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Background: Kirsten rat sarcoma virus (KRAS) gene mutations are a type of driver mutation discovered 
in the 1980s, but for a long time no molecular targeted drugs were available for them. Recently, sotorasib 
was developed as a molecular targeted drug for KRAS mutations. It is therefore necessary to identify the 
characteristics of patients with KRAS mutations. 
Methods: This was the single-institution retrospective study. Surgically resected tumors from lung 
adenocarcinoma patients were collected at a single institution from June 2016 to September 2019. Peptide 
nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR) clamp analysis of KRAS G12X 
mutations was compared with analysis by therascreen KRAS RGQ kit. The association between KRAS 
mutation status and patient characteristics and prognosis was assessed.
Results: Among 499 lung adenocarcinomas, KRAS mutations were evaluated in 197 cases, excluding 
stage IV lung cancer and tumors with epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase 
(ALK) mutations. KRAS G12X mutations were detected in 59 cases (29.9%). The highest frequency by gene 
mutation subtype was G12V in 23 cases (39.0%), followed by G12C in 16 cases (27.1%), G12D in 12 cases 
(20.3%), G12S in 4 cases (6.8%) and G12A in 2 cases. For the G12C mutation, the PNA-LNA PCR clamp 
and therascreen methods were consistent, but for the G12D and G12S mutations, the PNA-LNA PCR clamp 
method showed higher detection rates. In operable tumors, G12C mutations were more frequent in males, 
smokers, and patients with high expression of programmed death-ligand 1 (PD-L1), and had no correlation 
with prognosis.
Conclusions: By the PNA-LNA PCR clamp method, G12C mutation of surgical specimens was detected 
successfully. The PNA-LNA PCR clamp method is expected to be applied to the detection of druggable 
G12C mutations.
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Introduction

The discovery of driver genes and the development of 
molecular targeted drugs against them have gradually 
improved the course of poor prognosis lung cancer  
(1-7). Kirsten rat sarcoma virus (KRAS) mutations were 
first reported in 1985 as driver mutations on the human 
chromosome (8,9). Various drugs targeting KRAS mutations 
have been developed over the past few decades but have 
failed to achieve sufficient efficacy (10).

Sotorasib has recently been launched as a molecular 
targeted therapy for  KRAS G12C  mutations. This 
development of an effective molecular targeted therapy 
for KRAS mutations has enhanced the importance of 
the frequency, distribution characteristics and detection 
methods of KRAS mutations.

RAS is a guanosine triphosphate (GTP) binding protein 
including v-Ha-ras Harvey rat sarcoma viral oncogene 
homolog (HRAS), KRAS, and neuroblastoma RAS viral 
oncogene homolog (NRAS). In humans, KRAS mutations 
account for 85% of RAS mutations (11) and are most 

common in pancreatic cancer, colorectal cancer, and lung 
cancer, in that order (12). The frequency of KRAS subtypes 
varies by organ cancer, with G12D being more common in 
pancreatic cancer (13) and G12C being more common in 
lung cancer (14).

The mechanism of carcinogenesis by KRAS mutations is 
as follows. KRAS binding to guanosine diphosphate (GDP) 
results in an inactivated state, while binding to GTP results 
in an activated state. By upstream signals such epidermal 
growth factor receptor (EGFR), GDP is exchanged for 
GTP through guanine nucleotide exchange factors (GEF). 
Mutations in the KRAS gene cause constant activation by 
sustained GTP binding to mutant KRAS and lead to signal 
transduction to the intracellular phosphoinositide 3-kinases 
(PI3K), mitogen-activated protein kinase (MAPK), and Ral 
guanine nucleotide exchange factors (RAL-GEFs) pathways, 
leading to tumor formation. This sustainability of GTP 
binding to mutated KRAS varies among KRAS mutation 
subtypes (15,16).

KRAS  mutations are frequently present in lung 
adenocarcinoma. The presence of KRAS mutations in 
adenocarcinoma is the most common driver mutation for 
Caucasians (about 20–30%) (17-19), whereas the rate is 
about 10–15% in East Asians (20-22). Recently, a Japanese 
report showed 14% of Japanese patients to have KRAS 
mutations. Analysis of subtypes of KRAS mutations in 
the Japanese data showed that G12C, G12D, G12V, and 
G12A were the most common, in that order. KRAS G12C 
mutations are found in 4.0% of all lung adenocarcinoma 
patients (23). There have been few recent publications on 
the frequency and distribution of KRAS, but its background 
factors are becoming more important with the launch of 
molecular targeted drugs for KRAS G12C.

In phase I trials of sotorasib in non-small cell lung 
cancer (NSCLC) cases and phase II trials in previously 
treated NSCLC patients, objective response rate (ORR) 
was 32.2% and 37.1%, respectively, disease control rate 
(DCR) was 88.1% and 80.6%, and median progression-free 
survival (PFS) was 6.3 and 6.8 months (24,25). With these 
results, sotorasib has been approved by the Food and Drug 
Administration (FDA) and the Japanese Pharmaceuticals 
and Medical Devices Agency (PMDA) for patients with 
KRAS G12C. 

Highlight box

Key findings 
• Kirsten rat sarcoma virus (KRAS) mutations were detectable with 

high sensitivity by the peptide nucleic acid-locked nucleic acid 
polymerase chain reaction (PNA-LNA PCR) clamp method.  

What is known and what is new?  
• KRAS mutations are frequently present in lung adenocarcinoma. 

The presence of KRAS mutations in adenocarcinoma is the most 
common driver mutation for Caucasians (about 20–30%), whereas 
the rate is about 10–15% in East Asians.

• The frequency of KRAS mutations and their subtypes in surgically 
resected tumors in Japan was determined.  

• The prognosis of patients with surgically resected tumors with 
KRAS mutations was comparable to that of patients with epidermal 
growth factor receptor (EGFR) and without KRAS mutations.

• KRAS mutations were detectable with high sensitivity by the PNA-
LNA PCR clamp method.

What is the implication, and what should change now? 
• The PNA-LNA PCR clamp method was more sensitive and may 

apply to multiple situations in detecting KRAS mutations in the 
future.
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The QIAGEN therascreen KRAS RGQ PCR kit (for 
tissue) and Guardant360 CDX (for plasma) are approved 
as companion diagnostics for sotorasib (26). However, 
Guardant360 CDX is not covered by health insurance in 
many countries, including Japan, especially due to its cost 
and long turnaround time. On the other hand, although the 
therascreen PCR kit has the potential to overcome the two 
drawbacks of the Guardant360 CDX, a more sensitive test 
method is needed to detect KRAS gene mutations in plasma 
in the future. In this regard, the peptide nucleic acid-
locked nucleic acid polymerase chain reaction (PNA-LNA 
PCR) clamp has been used to measure EGFR mutations 
in plasma as well as tumor tissue with high sensitivity (27). 
A comparison between the QIAGEN therascreen KRAS 
RGQ PCR kit and the PNA-LNA clamp method for KRAS, 
which is considered more sensitive, is needed.

In the present study, KRAS mutations in resected tumor 
tissue were evaluated by both the PNA-LNA PCR clamp 
method and the therascreen kit. We expected that the PNA-
LNA PCR clamp method was superior to the therascreen 
in detection of KRAS mutations. The frequency of KRAS 
mutation subtypes and characteristics of patients with 
KRAS mutations were analyzed. We present this article in 
accordance with the STROBE reporting checklist (available 
at https://tlcr.amegroups.com/article/view/10.21037/tlcr-
23-15/rc).

Methods

Study design

This was a single-institution retrospective study. Surgically 
resected tumors from lung adenocarcinoma patients 
were collected. The PNA-LNA PCR clamp analysis of 
KRAS G12X mutations was compared with analysis by 
the therascreen KRAS RGQ kit. The association between 
KRAS mutation status and patient characteristics and 
prognosis was evaluated.

Eligible patients

Patients who underwent surgical procedures between 
June 1, 2016 and September 30, 2019 at the Department 
of Respiratory Surgery, Iwate Medical University, were 
eligible for KRAS gene mutation testing if they satisfied the 
following conditions. (I) Stage I–III disease according to 
Tumor-Node-Metastasis (TNM) classification 8th edition 
and histopathological diagnosis of lung adenocarcinoma. (II) 

It was possible to prepare 5 µm × 5 unstained thin section 
specimens from paraffin block specimens. Patients with 
stage IV disease were excluded due to its negative impact 
on disease-free survival (DFS) and overall survival (OS), 
and patients with squamous cell lung cancer were excluded 
due to the extremely small number of KRAS mutations 
(28,29). KRAS mutations are typically present as a single-
driver mutation (30-33). Cases in which driver mutations 
such as EGFR mutations and anaplastic lymphoma kinase 
(ALK) mutations were confirmed to be mutually exclusive 
with KRAS mutations were excluded. However, patients 
with EGFR mutations who underwent surgery at the same 
time were used as comparators for KRAS patients for 
characteristics, DFS, and OS.

Testing methods

Five unstained thin sections of 5 µm × 5 µm were prepared 
from paraffin block specimens of surgical specimens of 
the subject patients, and DNA was extracted from sections 
with QIAamp DNA formalin fixed paraffin embedded 
(FFPE) Tissue (QIAGEN, Hilden, Germany). The PNA-
LNA PCR clamp method was used to measure the KRAS 
exon G12X point mutation. Although this PCR system 
is as well established as the method used for EGFR gene  
mutations (34). This PCR system achieved a detection 
rate of less than 0.1% by using smaller PCR products and 
by increasing the number of cycles from 45 to 50. The 
therascreen® KRAS mutation detection kit was also used to 
evaluate the concordance with the companion diagnostic 
agent. DNA extraction and gene mutation testing were 
performed by LSI Medience Corporation (Tokyo, Japan). 
This method is also able to detect only the G12X point 
mutation. All discordant samples required confirmation by 
Sanger sequencing.

Collection of clinical data

Clinical information on patients who underwent KRAS gene 
testing, including age, gender, underlying disease, smoking 
history, programmed death-ligand 1 (PD-L1) expression, 
clinical stage, postoperative chemotherapy, relapse date, and 
death date, was collected from electronic medical records. 
PD-L1 expression was assessed in formalin-fixed, paraffin-
embedded specimens at the department of pathology in 
Iwate Medical University School of Medicine, using the 
commercially available PD-L1 IHC 22C3 pharmDx assay 
(Dako North America). The last day of the data collection 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-15/rc
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period was September 30, 2022. As a control group, 
information was also collected on patients with EGFR 
mutations who had undergone surgery and were in stages 
I-III during the period of study. In the investigation of 
prognosis among KRAS, EGFR, and KRAS wild groups, 
data on the patients’ sex, age, smoking status, pathological 
stage, complications, and adjuvant chemotherapies to check 
imbalance in them.

Endpoints

Endpoints included the frequency of KRAS mutation-
positive patients, background factors of KRAS mutation-
positive patients, impact of KRAS mutation positivity on 
DFS and OS, and comparison of KRAS mutation detection 
between the PNA-LNA PCR clamp method and the 
therascreen method.

Statistical analysis

All statistical analyses were performed using EZR, a 
statistical software program that extends the capabilities 
of R and R Commander. For DFS and OS, Kaplan-Meier 
curves were created and analyzed using the log-rank test 
and Cox proportional hazards model, with a two-sided 5% 
significance level. Bonferroni correction was used when 
statistical analysis required multigroup comparisons.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the institutional ethics committee of Iwate 
Medical University (No. HG2021-002). The study is a 
retrospective observational study, with no new invasive 
procedures, and consent was obtained in an opt-out fashion.

Results

From June 1, 2016 to September 30, 2020, 630 lung cancer 
patients were treated at our institution (Figure 1). There 
were 499 patients with lung adenocarcinoma, including 219 
patients with EGFR mutation, 12 with ALK fusion gene, 
33 with stage IV disease, and 38 whose specimens could 
not be secured, all of whom were excluded from KRAS 
measurement. Excluding these patients, 197 patients were 
tested for KRAS mutations.

Among the 197 stage I–III adenocarcinomas, excluding 

those with EGFR mutations and ALK fusion, KRAS G12X 
mutations were detected in 59 cases (29.9%). Among 466 
cases including those with EGFR and ALK mutations, 
the frequency of KRAS mutations was 12.7%. A rare 
oncogenic mutation, KRAS A11V, was detected only by the 
whole adenocarcinoma PNA-LNA PCR clamp method. 
The KRAS G12C mutation, an indication for treatment 
with molecular-targeted drugs, was detected in 16 (8.1%) 
of the adenocarcinomas tested, and in 3.4% of the 
adenocarcinomas including other driver gene mutations. 
The highest frequency by gene mutation subtype was 23 
(39.0%) cases of G12V, followed by 16 (27.1%) cases of 
G12C, 12 (20.3%) cases of G12D, 4 (6.8%) cases of G12S, 
and 2 cases of G12A (Figure 2).

Both PNA-LNA PCR clamp and therascreen were 
performed,  and the concordance rate was 95.9% 
(189/197) (Table 1). All discordant cases were confirmed 
by Sanger sequencing (Table 2). For the G12C, G12V, and 
G12A mutations, both the PNA-LNA PCR clamp and 
therascreen methods were consistent, but for the G12D 
and G12S mutations, the PNA-LNA PCR clamp method 
showed higher detection rates. There was one specimen 
with discrepant results between G12V by therascreen kit 
and G12F by PNA-LNA PCR clamp method, and the 
sequencing result was G12F. The sensitivity and specificity 
of the PNA-LNA PCR clamp method were 1.00 [95% 
confidence interval (CI): 1.00–1.00] and 0.95 (95% CI: 
0.91–0.98), respectively. The negative predictive value was 
1.00 (95% CI: 1.00–1.00).

We evaluated the background factors among the KRAS 
mutation-positive group and KRAS mutation-negative 
group and the EGFR mutation group without KRAS gene 
testing (Table 3). KRAS G12C-positive patients were more 
often male, smokers, and had higher expression rates of PD-
L1. In terms of smoking status, there was a trend toward 
more KRAS G12C mutations among heavy smokers. By 
stage, KRAS mutations were equally frequent in both early 
and advanced stages of disease. There was also a tendency 
for KRAS mutations to be more prevalent in patients with 
high PD-L1 expression, which may be associated with 
smoking status. In terms of smoking status, KRAS G12C 
mutations were frequently found in heavy smokers. By 
staging, KRAS mutations were equally frequent in both 
early and advanced stages of disease. A tendency for KRAS 
mutations to be more prevalent in patients with high PD-
L1 expression might be associated with smoking status.

In this study, there were no statistically significant 
differences in DFS or OS between patients with and 
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Lung cancer (n=630)

Adenocarcinoma (n=499)

Adenocarinoma stage I–III (n=466)

Stage IV (n=33)

ALK fusion gene (n=12)

Unable to secure specimens (n=38)

Examination eligible patients (n=197)

KRAS mutation (n=59) KRAS wild-type (n=138) EGFR mutation (n=219)

Squamous cell carcinoma (n=109)

Small cell carcinoma (n=9)

Large cell carcinoma (n=7)

Adenosquamous carcinoma (n=3)

Large cell and small cell carcinoma (n=2)

Large cell neuroendocrine carcinoma (n=1)

Figure 1 Consort diagram. ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma virus; EGFR, epidermal growth factor receptor.

G12A
3.4%

G12S
6.8%

G12D
20.3%

G12C
27.1%

G12V
39.0%

KRAS mutation 
29.9%

Other than 
EGFR, KRAS, 
ALK 29.6%

Unknown 
8.2%

KRAS 
12.7%

ALK 2.6%

EGFR 
47.0%

KRAS wild-type
70.1%

G12F
1.7%

A11V
1.7%

A B C

Figure 2 Distribution of mutations. (A) The pie chart shows the distribution of each gene mutation in 466 patients with operable stage 
I-III adenocarcinoma. (B) KRAS mutations among those tested for KRAS mutations (n=197). (C) Distribution of KRAS mutation subtypes 
in KRAS mutations is shown (n=59). ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma virus; EGFR, epidermal growth factor 
receptor.
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without genetic mutations (Figure 3, Table 4, Table 5). 
However, when divided by each stage, patients with 
stage II EGFR mutations tended to have shorter DFS  
(Figures S1-S3), possibly due to the small number of cases. 
There were no significant differences in DFS and OS 
between patients with KRAS G12 and other subtypes of 
KRAS mutations (Figure S4).

DFS showed significant differences in univariate 
analysis for stage, PD-L1 (1–49 vs. <1, ≥50 vs. <1), 
smoking history (current vs. never, current vs. previous), 

adjuvant chemotherapy, and history of chronic obstructive 
pulmonary disease (COPD), but only stage II vs. I [hazard 
ratios (HR) =2.07, 95% CI: 1.01–4.24, P value =0.047], III 
vs. I (HR =4.47, 95% CI: 2.30–8.69, P value <0.001), III 
vs. II (HR =2.16, 95% CI: 1.07–4.37, P value =0.032) and 
PD-L1 ≥50 vs. <1 (HR =2.06, 95% CI: 1.06–4.02, P value 
=0.033) in multivariate analysis (Table 4).

For OS, univariate analysis showed significant differences 
in stage III vs. I, III vs. II, PD-L1 ≥50 vs. <1, and diabetes 
mellitus, while multivariate analysis showed significant 
differences in stage III vs. I (HR =7.31, 95% CI: 3.18–16.8, 
P value <0.001), III vs. II (HR =3.73, 95% CI: 1.18–11.7, 
P value =0.025), and diabetes mellitus (HR =2.36, 95% CI: 
1.08–5.16, P value =0.031) (Table 5).

Discussion

In this study, KRAS mutations in resected tumor specimens 
(n=197) were evaluated by both the PNA-LNA PCR clamp 
method and the therascreen PCR kit. Discrepant cases 
were confirmed by sequencing. The overall frequency of 
KRAS in adenocarcinoma without stage IV was 12.7%, with 
KRAS G12C at 3.4%. G12V was the most common subtype, 
followed by G12C and G12D.

In the two PCRs used in this study, G12C was matched 
in all cases, but other subtypes were detected more 
frequently by the PNA-LNA PCR clamp method compared 
to the therascreen PCR kit. This result may be related to 
the fact that the minimum detection sensitivity of the PNA-

Table 1 Results of KRAS gene mutation testing for PNA-LNA PCR clamp method and therascreen 

Therascreen
PNA-LNA PCR clamp

Wild-type A11V G12A G12C G12D G12F G12S G12V

Wild-type 138 1† 5‡ 1‡

A11V

G12A 2

G12C 16

G12D 7

G12F

G12S 3

G12V 1† 23
†, genetic mutation testing not covered by therascreen; ‡, positive signal confirmed by therascreen, but cutoff not met and test is 
negative. Concordance rate: 95.9% (189/197). KRAS, Kirsten rat sarcoma virus; PNA-LNA PCR, peptide nucleic acid-locked nucleic acid 
polymerase chain reaction.

Table 2 Results of the Sanger method for cases in which test results 
did not correspond with the PNA-LNA PCR clamp method and 
therascreen 

PNA-LNA PCR 
clamp

Therascreen KRAS 
mutation detection kit

Sanger sequencing

KRAS G12D KRAS wild-type KRAS G12D

KRAS G12D KRAS wild-type KRAS G12D

KRAS G12D KRAS wild-type KRAS G12D

KRAS A11V KRAS wild-type KRAS A11V†

KRAS G12S KRAS wild-type KRAS G12S

KRAS G12D KRAS wild-type KRAS G12D

KRAS G12D KRAS wild-type KRAS G12D

KRAS G12F KRAS G12V  KRAS G12F†

†, gene mutation not analyzed by therascreen. PNA-LNA PCR, 
peptide nucleic acid-locked nucleic acid polymerase chain 
reaction; KRAS, Kirsten rat sarcoma virus.

https://cdn.amegroups.cn/static/public/TLCR-23-15-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-15-Supplementary.pdf
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Table 3 Background factors among the KRAS wild-type group, mutation group and the EGFR mutation group

Characteristics

KRAS 
wild-type

KRAS mutation EGFR mutation 

All  
(n=138)

All  
(n=59)

G12C 
(n=16)

G12V 
(n=23)

G12D 
(n=12)

G12A 
(n=2)

Others 
(n=6)

All 
(n=219)

L858R 
(n=120)

del19 
(n=64)

Others 
(n=35)

Median age, years 
[range] 

70  
[36–84]

72 
[44–85]

71  
[44–85]

71  
[58–84]

78  
[49–85]

69  
[65–73]

71.5 
[69–84]

70 
[43–86]

70  
[51–86]

71  
[43–85]

72  
[48–84]

Age group, n (%)

≤60 years 27 (19.6) 5 (8.5) 3 (18.8) 1 (4.3) 1 (8.3) 0 (0) 0 (0) 29 (13.2) 12 (10.0) 14 (21.9) 3 (8.6)

61–74 years 68 (49.3) 28 (47.5) 10 (62.5) 17 (73.9) 3 (25.0) 2 (100.0) 1 (16.7) 122 (55.7) 69 (57.5) 33 (51.6) 20 (57.1)

≥75 years 43 (31.2) 20 (33.9) 3 (18.8) 5 (21.7) 8 (66.7) 0 (0) 5 (83.3) 68 (31.1) 39 (32.5) 17 (26.6) 12 (34.3)

Sex, n (%)

Male 79 (57.2) 46 (78.0) 14 (87.5) 17 (73.9) 7 (58.3) 2 (100.0) 6 (100.0) 83 (37.9) 41 (34.2) 28 (43.8) 14 (40.0)

Female 59 (42.8) 13 (22.0) 2 (12.5) 6 (26.1) 5 (41.7) 0 (0) 0 (0) 136 (62.1) 79 (65.8) 36 (56.3) 21 (60.0)

Smoking history, n (%)

Never 57 (41.3) 12 (20.3) 1 (6.3) 5 (21.7) 5 (41.7) 0 (0) 1 (16.7) 145 (66.2) 86 (71.7) 35 (54.7) 24 (68.6)

Previous 50 (36.2) 28 (47.5) 8 (50.0) 9 (39.1) 6 (50.0) 2 (100.0) 3 (50.0) 55 (25.1) 28 (23.3) 17 (26.6) 10 (28.6)

Current 31 (22.5) 19 (32.2) 7 (43.8) 9 (39.1) 1 (8.3) 0 (0) 2 (33.3) 19 (8.7) 6 (5.0) 12 (18.8) 1 (2.9)

Brinkman index, n (%)

<600 81 (58.7) 26 (44.1) 3 (18.8) 13 (56.5) 8 (66.7) 1 (50.0) 1 (16.7) 192 (87.7) 109 (90.8) 53 (82.8) 30 (85.7)

600–1,200 46 (33.3 21 (35.6) 8 (50.0) 7 (30.4) 1 (8.3) 1 (50.0) 4 (66.7) 23 (10.5) 9 (7.5) 9 (14.1) 5 (14.3)

>1,200 11 (8.0) 12 (20.3) 5 (31.3) 3 (13.0) 3 (35.0) 0 (0) 1 (16.7) 4 (1.8) 2 (1.7) 2 (3.1) 0 (0)

Stage, n (%)

I 102 (73.9) 38 (64.4) 11 (68.8) 14 (60.9) 8 (66.7) 1 (50.0) 4 (66.7) 182 (83.1) 105 (87.5) 48 (68.6) 29 (82.9)

II 20 (14.5) 15 (25.4) 3 (18.8) 8 (34.8) 3 (25.0) 0 (0) 1 (16.7) 13 (5.9) 7 (5.8) 5 (7.1) 1 (2.9)

III 16 (11.6) 6 (10.2) 2 (12.5) 1 (4.3) 1 (8.3) 1 (50.0) 1 (16.7) 24 (11.0) 8 (6.7) 11 (15.7) 5 (14.3)

PD-L1 status, n (%)

Unknown 19 (13.8) 4 (6.8) 0 (0) 1 (4.3) 1 (8.3) 0 (0) 2 (33.3) 22 (10.0) 11 (9.2) 7 (10.9) 4 (11.4)

<1% 70 (50.7) 33 (55.9) 6 (37.5) 14 (60.9) 9 (75.0) 2 (100.0) 2 (33.3) 132 (60.3) 78 (65.0) 32 (50.0) 22 (62.9)

1–49% 39 (28.3) 8 (13.6) 3 (18.8) 3 (13.0) 1 (8.3) 0 (0) 1 (16.7) 50 (22.8) 26 (21.7) 18 (28.1) 6 (17.1)

≥50% 10 (7.2) 14 (23.7) 7 (43.8) 5 (21.7) 1 (8.3) 0 (0) 1 (16.7) 15 (6.8) 5 (4.2) 7 (10.9) 3 (8.6)

Adjuvant 
chemotherapy, n (%)

51 (37.0) 22 (37.2) 5 (31.3) 11 (47.8) 5 (41.7) 0 (0) 1 (16.7) 59 (26.9) 30 (25.0) 19 (29.7) 10 (28.6)

Medical history, n (%)

COPD 23 (16.7) 18 (30.5) 6 (37.5) 6 (26.1) 1 (8.3) 1 (50.0) 4 (66.7) 19 (8.7) 9 (7.5) 9 (14.1) 1 (2.9)

Hypertension 68 (49.3) 36 (61.0) 9 (56.2) 13 (56.5) 9 (75.0) 0 (0) 5 (83.3) 107 (48.9) 53 (44.2) 33 (51.6) 21 (60.0)

Diabetes mellitus 33 (23.9) 15 (25.4) 7 (43.8) 8 (34.8) 3 (25.0) 0 (0) 0 (0) 35 (16.0) 18 (15.0) 9 (14.1) 8 (22.9)

Dyslipidemia 31 (22.5) 13 (22.0) 4 (25.0) 4 (17.4) 3 (25.0) 0 (0) 2 (33.3) 48 (21.9) 26 (21.7) 12 (18.8) 10 (28.6)

Table 3 (continued)
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Table 3 (continued)

Characteristics

KRAS 
wild-type

KRAS mutation EGFR mutation 

All  
(n=138)

All  
(n=59)

G12C 
(n=16)

G12V 
(n=23)

G12D 
(n=12)

G12A 
(n=2)

Others 
(n=6)

All 
(n=219)

L858R 
(n=120)

del19 
(n=64)

Others 
(n=35)

Heart failure 0 (0) 4 (6.8) 1 (6.3) 0 (0) 2 (16.7) 1 (50.0) 0 (0) 3 (1.4) 0 (0) 2 (3.1) 1 (2.9)

Ischemic heart 
disease

0 (0) 4 (6.8) 2 (12.5) 0 (0) 1 (8.3) 0 (0) 1 (16.7) 6 (2.7) 6 (5.0) 0 (0) 0 (0)

Arrhythmia 11 (8.0) 10 (16.9) 0 (0) 5 (21.7) 2 (16.7) 1 (50.0) 2 (33.3) 22 (10.0) 10 (8.3) 7 (10.9) 5 (14.3)

Cerebrovascular 
disease

11 (8.0) 7 (11.9) 1 (6.3) 2 (8.7) 2 (16.7) 1 (50.0) 1 (16.7) 19 (8.7) 11 (9.2) 6 (9.4) 2 (5.7)

Autoimmune 
disorder

4 (2.9) 1 (1.7) 0 (0) 0 (0) 1 (8.3) 0 (0) 0 (0) 12 (5.5) 9 (7.5) 0 (0) 3 (8.6)

Malignant tumor 31 (22.5) 15 (25.4) 6 (37.5) 8 (34.8) 1 (8.3) 0 (0) 0 (0) 56 (25.6) 34 (28.3) 14 (21.9) 8 (22.9)

KRAS, Kirsten rat sarcoma virus; EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand 1; COPD, chronic obstructive 
pulmonary disease. 
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Figure 3 Kaplan-Meier curves for DFS (A) and OS (B) depending on mutation status. DFS, disease-free survival; KRAS, Kirsten rat 
sarcoma virus; EGFR, epidermal growth factor receptor; CI, confidence interval; NA, not available; OS, overall survival.

LNA PCR clamp method is about 0.1%. In comparison, 
the detection sensitivity of the therascreen PCR kit is only 
about 1%.

KRAS mutations are found in approximately 30% of 
lung adenocarcinomas and 4% of lung squamous cell 
carcinomas according to Western databases (12). In 
Japanese data, KRAS mutations are found in 9.7% of lung 
adenocarcinomas (22). This difference was attributed to the 
mutually exclusive nature of KRAS mutations with other 

driver mutations (30-33). KRAS mutations are less frequent 
in East Asia, where EGFR mutations are more common, 
and KRAS mutations are more common in Europe and the 
United States, where EGFR mutations are less frequent. In 
the present study, KRAS mutations were found in 12.7% of 
tumors, which is consistent with the frequency in Japanese 
patients.

Regarding KRAS  mutation subtypes,  a German 
prospective cohort study of advanced non-small cell lung 
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Table 4 Univariate and multivariate analysis on disease-free survival 

Characteristics
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age, years

61–74 vs. ≤60 1.56 0.69–3.50 0.282

≥75 vs. ≤60 1.60 0.68–3.75 0.279

≥75 vs. 61–74 1.03 0.61–1.74 0.921

Sex

Male vs. female 1.62 0.99–2.65 0.054

Stage

II vs. I 3.13 1.65–5.95 <0.001 2.07 1.01–4.24 0.047

III vs. I 7.16 4.10–12.5 <0.001 4.47 2.30–8.69 <0.001

III vs. II 2.29 1.14–4.60 0.021 2.16 1.07–4.37 0.032

PD-L1 status

1–49% vs. <1% 2.12 1.23–3.66 0.007 1.55 0.88–2.72 0.131

≥50% vs. <1% 3.48 1.84–6.58 <0.001 2.06 1.06–4.02 0.033

≥50% vs. 1–49% 1.64 0.84–3.19 0.144

Smoking history

Previous vs. never 0.97 0.53–1.75 0.910

Current vs. never 2.23 1.25–3.96 0.006 1.40 0.77–2.55 0.227

Current vs. previous 2.31 1.20–4.43 0.012 1.82 0.94–3.54 0.076

Brinkman index

600–1,200 vs. <600 1.47 0.85–2.52 0.165

>1,200 vs. <600 1.23 0.44–3.42 0.695

>1,200 vs. 600–1,200 0.84 0.28–2.46 0.746

Mutation

KRAS wild-type vs. EGFR mutation 1.02 0.60–1.74 0.936

KRAS wild-type vs. KRAS mutation 1.08 0.50–2.34 0.849

KRAS mutation vs. EGFR mutation 0.95 0.46–1.97 0.887

Medical history

Adjuvant chemotherapy 3.34 2.05–5.44 <0.001 1.68 0.93–3.04 0.084

COPD 1.98 1.11–3.52 0.020 1.20 0.64–2.25 0.574

Hypertension 0.80 0.49–1.30 0.376

Diabetes mellitus 0.89 0.48–1.67 0.719

Dyslipidemia 0.83 0.45–1.52 0.543

Heart failure 0.78 0.11–5.62 0.805

Ischemic heart disease 0.35 0.05–2.52 0.296

Arrhythmia 1.08 0.49–2.36 0.855

Cerebrovascular disease 0.98 0.40–2.45 0.974

Autoimmune disorder 0.32 0.04–2.31 0.260

Malignant tumor 0.80 0.45–1.45 0.468

PD-L1, programmed death ligand 1; KRAS, Kirsten rat sarcoma virus; EGFR, epidermal growth factor receptor; COPD, chronic obstructive 
pulmonary disease; HR, hazard ratio; CI, confidence interval.
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Table 5 Univariate and multivariate analysis on overall survival

Characteristics
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age, years

61–74 vs. ≤60 1.48 0.43–5.17 0.535

≥75 vs. ≤60 1.90 0.53–6.81 0.325

≥75 vs. 61–74 1.28 0.58–2.82 0.543

Sex

Male vs. female 1.55 0.73–3.29 0.249

Stage

II vs. I 2.15 0.70–6.61 0.180

III vs. I 8.20 3.67–18.3 <0.001 7.31 3.18–16.8 <0.001

III vs. II 3.80 3.67–18.3 0.022 3.73 1.18–11.7 0.025

PD-L1 status

1–49% vs. <1% 1.79 0.76–4.19 0.180

≥50% vs. <1% 2.77 1.05–7.31 0.039 1.44 0.51–4.06 0.493

≥50% vs. 1–49% 1.55 0.55–4.36 0.406

Smoking history

Previous vs. never 1.54 0.65–3.63 0.323

Current vs. never 2.21 0.86–5.71 0.101

Current vs. previous 1.44 0.55–3.78 0.463

Brinkman index

600–1,200 vs. <600 1.34 0.59–3.07 0.485

>1,200 vs. <600 0.86 0.11–6.44 0.883

>1,200 vs. 600–1,200 0.64 0.08–5.14 0.675

Mutation

KRAS wild-type vs. EGFR mutation 1.46 0.62–3.43 0.389

KRAS wild-type vs. KRAS mutation 0.61 0.23–1.60 0.311

KRAS mutation vs. EGFR mutation 2.40 0.93–6.20 0.070

Medical history

Adjuvant chemotherapy 1.35 0.62–2.92 0.451

COPD 1.96 0.79–4.85 0.145

Hypertension 1.26 0.59–2.66 0.552

Diabetes mellitus 2.32 1.07–5.03 0.033 2.36 1.08–5.16 0.031

Dyslipidemia 1.63 0.74–3.61 0.227

Heart failure Inf

Ischemic heart disease Inf

Arrhythmia 0.34 0.05–2.49 0.287

Cerebrovascular disease 2.27 0.78–6.59 0.130

Autoimmune disorder Inf

Malignant tumor 0.65 0.25–1.70 0.378

PD-L1, programmed death ligand 1; KRAS, Kirsten rat sarcoma virus; EGFR, epidermal growth factor receptor; COPD, chronic obstructive 
pulmonary disease; HR, hazard ratio; Cl, confidence interval; Inf, infinity.   
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cancer reported that among patients with KRAS mutations, 
38.9% were positive for KRAS G12C mutation, 21.2% for 
G12V mutation, and 13.9% for G12D (35). In the present 
study, the frequency of KRAS mutations was consistent with 
that in previous Japanese reports (22,23). However, the 
frequency of subtypes was different. In previous reports, 
KRAS G12C was the most common, but in this study, G12V 
was the most common, followed by G12C.

In previous reports, KRAS G12C was the most common, 
but in this study, G12V was the most common. The reason 
for this was unclear, and might be related to the fact that 
this study was conducted in an area with a high rate of 
smoking. KRAS mutations, in contrast to EGFR mutations, 
were more frequent in smokers (36,37). Several studies 
have shown an association between smoking and KRAS 
mutations: the guanine to thymine transversions resulting in 
KRAS G12C and KRAS G12V are more commonly found in 
past or current smokers; the guanine to adenine transition 
resulting in KRAS G12D is more common in non-smokers 
(36,38,39). In this study, the G12C and G12V mutations 
were more prevalent in heavy smokers, while the G12D 
mutation was not.

In this study, DFS was affected by PD-L1 in multivariate 
analysis, but OS was not affected by PD-L1. In a previously 
reported meta-analysis of 15 studies and 3,790 patients on 
prognosis in early resected NSCLC, PD-L1 expression was 
associated with significantly shorter DFS (HR =1.56, 95% 
CI: 1.18–2.05, P value <0.01), and significantly worse OS 
(HR =1.68, 95% CI: 1.29–2.18, P value <0.01) (40). These 
results differed from those of the present study. Also, there 
were no statistically significant differences in DFS and 
OS by genetic variants in this study. However, previously 
reported meta-analyses have shown that surgically treated 
NSCLC patients with EGFR mutations tend to have 
prolonged DFS and OS. Others have shown that KRAS 
mutations predict worse DFS and OS in resected NSCLC 
patients (41). This difference could be attributed to the 
shorter observation period in this study, fewer patients who 
relapsed, or fewer patients who received chemotherapy after 
relapse.

The prognosis of patients with KRAS mutations has 
been the subject of various studies. There are several 
reports of KRAS mutations having poor prognosis (42,43). 
On the other hand, a number of reports have found 
that KRAS mutations are not a poor prognostic factor 
(35,44). Many of these studies are retrospective cohort 
studies or were conducted before the advent of immune 
checkpoint inhibitors (ICI). In this study, lung cancer 

patients with KRAS mutations had a high frequency of 
PD-L1 expression. Similarly, several studies have shown 
that patients with KRAS mutation-positive tumors have 
higher PD-L1 expression and tumor mutation burden 
compared to KRAS  wild-type patients (23,35,45). 
KRAS mutated tumors co-mutated with TP53 or cyclin 
dependent kinase inhibitor 2B (CDKN2a/B) mutations are 
more responsive to treatment with immune checkpoint  
inhibitors (46). Treatment strategies including ICI are 
promising candidates for KRAS mutated lung cancer. ICI 
and KRAS G12C inhibitors such as sotorasib may alter the 
prognosis of KRAS-positive patients in the future.

In this study, KRAS gene mutations were detected using 
the PNA-LNA PCR clamp method, a highly sensitive 
detection method, together with the companion diagnostic 
therascreen kit. The two tests were all consistent for the 
G12C mutation, which is an indication for molecular 
targeted therapy. For mutations other than G12C mutation, 
the PNA-LNA PCR clamp had a higher detection rate. 
The PNA-LNA PCR clamp is more sensitive than the 
therascreen kit and is currently being considered for 
application to plasma gene mutation analysis. We have 
utilized the high sensitivity of the PNA-LNA PCR clamp 
method to monitor plasma EGFR gene mutations as a 
biomarker search in several clinical trials (27,47). We are 
now investigating the use of this sensitive and inexpensive 
method for plasma analysis of KRAS as well.

A limitation of this study is that it is a single-center 
surgical specimen study and has a short observation period. 
Although novel molecular-targeted agents are indicated 
for stage IV NSCLC, the target population in this study 
had earlier stage cancer. In addition, postoperative and 
recurrence-free survival was used as one of the outcomes, 
rather than PFS. Further studies will be needed for 
advanced stage lung cancer.

Conclusions

This study examined KRAS frequency and its background 
factors in Japan using surgical specimens, and found a trend 
toward higher frequency in smokers and males; KRAS 
mutations did not affect DFS and OS.

Both the PNA-LNA PCR clamp and therascreen kit 
were consistent in detecting G12C mutations; the PNA-
LNA PCR clamp method was more sensitive and may be 
applicable to multiple situations in the detection of KRAS 
mutations in the future. Further studies in advanced lung 
cancer are warranted.
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