaal, 2016). A study comparing spine development in chick, (where the 

notochord does not undergo involution), and mouse embryos proposed that collagen fibre 

alignment in the AF derives from the bulging pattern of the notochord (Ghazanfari et al., 
2018). It has been proposed that further mechanical signals due to onset of muscle activity in 

the spine lead to reinforcement of the lamellar structure of the AF (Ghazanfari et al., 2018; 

Hayes et al., 2011). This hypothesis is supported by studies on patients with adolescent 

idiopathic scoliosis (AIS), in which abnormal spinal and peripheral muscles are associated 

with a disorganization of the lamellar structure of the AF (reviewed in Wise et al., 2020). 
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However, despite these hypotheses, the role and the origin of these biomechanical forces 

during IVD development remain unclear.

A key source of mechanical stimuli during vertebral development are embryonic muscle 

contractions. Previous work by the authors describes how prolonged or short-term paralysis 

of chick embryos results in abnormal spinal curvature, wedged and fused vertebral bodies, 

as well as rib defects (Levillain et al., 2019; Rolfe et al., 2017). However, the chick model 

did not allow the study of IVD development, as notochord involution does not occur in this 

model (Shapiro, 1992). A small number of studies have been conducted on spine 

development in the murine Pax3 mutant Splotch (Henderson et al., 1999; Schubert et al., 
2001; Tremblay et al., 1998), characterised by absence of limb musculature and further 

abnormalities in hypaxial muscles (Tremblay et al., 1998). Splotch mouse embryos display 

fused vertebral bodies and IVDs with reduced height at embryonic day (E) 18.5 (Schubert et 
al., 2001). These studies suggest a role of muscle forces for spine and disc development, but 

since Pax3 mutations also result in neural crest deficiencies and neural tube defects 

(Tremblay et al., 1998), it is difficult to conclude to what extent abnormal muscle forces are 

responsible for the observed spinal defects. The muscular dysgenesis (mdg) mouse, which 

carries a naturally occurring mutation in the CACNA1S gene, is characterised by a lack of 

excitation-contraction coupling, leading to an absence of skeletal muscle contraction and 

resulting in paralysis (Pai, 1965). Mdg embryos have vertebral fusion dorsally in cervical 

and lumbar regions at E18.5 (Kahn et al., 2009) and fused vertebral bodies in the cervical 

and thoracic regions at birth (Pai, 1965). These changes are likely associated with IVD 

defects, but the relationships between vertebral body and IVD abnormalities remain 

unknown. Furthermore, neither the role of muscle forces in notochord involution, nor the 

effects of abnormal muscle forces on the morphology, collagen alignment and mechanical 

properties of the IVD have been investigated, but all are critical for IVD functionality.

The aim of this study was to determine how the absence of muscle contractions affects disc 

development in mice. Based on the findings on abnormal vertebral shape and segmentation 

in the chick (Levillain et al., 2019; Rolfe et al., 2017), it was first hypothesised that muscle 

contractions during murine prenatal development are needed for a) normal vertebral 

segmentation and (b) normal vertebral shape and mechanical properties. Hence, 

abnormalities in either or both aspects of spine development are expected to cause abnormal 

notochord involution. Second, in line with the evidence suggesting a role of biomechanical 

forces for NP and AF development, it was further hypothesised that muscle activity is 

necessary for normal development of the IVD, including disc morphology and mechanical 

properties, as well as alignment of collagen fibres in the AF. The first hypothesis was tested 

by comparing vertebral segmentation and notochord involution in mdg and control mice at 

the developmental stages of initiation and completion of involution [TS22 and TS24 (Smith 

et al., 2011)], as well as mechanical properties of the vertebral bodies at TS24. The second 

hypothesis was tested by comparing the morphological and mechanical properties of mdg 

and control IVDs at TS27, when the IVD is fully formed.
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Materials and Methods

Tissue collection and processing

All experiments were performed in accordance with European legislation (Directive 

2010/63/EU). The mdg (Pai, 1965) line was kindly obtained from E. Zelzer (Department of 

Molecular Genetics, Weizmann Institute of Science, Israel) and was bred to C57Bl/6J mice. 

Heterozygous females and males were mated to provide litters containing mdg homozygous 

embryos, from now on referred to as ‘mdg embryos’. Wild type C57BL/6 embryos (both 

littermates and fully wild-type litters) were used as controls. All embryos were harvested 

and staged according to Theiler Stages TS22, TS24 and TS27 (typically embryonic day 

13.5, 15.5 and 18.5, respectively) (Fig. 1a). Genotyping was done by PCR on DNA derived 

from ear (adult mice) or head (embryos) tissue. The PCR reaction was carried out for 30 

cycles, each with a duration of 1 min at 94 °C, 65 °C and 72°C, using the primer pair 5’-

CCGAGCTGAGGAGACACTTG and 3’- GGGCATATGTGGTACCAGCA (ThermoFisher) 

and the diluted PCR product (1 : 10) was sequenced (University of Dundee, Dundee, UK) 

using the forward primer. Spines were carefully dissected, cryo-protected in increasing 

sucrose gradients (15 % and 30 %) until the samples sank, and then embedded in a 50 : 50 

mix containing 30 % sucrose and optimal cutting temperature (OCT) compound (Agar 

Scientific, Stansted, UK). 25 μm-thick frozen serial sections were cut with a cryostat (NX70, 

Leica Biosystems) and collected on five consecutive slides for histology (one slide), 

immunofluorescence (three slides), and indentation testing (one slide) (Fig. 1b). A minimum 

of three mice per developmental stage were analysed for both control and mdg groups (Table 

1).

Histology

Sections used for histology were fixed in 4 % paraformaldehyde (PFA) (VWR, Lutterworth, 

UK) for 20 min, stained with 0.025 % alcian blue (Merck) in 3 % acetic acid (Merck) (for 

cartilage) for 30 min followed by 1 % picrosirius red (Merck) (for collagen) for 30 min (Fig. 

1c) (Rolfe et al., 2017). Sections from the cervical, thoracic, and lumbar regions were 

imaged in transmitted illumination using a light microscope (Yenway EX30, Glasgow, UK), 

with light intensity being adjusted to observe the vertebral bodies. Vertebral segmentation, 

disc morphology, and vertebral shape were qualitatively compared between control and mdg 

spines, using light microscopy images.

Immunofluorescence and image acquisition

Sections used for immunofluorescence were permeabilised with 0.1 % Tween-20 (Merck)/1 

% dimethyl sulphoxide (Merck) in phosphate buffered saline (PBS), blocked with 5 % 

normal goat serum (Merck) and incubated with a primary antibody (1 : 100 dilution) 

overnight at 4 °C (Ahmed and Nowlan, 2020). Based on studies looking at the 

immunohistochemical localisation of collagens in embryonic mouse spine (Aszódi et al., 
1998) and specific molecular markers for the NP (Lv et al., 2013), the following primary 

antibodies were used (at all stages unless specified): rabbit anti-collagen I (ab34710, 

Abcam) for the outer AF at TS24 and TS27 (Aszódi et al., 1998), mouse anti-collagen II 

(MAB8887, Merck) for the vertebral bodies and inner AF (Aszódi et al., 1998), rabbit anti-

collagen III (ab7778, Abcam) for the notochord sheath at TS22 (Aszódi et al., 1998), and 
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rabbit anti-N-cadherin (ab18203, Abcam) for the notochord and NP (Lv et al., 2013). 

Sections were then washed and incubated with secondary antibody (1 : 400 dilution) for 2 h 

and counterstained with DAPI (1 : 2,000 dilution) for 30 s. The following secondary 

antibodies were used: goat anti-mouse Alexa Fluor® 488 (A–11029, Thermo Fisher 

Scientific), and goat anti-rabbit Alexa Fluor® 488 (A–11008, Thermo Fisher Scientific). 

Direct fluorescence acquisition of labelled tissue sections was performed using a Leica SP8 

Inverted Confocal Laser Scanning Microscope (Leica Microsystems) equipped with a 

Helium-Neon 633 nm laser. The gain and offset were adjusted manually to collect the 

optimum fluorescence data and prevent saturation. Stacks of images of the cervical region 

(C5–C6) were acquired using a × 20 objective (HC PL APO 20×/0.75 CS2) and 

reconstructed in Fiji to produce maximum intensity Z-projections (Fig. 1d).

Image analysis

Z-projection images of collagen II obtained through confocal microscopy were saved as TIF 

files and used for further analysis to compare the organisation of the inner AF between three 

control and three mdg embryos at TS24 and TS27 (when the IVD is formed). The inner AF 

C5–C6 was manually cropped in ImageJ (NIH, Bethesda, Maryland, USA). The resulting 

image was then divided into four equal regions: cranial dorsal, cranial ventral, caudal dorsal, 

and caudal ventral. In each region, the orientation of collagen fibrils was quantified using the 

OrientationJ plugin in ImageJ (Rezakhaniha et al., 2012). The local orientation (relative to 

the dorsoventral axis) of each pixel with an intensity larger than 5 % of the maximum 

intensity and a coherency larger than 0.05 was calculated using the cubic spline gradient 

method, with a Gaussian window of 10 pixels (Rezakhaniha et al., 2012). For each stage and 

each region, collagen orientation distribution was plotted in circular histograms using 

Matlab (MathWorks®, R2015a, Natick, MA, USA) and compared between control and mdg 

embryos. Due to the small sample size (n = 3), no statistical analysis was performed.

Indentation testing

Sections used for instrumented indentation were thawed at room temperature for 30 min 

before testing. To characterise the time-dependent behaviour of the tissue, indentation tests 

in closed-loop displacement-control were performed on sections immersed in PBS using a 

Chiaro nanoindentor (Optics 11, Amsterdam, the Netherlands). A 0.48 N/m probe with a 

spherical tip of 42 μm radius was chosen on the basis of the expected material properties and 

dimensions of the samples (Web ref. 1). A trapezoidal indentation profile was used (Fig. 2a), 

comprised of a loading phase at 2 μm/s until the displacement reached a maximum value of 

2 μm. The maximum displacement was chosen to avoid excessive strains (less than 5 % of 

indentation strain) and substrate effects (indentation depth less than 10 % of the sample 

thickness) (Qiang et al., 2011). The displacement was then held constant for 10 s and 

unloading was carried out at 2 μm/s (Fig. 2a). Tests were conducted on the same region as 

for immunofluorescence (i.e. vertebral bodies C5 and C6 and the inner AF C5–C6) from a 

mid-sagittal section of three control and mdg embryos at TS24 and TS27 (when the IVD is 

formed) (Fig. 1e). To account for spatial heterogeneity in the material properties, a minimum 

of six indents was performed for each structure (vertebral bodies and AF), with a minimal 

spacing of 100 μm between each indent to prevent interactions from neighbouring indents. 
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For each sample, the duration of indentation testing did not exceed 1 h to minimise potential 

glycosaminoglycan leakage (Perie et al., 2006).

Viscoelastic analysis

To investigate the time-dependence of the mechanical response, elastic-viscoelastic 

correspondence was used, following previous work (Lee and Radok, 1960; Mattice et al., 
2006; Oyen, 2006; Sakai, 2002). In brief, the elastic operator in the Hertzian contact model 

was replaced with a Boltzman hereditary integral operator, which includes a relaxation 

function, for which a Maxwell standard linear solid was chosen (Fig. 2c). The hereditary 

integral was then solved separately for ramp- and hold-phase (Oyen, 2006), and the solution 

was fitted to the experimental data (Fig. 2d) to extract (i) the instantaneous modulus, Eins′ 
(ii) the equilibrium modulus, Eeq′ [assuming incompressibility (Marturano et al., 2013)], and 

(iii) the elastic fraction, f = Eeq/Eins′ which quantifies the extent of viscous behaviour of the 

material (an elastic fraction of 0 corresponds to a purely viscous material, while an elastic 

fraction of 1 corresponds to a purely elastic material) (Mattice et al., 2006; Oyen, 2006). A 

contact criterion needs to be defined for indentation of a soft tissue (Marturano et al., 2013). 

Here, contact with the sample was considered when a significant change in the slope of the 

force indentation curve occurred (0.003 μN or about 0.5 % of maximum force) (Fig. 2b).

Statistical analyses were performed in R 3.6.2 (R foundation for Statistical Computing, 

Vienna, Austria). Statistical comparisons between the viscoelastic properties (instantaneous 

modulus and the elastic fraction) of age-matched control and mdg groups were made on the 

total number of indents using a linear mixed model with a level of significance of 0.05. 

Group (Control/mdg) was considered as a fixed factor while sample ID was considered as a 

random factor. Values that deviated from the sample mean by more than three standard 

deviations were excluded from the analysis.

Results

Results were reasonably consistent between mdg embryos at TS22 and TS24, and therefore 

representative images for one specimen are shown for these stages (Fig. 3), with any 

variation between samples reported in the text. At TS27, there was a high degree of 

variability between mdg samples and therefore data from all TS27 control and mdg embryos 

are shown. Moreover, results were consistent across consecutive sections, so only one 

section per specimen is shown.

Vertebral segmentation and disc formation

Initiation of notochord involution at TS22 was equivalent in mdg and control samples (Fig. 

3a–f), and was most progressed in the cervical region (Fig. 3a–b). Vertebral bodies were 

clearly separated from the developing AF for both mdg and control embryos (Fig. 3), 

demonstrating that vertebral segmentation occurred in all regions despite the absence of 

muscle contractions. However, the intervertebral space appeared reduced in the mdg 

embryos compared to the control samples (Fig. 3b* vs. Fig. 3a), especially in the cervical 

region.
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At TS24, notochord involution completed normally in all examined regions of mdg embryos 

(Fig. 3g–l). The NP was formed and surrounded by the forming AF, divided into the inner 

AF composed of glycosaminoglycan and collagen, and the collagen-rich outer AF (Fig. 3g–

l). The mdg embryos still displayed a reduced intervertebral space on the ventral side of the 

thoracic region compared to control samples (Fig. 3j* vs. Fig. 3i), while vertebral spacing 

was similar between control and mdg embryos in the cervical and lumbar regions (Fig. 3g–

h,k–l).

At TS27, vertebral fusion and abnormal positioning of the NP in the cervical region were 

observed in the mdg embryos, while other regions were mildly affected by the absence of 

muscle contractions (Fig. 4). One mdg embryo (‘mdg 2’) showed complete vertebral fusion 

between C4 and C6 (Fig. 4e,w – black arrowhead), with no NP between these vertebrae 

(Fig. 4e,w – white box). The disc was absent only in this sample and in these locations. mdg 

2 also had a NP with reduced size compared to control samples between cervical C6 and C7 

(Fig. 4e – *), while the NPs located between C2 and C4 appeared normal (data not shown). 

Two out of the three remaining mdg embryos (‘mdg 1’ and ‘mdg 3’) displayed partial 

vertebral fusion on the ventral sides of the discs (Fig. 4d,f,v – black arrowhead), while 

vertebral bodies of all control samples were clearly separated on the ventral and dorsal sides 

by the AF (Fig. 4a–c). Moreover, where present, the NPs of all mdg embryos were off-

centred towards the dorsal side (Fig. 4d,f,g – +), while they were centred along the 

dorsoventral axis in control samples (Fig. 4a–c). In the thoracic region, the NPs appeared 

smaller than controls and sometimes off-centred (Fig. 4k,m vs. 4h–c,j); most of the vertebral 

bodies of the mdg embryos appeared wedged (Fig. 4k,m,n – white arrowhead). In the lumbar 

region (Fig. 4r–t), no fusion was observed in any of the mdg embryos, and the vertebral 

bodies and NPs did not show obvious deformities.

AF and NP formation and morphology in cervical region

When NP formation was assessed using immunofluorescent markers, it was found that 

morphology was dependent on muscle contractions in only some samples. At TS22, the 

notochord in all mdg embryos expressed N-cadherin as normal (Fig. 5f), and was wrapped in 

a continuous type II collagen-rich notochord sheath extending along its craniocaudal axis 

(Fig. 5b). At TS24, the NP in mdg embryos continued to express N-cadherin (Fig. 6f), but in 

two out of three samples, expression of N-cadherin was scattered throughout the spine, 

instead of being limited to the NP (Fig. 6f). At TS27, N-cadherin signal was undetectable in 

one out of four mdg embryos in a single location (Fig. 7m), indicating absence of the NP, 

while other samples exhibited normal expression of N-cadherin in the NP (Fig. 7l,n,o).

The emerging lamellar structure of the inner AF appeared normal in all mdg embryos at 

TS22 and TS24, but was abnormal at TS27. At TS22, alternating areas of future vertebral 

body and future AF were observed along the craniocaudal axis, with stronger type II 

collagen immunopositivity in the future AF compared to the vertebral body (Fig. 5b). At 

TS24, the inner AF displayed a lamellar-like arrangement in all mdg embryos (Fig. 6d,h), 

with concentric layers made of collagen II, as in control samples (Fig. 6c,g). At TS27, all 

mdg embryos displayed stronger immunolocalisation of collagen II in the inner AF 

compared to the vertebral bodies (Fig. 7). However, the lamellar structure was dependent on 
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muscle contraction in all samples, to varying degrees (Fig. 7p–t). In one particularly severe 

case, the lamellar arrangement was completely lacking between cervical C4 and C6 (Fig. 

7h,r), while it was lacking only on the ventral side in two samples (Fig. 7g,i,q,s). The 

lamellar arrangement was present on both sides in the other mdg embryo (Fig. 7j,t), although 

less prominent compared to the controls (Fig. 7f,p).

The outer AF, visualised using collagen I labelling, displayed subtle changes due to the 

absence of muscle contractions. In all but one mdg embryo, the outer AF was wider on the 

ventral side at TS24 (Fig. 6b) and TS27 (Fig. 7b,d,e), as was also observed in the controls 

(Fig. 6a, 7a). However, the height of the ventral outer AF region appeared reduced compared 

to the control samples at both stages (Fig. 6a,b and 7a,b,d,e). At TS27, one mdg embryo did 

not show any collagen I signal between cervical C4 and C6, indicating the complete absence 

of outer AF (Fig. 7c), while the outer AF formed normally in other locations of the cervical 

region for that particular specimen (data not shown).

Quantification of structural organisation of the inner AF

A quantitative analysis of collagen II orientation corroborated our observation that the 

muscle contractions are required for collagen II orientation in the ventral, but not in the 

dorsal side of the inner AF (Fig. 8, Table 2). Fibre-orientations were affected in the caudal, 

but not in the cranial aspect. At TS24, in the cranial aspect, the orientation of collagen II 

fibres appeared similarly random in mdg and control groups (Fig. 8b,i). In the caudal aspect, 

collagen II fibres in the mdg group were predominantly orientated along the dorsoventral 

direction, with a mean orientation of 7 ± 13° relative to the dorsoventral axis, while in 

controls it was predominantly orientated in the craniocaudal direction, with a mean 

orientation of 87 ± 14° (Fig. 8d,i, Table 2). At TS27, collagen II orientation in the cranial 

aspect was again similar in the mdg and control groups (Fig. 8f), with mean orientations of 

147 ± 7.8° and 132 ± 8.9°, respectively (Fig. 8j, Table 2); differences in orientation in the 

caudal aspect persisted. The mdg embryos showed a predominant orientation at 150 ± 4.9°, 

similar to the cranial aspect, indicating consistent collagen fibre orientation along the height 

of the disc (Fig. 8j, Table 2), while in the control group, the mean orientation of collagen II 

fibres in the control group was 53 ± 10° and opposite to the orientation in the cranial aspect, 

indicating a circumferential arrangement of collagen II on the ventral side (Fig. 8j, Table 2).

On the dorsal side of the AF, collagen II orientation was similar between groups throughout 

the height of the disc at both stages examined (Fig. 8a,c,e,g). Collagen II was mainly 

orientated in the craniocaudal direction, as evidenced by larger peaks at 90° (Fig. 8i,j).

Vertebral body and AF mechanical properties

To evaluate a possible link between altered mechanical properties of the spinal unit tissues 

and altered disc and vertebral morphology in mdg mice, indentation tests were performed on 

the vertebral bodies C5 and C6 and the C5–C6 AF at TS24 and TS27 (Fig. 9, Table 3). The 

main difference found was in the TS27 AF, with a significantly reduced (p < 0.05) elastic 

fraction in the mdg group (Fig. 9l, Table 3), indicating an increase in viscoelasticity. There 

were no significant differences in instantaneous modulus or elastic fraction between mdg 

and control groups for either vertebral bodies or the AF at TS24 (Fig. 9a–f, Table 3). At 
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TS27, there were still no significant differences in instantaneous modulus or elastic fraction 

for the vertebral bodies between groups (Fig. 9g–l, Table 3). Hence, the mechanical 

properties of the VB were not significantly affected by muscle contractions, suggesting that 

the pressure model is not related to muscle forces.

Discussion

It was demonstrated that muscle contractions are necessary for late-, but not early-, stage 

disc development in mice. Therefore, the primary hypothesis, that prenatal muscle 

contractions are needed for early vertebral segmentation and morphogenesis events and that 

abnormalities in the vertebrae would lead to abnormal notochord involution, was not 

corroborated. Instead, vertebral bodies were normally segmented at TS22, and notochord 

involution occurred according to the normal timelines in all mdg embryos. The second 

hypothesis, that muscle activity is needed for normal development of the intervertebral disc, 

including morphology, alignment of collagen fibres in the AF, and mechanical properties, 

was corroborated. The inner AF of the TS27 disc had a disrupted lamellar arrangement and 

an increase in viscoelasticity in the cervical region, and the NP was displaced dorsally. 

Vertebral bodies were completely or partially fused in this region in most samples. These 

findings demonstrated that mechanical stimuli from muscle contractions are dispensable for 

disc specification and early disc development, but are required for later disc development 

events such as lamellar organisation.

The results of the present study offer new insights into the role of muscle activity for 

notochord involution and maintenance of the NP. Previous studies have emphasised the role 

of mechanical forces for the convergent extension and elongation of the notochord during 

morphogenesis and embryogenesis (Alkhatib et al., 2018; Imuta et al., 2014). Based on these 

findings, it has been proposed that mechanics-based mechanisms of development are also 

key for notochord involution (Rufai et al., 1995). However, the origin of the biomechanical 

forces controlling involution remained unclear. It was demontrated that notochord involution 

took place between TS22 and TS24, both in absence and presence of muscle contractions, 

indicating that the biomechanical forces affecting notochord involution are intrinsic rather 

than extrinsic. Intrinsic compressive forces on the notochord may arise, for example, from 

the internal swelling pressure restrained by collagen fibrils in the vertebral bodies (Aszódi et 
al., 1998). Indeed, notochord involution does not take place if collagen II is absent (Aszódi 

et al., 1998), and the notochord sheath plays a key role in constraining notochord cells along 

the vertebral column (Choi and Harfe, 2011), consistent with this hypothesis (Choi and 

Harfe, 2011). It was shown that the notochord sheath formed normally in absence of muscle 

contraction at TS22 (when notochord involution begins) and that the mechanical properties 

of vertebral bodies did not differ significantly between mdg and control embryos at TS24 

(when notochord involution is complete). Therefore, the findings suggest that the “pressure 

model” proposed in the literature is not related to muscle forces (Choi and Harfe, 2011). One 

mdg embryo was found where the NP was absent in two cervical locations (C4–C6) and 

highly reduced in another cervical location (C6–C7) at TS27. Since there was no evidence 

for N-cadherin signalling in the disc region or vertebral bodies in that sample, suggesting the 

absence of notochord cells, it is proposed that the NP disappeared rather than notochord 

involution occurring abnormally and notochord cells being scattered throughout the spine. 
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One way that NP cells could disappear is hypertrophic differentiation. However, the NP cells 

did not seem to be morphologically different in the mdg mice compared to controls at 

initiation. Moreover, all mdg mice displayed stronger immunolocalisation of collagen II in 

the disc region compared to the vertebral bodies (Fig. 7q–t), and it has been shown that an 

increase in collagen X (which is expressed by hypertrophic cells) is associated with a 

decrease in collagen II (Lian et al., 2019). Merceron et al. (2014) showed that in absence of 

the hypoxia inducible factor-1α (HIF-1α), the murine NP is formed at E15.5, but it 

progressively disappears postnatally following death of NP cells, and is replaced with 

fibrocartilage. Therefore, it is hypothesised that the NP disappeared after the death of NP 

cells. It is possible that in absence of muscle contraction, HIF-1α was highly downregulated 

in one of the mdg embryos, thus leading to the loss of the NP.

The results of this study highlight the importance of embryonic muscle forces for the 

structural arrangement of the AF. Although a lamellar arrangement of collagen II was 

initiated at TS24 in the inner AF, this pattern was partially or completely disrupted in the 

cervical region at TS27. A recent study comparing the AF structure in chick and mouse 

embryos suggested that mechanical stress induced by bulging of the notochord could be the 

mechanism underlying the criss-cross aligned pattern formation of collagen in the AF 

(Ghazanfari et al., 2018). Hayes et al. (2011) proposed that the strengthening of the inner AF 

is derived from the onset of muscle activity in the spine, which causes compressive loading 

of the newly formed IVD. The current results support both hypotheses: in the absence of 

muscle contractions, collagen arrangement was initiated in the inner AF at TS24 following 

normal notochord involution, but it was disrupted at TS27. In contrast, the outer AF formed 

normally in most mdg embryos at TS27, which suggests that their development may be 

independent of mechanical stimuli provided by muscle contractions. Several studies 

demonstrated that Sox5/6 proteins and Pax1/9 signalling influences the division between 

inner and outer AF (Wise et al., 2020). After division, the outer AF development is primarily 

regulated by Pax1 and Pax9 expressing cells, whereas the inner AF is primarily regulated by 

Sox9, which controls Sox5/6 (Wise et al., 2020). An in vitro study on meniscus cells showed 

that Sox9 is downregulated in the absence of mechanical stretch (Kanazawa et al., 2012). It 

is speculated that differential mechanoregulation of these genes may contribute to abnormal 

inner, but not outer, annulus structure when muscle forces are absent, but further studies are 

needed to test this hypothesis.

Changes in the structural arrangement of the AF were associated with altered viscoelastic 

properties. As far as is known, no data on the mechanical properties of the embryonic 

intervertebral disc are available in the literature. The instantaneous modulus of the disc, 

which quantifies the initial elastic response of the tissue, is consistent with the elastic 

modulus measured on other embryonic tissues, which ranges between 30 and 116 kPa for 

the femur of chick embryo between HH41 and HH43 (late stages of development) 

(Marturano et al., 2013), and between 20 and 100 kPa for the developing murine growth 

plate cartilage between E13.5 and birth (Prein et al., 2016). At TS27, both the instantaneous 

modulus and the elastic fraction of mdg embryos were reduced, while no difference was 

observed at TS24, suggesting a role of muscle forces for the emergence of mechanical 

properties of the disc. Pan et al. demonstrated that embryo movements regulate the 

mechanical properties of chick embryo tendons (Pan et al., 2018), and that paralysis leads to 

Levillain et al. Page 11

Eur Cell Mater. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a reduction in the modulus of the femur at a late stage of development, which supports the 

current findings. However, whether the change in the collagen structural arrangement of the 

AF and the alteration of the viscoelastic properties of the tissue happened chronologically or 

independently is unclear, as they were both normal at TS24 and abnormal at TS27. In the 

tendon of chick embryos, a change in collagen cross-linking results in a modification of the 

mechanical properties without affecting the collagen organisation (Marturano et al., 2014). 

Moreover, adult degenerative discs display different collagen fibre organisation from healthy 

discs, but their tensile properties, which are primarily governed by collagen fibres, are 

similar (Vergari et al., 2017). Based on these findings, it is proposed that the elastic fraction 

of the AF is independently affected by the absence of muscle contractions.

Remarkably, the findings of the current study suggest that the effect of non-contractile 

muscle on the developing spine is asymmetric. In most mdg embryos, vertebral fusion and 

defects of collagen structural arrangement in the AF were found on the ventral side, whereas 

the NP was displaced towards the dorsal side. Hayes et al. found matrix and cell behavioural 

differences between dorsal and ventral regions of the rat AF, as evidenced by the presence of 

versican in the dorsal region only, which could explain why these regions are affected 

differently by the lack of muscle contractions (Hayes et al., 2001). Another explanation is 

that muscle contractions are required to “open up” the spine as it elongates along the 

craniocaudal axis. Indeed, it is known that muscle contractions are needed for elongation 

and reduction of the circumference of the embryo along the dorsoventral axis (Carvalho and 

Broday, 2020). Moreover, muscle contractions are necessary for the proper development of 

the neuromuscular junction (Felsenthal and Zelzer, 2017), which plays a key role in 

maintaining spinal alignment (Blecher et al., 2017). The current findings were also 

consistent with observations on adolescent idiopathic scoliosis. Scoliotic patients often show 

abnormalities in their spinal and peripheral muscles, and these abnormalities are associated 

with a greater stress in the concave AF compared to the convex AF (reviewed in Wise et al., 
2020). Such asymmetric loading is the main factor that leads to morphological changes in 

the intervertebral disc, including a displacement of the NP toward the convexity of the curve. 

These studies on scoliotic patients further support the key role of muscle activity for the 

dorsoventral symmetry of the IVD.

The role of muscle forces for disc development appears to also differ across regions. Partial 

or complete vertebral fusion was found in the cervical region, associated with a disruption of 

the structural arrangement of the AF in most mdg embryos at TS27. In contrast, absence of 

muscle contraction led to wedging of the vertebral bodies in the thoracic region and did not 

affect vertebral body and disc morphology in the lumbar region. These results were in 

agreement with an earlier study on the effects of short-term immobilisation of chick 

embryos on spine development, which showed that abnormal spinal curvature and wedging 

of the vertebrae first appeared in the cervical region, and then progressively extended to the 

thoracic and lumbar regions as the spine grew (Levillain et al., 2019). It is hypothesised that 

wedging of the vertebral bodies observed at TS27 would later lead to vertebral fusion and 

abnormal disc morphology as the spine grows. Indeed, Pai et al. found vertebral fusion in 

about 40 % of newborn mdg embryos in both cervical and thoracic regions (Pai, 1965). 

Given that vertebral and disc morphology appeared normal in the cervical region at TS24 but 

were disrupted at TS27, it is possible that the lumbar region would display vertebral and disc 
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abnormalities later after birth, despite the absence of morphological defects at TS27. 

Alternatively, or potentially in addition, it is possible that the greater ranges of motion in the 

cervical region make them more dependent on physiological muscle loading.

The current study was not without limitations. The robustness of the results was limited by 

the small sample size, which was mainly due to the low breeding rates and therefore scarcity 

of mdg embryos. The effects of non-contractile muscles on disc development varied 

considerably between and within samples, with one mdg embryo being particularly severely 

affected. These differences between samples, observed mainly at TS27, may be due to the 

influence of passive movements (Nowlan et al., 2012), which are likely more variable 

towards the end of prenatal development. The morphological characterisation was qualitative 

and not quantitative, due to the fact that the analyses were of 2D sections, which are 

dependent on the curvature on the spine and the section plane. Therefore, no reliable 

quantitative comparisons between the control and mdg groups were possible. Width and 

height measurements of the discs and vertebrae could be obtained using 3D imaging 

techniques, such as optical projection tomography (Rolfe et al., 2017; Levillain et al., 2019), 

but unfortunately it is not possible to combine this 3D imaging technique with 

immunofluorescence analyses. The immunofluorescence analyses were focused on the 

cervical region since it was the most affected (histologically) at TS27. It would be 

meaningful to study the lumbar region in more detail in later development, as it is the most 

affected by disc degeneration (reviewed in Kushchayev et al., 2018), but this was not 

possible due to the neonatal lethality of the mdg mutation (Pai, 1965). Increasing the number 

of timepoints between TS24 and TS27 would provide a better understanding of the 

progression of effects and the link between altered mechanical properties and change in 

collagen structural arrangement, since absence of muscle contraction mostly affected IVD 

development between these two stages. Finally, further experiments need to be done to 

understand the mechanisms of how muscle forces affect IVD development. Indeed, the 

current study focused on the morphological and mechanical effects arising from the presence 

of muscle contractions, but other aspects of development such as biochemical signalling or 

collagen cross-linking may have also been affected. In particular, gene expression can co-

vary significantly with the amount of mechanical stress (Rolfe et al., 2014). Analysing the 

expression of key transcription factors and the chemical composition of the tissue would 

provide a more comprehensive understanding of the mechanisms involved in IVD 

development, including, but not limited to, the role of mechanical stimuli.

In conclusion, this study highlighted the role of muscle contractions for the development of 

disc morphology and mechanical properties. Notochord involution and vertebral 

segmentation took place normally in the absence of muscle contractions, but the 

intervertebral discs displayed several morphological defects, associated with changes in 

viscoelastic properties and vertebral fusion. Specifically, it was shown that muscle 

contractions were necessary for the structural arrangement of the inner AF between TS24 

and TS27, and for the positioning of the NP along the dorsoventral axis. These findings 

provide new insights into the role of mechanical forces for disc development, highlight the 

importance of mechanical loading regimes in the development of the fibre reinforced 

annulus fibrosus, and suggest the presence and timing of mechanical stimuli are important 

factors for tissue engineering of replacement discs.
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Fig. 1. Methods overview.
(a) Wild type and muscular dysgenesis (mdg) mouse embryos were harvested at Theiler 

stages (TS) 22, TS24, and TS27. The spine was carefully dissected. (b) 25 μm-thick frozen 

serial sections were cut and collected on 5 consecutive slides, starting with sections 

represented by the thin plain line, following by sections represented by the dotted line, 

dashed line, and thick plain line. In this way, the 5 slides were almost identical. (c) Sections 

from 1 slide (yellow in b) were stained with alcian blue and picrosirius red to assess 

vertebral segmentation in the cervical, thoracic, and lumbar regions. (d) 

Immunofluorescence analyses were performed on sections from 3 slides (orange in b), using 

collagen I, collagen II, and N-cadherin antibodies. Morphology of each component of the 

disc was characterised in the cervical region. (e) Mechanical properties of the vertebrae and 

AF were assessed on 1 section from the last slide (red in b) using instrumented indentation. 

Approximate locations of indents in the vertebral body (black circle) and AF (black star) of 

intervertebral discs (sagittal view) are illustrated. Indentation was performed on vertebral 

bodies (6 to 10 indents per vertebra) and AF located between the cervical C5 and C6 (6 

indents per AF). Scale bar = 200 μm.
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Fig. 2. Indentation method.
(a) Indentation profile. In the loading phase, the displacement was increased at a constant 

rate of 2 μm/s until it reached 2 μm. The displacement was then held for 10 s and unloading 

was carried out at 2 μm/s. (b) Output force-indentation curve showing the loading and 

unloading phases. (c) Viscoelastic model. The material was represented as a spring in 

parallel to a Maxwell solid (a spring and dashpot connected in series). (d) The relaxation 

function was determined by fitting the resultant experimental force-time curve on the 

loading and holding segments. E0 , E1: elastic moduli associated with each spring; τ1: time 

constant associated with the dashpot.
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Fig. 3. The lack of muscle contractions did not affect vertebral segmentation or notochord 
involution at TS22 or TS24.
Notochord involution initiated at TS22 (a–f) and was complete at TS24 in mdg (h,j,l) and 

control (g,i,k) samples. Vertebral bodies (stained in blue) were clearly separated by the AF 

in all regions. In mdg samples, reduced intervertebral spaces (*) were observed in the 

cervical region at TS22 (b) and in the thoracic region at TS24 (j) compared to the controls (a 
and i, respectively). (a–f) 25 μm-thick sagittal spine sections stained with alcian blue 

(cartilage) and picrosirius red (collagen) of representative control and mdg samples at TS22 

and (g–l) at TS24, in the cervical, thoracic, and lumbar regions. Scale bars: 500 μm. Ca: 

caudal; Cr: cranial; D: dorsal; V: ventral.

Levillain et al. Page 20

Eur Cell Mater. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Absence of muscle contraction resulted in morphological defects of the intervertebral 
discs at most spinal levels with partial or complete vertebral fusion in the cervical region at 
TS27, with subtle changes in the thoracic region, and no major changes were in the lumbar 
region.
Due to variability in the mdg group, all 4 mdg samples are shown and compared with all 3 

control samples. In the cervical region, there was vertebral fusion (black arrowhead) in 3 out 

of 4 mdg samples, to varying degree of severity, from complete vertebral fusion in 1 sample 

(e,w) to partial vertebral fusion on the ventral side in 2 samples (d,f,v). In 1 particularly 

severe case, absence of contractile muscles resulted in a disruption of NP formation (e,w), 

with no NP between C4 and C6 (white ellipse) and a reduced NP between C6 and C7 (*). In 

the 3 other mdg samples (d,f,g), the NP was decentred towards the dorsal side (+). In the 

thoracic region, 3 mdg samples displayed wedged vertebral bodies (white arrowhead), while 

no changes were observed in the lumbar region. (a-t): 25 μm-thick sagittal spine sections 

stained with alcian blue (cartilage) and picrosirius red (collagen) at TS27, in the cervical 

(C5–C7 or C4–C7), thoracic (T3–T5), and lumbar (L2–L4) regions of control and mdg 

spines. No suitable section was obtained for the lumbar region of ‘mdg 2’ due to a staining 

issue. (u–w): Zoomed-in specific regions (black boxes) of (a–t). Scale bars = 500 μm. Ca: 

caudal; Cr: cranial; D: dorsal; V: ventral.
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Fig. 5. Formation of notochord sheath and initiation of notochord involution at TS22 were not 
dependent on muscle contractions. The notochord formed normally in the mdg group, and was 
enveloped in a continuous type II collagen-rich notochord sheath that extended along the 
craniocaudal axis
(b). Notochord cells expressed N-cadherin and started migrating towards the development 

site of NP (f). Cervical region of representative TS22 control and mdg spines shown (sagittal 

view). Due to the size of the samples and the small numbers of sections showing the 

notochord, different segments of the cervical region were imaged. Scale bar = 200 μm. Ca: 

caudal; Cr: cranial; D: dorsal; V: ventral.
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Fig. 6. Muscle activity was not required for formation of each component of the intervertebral 
disc at TS24, but ectopic expression of N-cadherin was observed in 2 out of 3 mdg samples.
The NP formed normally in mdg samples (f), indicating completion of notochord involution, 

and the AF was divided into a collagen II-rich inner part showing a lamellar arrangement 

(d,h) and a collagen I-rich outer part (f). While N-cadherin was expressed only in the NP of 

control spines, it was scattered throughout the spine in 2 out of 3 mdg samples (f). (a–f) 
Cervical region (C5–C6) of representative control and mdg spines shown (sagittal view). (g–

h) Zoomed in view of collagen II expression showing the lamellar structure in the inner AF 

(regions shown from white boxes in c–d). Scale bars = 200 μm. Ca: caudal; Cr: cranial; D: 

dorsal; V: ventral.
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Fig. 7. Muscle activity was required for the lamellar arrangement of the inner AF at TS27, and 
some discs were highly abnormal in the mdg samples.
All mdg samples displayed dense collagen II signal in the inner AF (g–j), but the lamellar 

structure was affected to varying degrees. One mdg sample showed a complete lack of 

arrangement between cervical C3 and C6 (h,r), while others displayed a partial lack of 

arrangement on the ventral side (g,i,q,s) or a less prominent structure (j,t) compared to the 

control (f,p). The outer AF and NP formed normally in mdg specimens and expressed 

collagen I and N-cadherin, respectively, except in 1 severe case in which both structures 

were absent between cervical C3 and C6 (c,m). (a–o) Collagen I (a–e), collagen II (f–j), and 

N-cadherin (k–o) in the cervical region (C5–C6) of TS27 control (a,f,k) and mdg spines b–

e, g–j, l–o). Due to variability in the mdg group, all 4 mdg samples are shown and compared 

with 1 representative control. (p–t) Zoomed in view of collagen II expression in ventral 

outer AF illustrating loss of lamellar structure in mdg specimens (regions shown from white 

boxes in f–j). Ca: caudal; Cr: cranial; D: dorsal; V: ventral. Scale bars = 200 μm.
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Fig. 8. Collagen II orientation in the ventral side of the inner AF was disrupted in mdg samples, 
while its organisation was not affected on the dorsal side.
On the ventral side of mdg samples, collagen II was orientated in a more oblique direction at 

TS24 compared to the controls, where it was mostly orientated in the vertical direction (d,i). 
At TS27, while collagen II in control samples displayed a circumferential pattern with 

opposite orientations in the cranial and caudal regions, collagen II in mdg samples had the 

same oblique orientation in both regions, indicating an absence of circumferential 

organisation (f,h,j). On the dorsal side, collagen II was mainly orientated in the cranio-

caudal direction as in controls at both stages (e,g,j). (a–h) Circular histograms showing the 

distribution of collagen II orientation (relative to the dorsoventral axis) of 3 control and 3 

mdg samples in 4 regions of the AF C5–C6 at TS24 and TS27. (i–j) Schematic of the AF 

showing the mean orientation of collagen II in the 4 regions examined of control (solid lines) 

and mdg (dashed lines) groups at TS24 and TS27 (n = 3 per group). *: no predominant 

orientation. Ca: caudal; Cr: cranial; D: dorsal; V: ventral.
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Fig. 9. Elastic fraction of the AF at TS27 lower in mdg samples than in controls, while no effects 
on the vertebral bodies at TS24 and TS27, or on the AF at TS24, were observed
(a–c). Instantaneous modulus of the cervical vertebrae C5 and C6 and AF C5–C6 of control 

(blue) and mdg (red) embryos at TS24. (d–f) Elastic fraction of the cervical vertebrae C5 

and C6 and AF C5–C6 of control (blue) and mdg (red) embryos at TS24. (g–i) Instantaneous 

modulus of the cervical vertebrae C5 and C6 and AF C5–C6 of control (blue) and mdg (red) 

embryos at TS27. (j–l) Elastic fraction of the cervical vertebrae C5 and C6 and AF C5–C6 

of control (blue) and mdg (red) embryos at TS27. Dots represent individual data points (at 

least 6 indents per structure and per specimen) and colours represent specimens (n = 3 per 

group and per stage) * p < 0.05.
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