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Abstract

North African coastal Middle Stone Age (MSA) sites are key to study the development

and expansion of early H. sapiens. El Mnasra cave on the Atlantic coast of Morocco

(Témara region) is a crucial site associated with MSA archaeological materials consid-

ered advanced cognitive hallmarks of behavioural innovation, such as numerous Nassar-

iidae perforated shells, hematite pigments, bones industry and coastal resources

exploitation. We provide new trapped-charges dates (OSL and combined US-ESR ages).

Our Bayesian modelling strengthens the new lithostratigraphic interpretation of the cave

stratigraphic units (US) and we propose an updated chronostratigraphic model for the

Middle Stone Age archaeo-sequence of El Mnasra Cave. We confirm a human presence

between 124–104 ka, earlier than what the previous OSL and US-ESR data showed. Our

time range intervals allowed us to also extend the age of the MSA occupations consider-

ably to the MIS 4/3 (~62–30 ka), marked by the disappearance of the Nassariidae perfo-

rated shells. Outstandingly, our model pushed back the age of the largest record of

Nassariidae perforated shells and placed the age of their use by the Aterian groups at El

Mnasra from the MIS 5d-5b (~115–94 ka).

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0261282 February 11, 2022 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ben Arous E, Philippe A, Shao Q, Richter

D, Lenoble A, Mercier N, et al. (2022) An improved

chronology for the Middle Stone Age at El Mnasra

cave, Morocco. PLoS ONE 17(2): e0261282.

https://doi.org/10.1371/journal.pone.0261282

Editor: Andrea Zerboni, Universita degli Studi di

Milano, ITALY

Received: August 24, 2021

Accepted: November 27, 2021

Published: February 11, 2022

Copyright: © 2022 Ben Arous et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The U-series analysis in NANJING

NORMAL University was funding by the China

NSFC grant 41877430.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-2489-825X
https://orcid.org/0000-0003-3252-1444
https://doi.org/10.1371/journal.pone.0261282
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261282&domain=pdf&date_stamp=2022-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261282&domain=pdf&date_stamp=2022-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261282&domain=pdf&date_stamp=2022-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261282&domain=pdf&date_stamp=2022-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261282&domain=pdf&date_stamp=2022-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261282&domain=pdf&date_stamp=2022-02-11
https://doi.org/10.1371/journal.pone.0261282
http://creativecommons.org/licenses/by/4.0/


Introduction

Over the last twenty years, northern, southern and eastern African sites have yielded Middle

Stone Age (MSA) archaeological materials often hailed as advanced symbolic and cognitive

hallmarks of so-called behavioural innovations. In these regions, these artefacts (e.g. bifacial

foliated stone tools, ochre and pigments, perforated marine shell beads, bone artefacts,

engraved stones/ochre and ostrich eggshells) are between ~150 and ~50 thousand years (ka)

old and associated withHomo sapiensMSA occupations [1–7]. Some of the sites that delivered

these artefacts are coastal sites associated with evidence of marine resources exploitation, nota-

bly through the presence of marine shells [4, 8–10]. It has been suggested that such a diet may

have contributed to the emergence of cognitive and behavioural innovations in ancient popu-

lations because the fatty acids provided by this sort of seafood can boost brain development

[11]. Coastal areas may also have facilitated human dispersal because these regions have always

presented a milder climate and a certain richness in food resources [12, 13].

Until recently, the debate surrounding the role of exploitation of the coastal environment in

human brain evolution and demography has mainly focused on MSA South African sites [8, 9].

However, many North African coastal MSA sites present evidence of marine resources exploita-

tion (Fig 1): in Libya at Haua Fteah [14], in Morocco at Benzù rock shelter [15] and the Rabat-

Témara region (Contrebandiers [16, 17]; El Mnasra [18]; El Harhoura 1 [19]; El Harhoura 2 [18,

20]). Evidence of marine exploitation is associated with Aterian Moroccan sites. Considered as

an MSA techno-complex specific to North Africa, the Aterian (~ 150 ka to 40 ka, [21–27]) is

defined by the presence of tanged and foliated tools in the lithic assemblages (Fig 1) [4, 28–30].

The Rabat-Témara region (Fig 1) hosts rare examples of North African stratified coastal

sequences, with well-preserved MSA occupations yielding evidence of behavioural complexity

and marine shells used for food consumption or ornamental purposes [5]. Outstanding

research carried out at El Harhoura 2 [20] and El Mnasra cave shows a great diversity of

marine shells. Two specific marine resources, Patellidae and Mytillidae, were preferably con-

sumed and were directly collected on rocks [20]. At El Mnasra cave, the preserved MSA occu-

pations have delivered artefacts attesting the use of hematite pigments, production of bone

artefacts and Nassariidae perforated shells [4]. This site is crucial to study livelihood strategies

adopted by the populations of the North African Middle Stone Age coastal areas in relation to

the production of advanced symbolic and cognitive hallmarks. For these reasons, the chronol-

ogy of the MSA sequence at El Mnasra is of special significance.

El Mnasra cave has already benefited from radiometric dating (S1 Table), which placed the

MSA occupations embedded in the sediment from ~112 ka (MIS 5d) to ~70 ka (MIS 4). Dis-

crepancies have been observed repeatedly between existing combined US-ESR dates [31] and

OSL dates for the same US [24], but no argument has been put forward to explain it.

Recent fieldworks have also revealed the stratigraphic complexity of the site, and several

biological disturbances have been observed locally, many of them related to Honey badgers

(Mellivora capensis) or Neolithic human burials [5]. Following these new observations of the

deposits sequence and the bioturbated areas, a new dating campaign was engaged to support

the chronology of El Mnasra Middle Stone Age deposits.

In this paper, we present eight new dates for North African MSA occupations at El Mnasra

cave: (i) two optically stimulated luminescence (OSL) dating of sediment samples to date the

end of the MSA; and(ii) six U-series combined to the Electron Spin Resonance (combined

US-ESR) dating of animal teeth from the stratigraphical unit with the highest MSA human

occupations and evidence of behavioural innovations (e.g. Nassariidae perforated shells). The

new results are integrated in the Bayesian model to provide a chronostratigraphic model, that

includes new stratigraphic information and previously obtained ages.
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El Mnasra cave: Stratigraphy, lithic assemblage and existing chronology

El Mnasra cave (33˚55’ 40.9’’N, 6˚ 57’ 13.3’’ W) is located in the Rabat-Témara region (delim-

ited by Wadi Bouregreg in the northeast and Wadi Yquem in the southwest), to the south of

the city of Rabat (Fig 2). The cave is shaped on a calcarenite cliff on the Atlantic coast and

opens onto the Ouljian cliff formed during the high sea level of the last interglacial, ca. 130–

125 ka [24, 25, 32, 33]. The substratum is formed by local Plio-Pleistocene indurated dunes,

which deposition ended around MIS 5e/5c [32, 33].

Fig 1. Location of the sites mentioned in the text. A: MSA sites in Africa (the map was made using QGIS software v.3.20 and using data from Natural

Earth vector map data (https://www.naturalearthdata.com/downloads/)); B: MSA sites of Témara region, adapted from Ben Arous et al. (2020).

https://doi.org/10.1371/journal.pone.0261282.g001

Fig 2. El Mnasra cave. A: Excavation map in 2015 [34]; B: view of the cave, outside (2005) and inside (2015) the cave.

https://doi.org/10.1371/journal.pone.0261282.g002
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Today, El Mnasra cave is located 500 m from the shoreline. The top of the cave is 14 m

above the current sea level [5]. The cave is 14 m wide and 22 m long. In the cave’s roof, there is

an oculus with a size of 1.00 x 0.90 m, located above the West-East profile near the back of the

cave (Fig 2). The total estimated surface area of the deposits is about 230 m2.

The cave was discovered in 1956 by J. Roche [5]. The first excavations were initiated by the

INSAP (Institut National des Sciences de l’Archéologie et du Patrimoine de Rabat) between

1990 and 2000 under the direction of M.A. El Hajraoui and A. Debénath [35]. From 2005 to

2015, El Mnasra was excavated by the cooperative field project "Mission Archéologique El

Harhoura-Témara" of the MNHN (Muséum national d’Histoire naturelle) and the INSAP, co-

directed by M.A. El Hajraoui and R. Nespoulet.

Stratigraphy, geomorphological and chronostratigraphic context

The first stratigraphical description of 4.40 m was carried from the test-pit by M.A. El Hajraoui

[35] and adapted by A. Debénath in 2006 [5]. Based on lithological and archaeological criteria,

thirteen archaeological levels were identified as follows, from bottom to top: levels 13 to 11 are

archaeologically sterile, levels 10 to 3 are attributed to the MSA, level 2 is attributed to the Neo-

lithic, and level 1 is disturbed and reworked. Levels 10 and 9 yielded very little archaeological

material. The presence of the Later Stone Age (LSA), initially attributed to level 3, was uncon-

firmed by recent excavations [5].

A re-assessment appeared necessary with the extension of the excavation area, which revealed

new sedimentary facies with various geometries. The relationships between stratigraphic units

(US) were more complex than previously assumed with the simple reading of the section of the

test pit. Supplemented by the cross-sections, the new reading places all the deposits in a single

stratigraphic framework by considering the main section of ~10 meters in large and ~5 meters in

depth (S1 Fig). During the excavation campaign in 2010, the sedimentary sequence re-examina-

tion presented for the first time in this paper was undertaken and recorded by A. Lenoble in the

West-East profile during the excavation campaign in 2010. A preliminary version of this study

was outlined as an excavation report [36], but had hitherto never been completed and published.

The new lithostratigraphy identifies six ‘Members’ and thirteen stratigraphic units (US). The

distinction between ‘Members’ reflects significant changes in the geometry of the sediment, as

evidenced by discordances and slope changes, while the distinction between units is based on

significant changes in source or sedimentary facies. Based on the observation and precise

description of sedimentary facies, we propose a new sequence reading. In this paper, strati-

graphic units (or US) defined from the new lithostratigraphy reading are preferentially used,

whereas "Level" refers to old stratigraphy defined by A. Debénath and M.A. El Harjraoui and

will not be used (Table 1). The lithological succession of interest here (S1 Fig) is summarised in

Table 1. To clearly associate previous dated samples with newly defined US, previous chrono-

metric datings [24, 27, 31] are indicated in Table 1. With this new stratigraphic description car-

ried out in the field, the position of some already dated samples has been revised by A. Lenoble

(e.g. there are no dates associated with the US 8c and US 9a). For example, the sample EM10-5

dated by Jacobs et al. [24] was associated with level 4 (US 7), whereas the new stratigraphical

reading allowed to replace it accurately in level 3 (US 6). We thus use it, we will take it as a refer-

ence for this work and subsequent studies. A complete description of the main geological/sedi-

mentation events from the new lithostratigraphic lecture is provided in S1 Text in S1 File.

Cultural assemblages

The lithic typological data available come only from US 10a to US 7 [5]. To our knowledge,

there are no publications on the lithic assemblages of the US 6, 5, 4 and 3. Until 2015, US 10a

PLOS ONE An improved chronology for the Middle Stone Age at El Mnasra cave, Morocco

PLOS ONE | https://doi.org/10.1371/journal.pone.0261282 February 11, 2022 4 / 28

https://doi.org/10.1371/journal.pone.0261282


Table 1. Lithological description of El Mnasra.

Members US (Level) Description

1 US 1 (Level 1) (0.10 to 0.80 m)—Excavated deblais accumulated in the central and rear part of the cave, coarsely stratified with lenses of sediment from the various

underlying US; sharp lower boundary (erosive). A sheet of aluminium foil observed at the base of the US indicates its recent age, possibly the digging debris of

Abbé Roche’s excavation.

US 2 (Level 2) (0.25 m)—Shell midden (kjoenkkenmoedding facies) preserved in the entrance part of the cave, composed of dark grey to black sediment rich in land snail and

Mytilidae shells.

2 US 3 (Level 3) (ca 0.75 m)—Dark reddish-brown loamy sand, poorly sorted, massive, forming a bowl morphology deposit cutting into the underlying unit; irregular and

sharp lower limit extended downward by strong burrows of the soil megafauna (e.g., badgers) up to the US 8. This unit is interpreted as highly bioturbated

sediments reworking mainly US 4 and 5 and, to a lesser extent, the underlying US 6 to 8.

3 US 4 (Level 3) (0.2 to 1.00 m)–Reddish-brown clayey fine sand, massive, well-sorted, preserved in the rear part of the cave with a maximal thick below the oculus—[EM-

1702a sampled at the base of the US 4]

US 5 (Level 3) (ca. 0.45 m)–Reddish-brown to light reddish-brown clayey fine sand with intercalated few centimetres-thick beds of black organic clayey sand with irregulars’

boundaries punctuated by soil macrofauna synsedimentary activities; preserved lamination is less bioturbated zone indicating of a runoff deposit—[EM10-2

sampled in an organic bed located at the middle of the US 5; EM10-1 sampled in organic bed and located at the top of the US 5]

4 US 6 (Level 3) (ca. 0.20 m)—Gentle domed form and apex positioned in the central part of the cave; Brown to dark grey fine sand, massive, bioturbated, including lenses of

marine shells (patella) in the entrance area and lenses of anthropogenic sediments (ashes, charcoals) intersected by bioturbation channels in the rear part of

the cave—[EM-1701a, EM10-5 at 0.05–0.10 m above the base of the US 6]

US 7 (Level 4) (ca. 0.25 m)–Bedded sandy loam cemented on top with alternating light yellowish-brown and carbonated brown beds (interpreted as dominated by ashes and/

or hearth cleaning); the beds appearing as lenses over several meters horizontally; domed formed inclined westward; sharp lower limit—[EM10-6 at 0.10 m

above the base of the US 7; EM-274a; EM08-12; EM10-3 at the top of the US 7]

5 US 8 (0.75 m)–Several tens of centimetre thick beds of massive or faintly bedded brownish sand and loam with intercalated ashy or charcoal-rich lenses, dipping 6˚

toward the south (towards the entrance). Four main beds are individualised:

US 8a (Level 5) • Bed 8a (ca. 0.10 m)–massive greyish brown sandy loam including soft intraclasts at the top (trampling?), rich in snails toward the top, and faint bedding at

the base; substantial archaeological fraction (charcoals and grey ash lenses or charcoal lenses topped with white ash)—[EM08-10 at the US base; OSL-X2416;

EM-209a; EM08-11];

US 8b (Level 6) • Bed 8b (ca. 0.40 m)—Faintly bedded red-brown clayey sand; the bedding is related to chromatic variation (red-brown to dark brown bands). Locally, pure

sand beds; otherwise, scattered archaeological fraction (charcoals, shells, ash aggregates) gradually decreasing topward— [EM08-8 at 0.10m above the base of

the US; EM0604; EM-293a; EM0603; EM-223a, EM08-9];

US 8c (Level 7) • Bed 8c (ca. 0.15 m)—Massive greyish brown to dark brown clayey sand; intercalated charcoal or ash lenses; scattered archaeological elements;

US 8d (Level 7) • Bed 8d (ca. 0.15 m)—Massive brown clayey loams including charcoals and scattered soft intraclasts; a few interspersed ash lenses and reddish-coloured ash

and sediment aggregates; incipient bedding in relation with intercalated reddish bands—[OSL-X2415, EM08-7, EM0601, EM-816a, EM-877a].

US 9 Several ten centimetres-thick beds of light brown to brown loamy to clayey sand and loam, dipping 3˚ toward the southwest, truncated by gullying in places,

some archaeological elements in the mid part of the unit. Six main beds are recognised, with only the first four (US 9a to 9d) on the reference section:

US 9a (Level 8) • Bed 9a (ca. 0.10 m)—Bed of light beige loams (ashes) cemented at the base, rising gently into the cave, finely laminated and topped with beds of beige-grey

and black laminated sandy clay;

US 9b (Level 9) • Bed 9b (ca. 0.15 m)—Several centimetres thick beds of slightly sandy brown, reddish-brown or greyish clay with scattered charcoals and rare lenses of ashes

—[EM08-6];

US 9c (Level 10–

11)

• Bed 9c (ca. 0.15 m)—Powdery light yellowish-brown carbonated loam, lenticular bedding with plane lenses of charcoal topped with white ashes (interpreted

as hearths) and lensoidal mixed ashes rich in aggregates of burned sediment; numerous archaeological elements—[EM08-3, EM08-4, EM08-5];

US 9d (Level 12) • Bed 9d (ca. 0.35 m)–Three to ten centimetres thick lenticular beds of brown to red-brown clay; these beds can crosscut at a low angle; carbonated elements

(shell fragments); some charcoals and aggregates of burnt sediment in the median bed exhibiting an aggregate structure—[OSL- X2414 at the middle of the

US 9d; EM08-2];

US 9e (Level 12) • Bed 9e (up to 0.30 m)—Gully infilling intercalated between US 9d and US 9f, with a net erosive base, containing either a succession of black and beige clayey

silt beds or an accumulation of angular aggregates of clay taking up these materials from the underlying clayey sediment;

US 9f (Level 12) • Bed 9f (ca 0.15 m) is similar to 9d.

US 10 (0.45 m)—Horizontal beds are ten centimetres thick of brown to yellow-brown fine clayey sand with puddle filling facies with intercalation of a settling deposit

at the base. Three main beds:

US 10a (Level

12)

• Bed 10a (ca. 0.20 m)—Yellow-brown to brown decametric thick beds of fine sandy clay or sandy clay with a massive structure. Locally underlined by a dark

centimetric bed (manganese enrichment?);

US 10b (Level

13)

• Bed 10b (ca. 0.10 m)—Well bedded (laminated) unit formed by a succession of black and beige one to several centimetres thick beds, finely laminated or

exhibiting a mixed structure (bioturbation) according to the places of observation (bioturbation). Presence of finely laminated rills filled with sandy clay;

US 10c (Level 13) • Bed 10c (ca. 0.10 m)—Medium to fine sands very slightly clayey, faintly bedded, with darker and discontinuous centimetre thick lamination at the base.

Massive structure at the top. A sharp base is locally underlined by a 3 cm thick bed of light clay and fine black laminations passing laterally to a mixed

structure (bioturbation?).

6 US 11 (Level 13) (0.10 to 0.50 m) Moderately sorted, massive, carbonated, medium sand including rare marine shells of centimetric size (beach deposit) and some elements of

microfauna. Yellow-brown colour progressively darkening in the upper 15 cm and correlative acquisition of a poorly expressed lamination by 1) sorted

infracentimetric intercalation and 2) intercalated brown clay-loam laminations—[OSL-X2413; EM08-1 at 0.10 m above the substratum]

US are correlated to the archaeological Level, and we indicate the correspondence between US (new lithostratigraphy) and Level (previously published stratigraphy) as

followed: US (Level). OSL and combined US-ESR samples are indicated in brackets; a: new samples analysed in this study. Note that with the revision of the position of

the samples in the new stratigraphy [21, 23, 39], the US 8c and US 9a are no dated.

https://doi.org/10.1371/journal.pone.0261282.t001

PLOS ONE An improved chronology for the Middle Stone Age at El Mnasra cave, Morocco

PLOS ONE | https://doi.org/10.1371/journal.pone.0261282 February 11, 2022 5 / 28

https://doi.org/10.1371/journal.pone.0261282.t001
https://doi.org/10.1371/journal.pone.0261282


to US 9a were only known from the main test-pit at the front of the current excavation area

(Fig 2A). A few archaeological materials, such as fragment of a nucleus or pigment fragments

in these deeper US could indicate an early human presence in this cave (Table 1). MSA indus-

tries of El Mnasra are characteristic of the Aterian culture (Figs 3 and 4), with the presence of

tanged tools, Levallois/micro-Levallois debitage (flakes and cores), and side-scrapers [5]. El

Mnasra also yielded evidence of bone tools [4] and pigment use in an Aterian MSA context in

archaeological levels 5 to 7 [5, 37]. In addition, the cave has delivered a large number of marine

shells associated with combustion areas and, to our knowledge, the largest number of Nassarii-

dae (N>236) associated with a MSA context in Africa [5, 38]. Hearths are known in archaeo-

logical levels 5 and 6, some of them delimited by stone structures [5, 35], others characterised

by the presence of intense combustion areas clearly delimited by limestone pavements in

archaeological levels 6 and 8 [5, 35]. Human remains were found in levels 5 and 6 (Fig 4).

Previous chronology

El Mnasra cave has already benefited from fairly radiometric dating with a total of 25 dates

obtained before this study (S1 Table) and in the test-pit sector. First, four single aliquots

Optically Stimulated Luminescence (SA-SAR OSL) ages on quartz grains were obtained by

Schwenninger et al. [27]. In 2012, a new large-scale chronological study led by Jacobs et al.

[24] obtained eighteen single quartz grain OSL ages (SG-SAR OSL). These previous OSL ages

placed the MSA occupations embedded in the sediment from ~112 ka (MIS 5d) to ~70 ka

(MIS 4). The application of the combined US-ESR method in 2012 [31] has shown that all

three ages are younger than OSL dates for the same US. These discrepancies have been

observed repeatedly, but no argument or discussion has been put forward to explain them.

Furthermore, the previous three US-ESR ages were calculated with one gamma dose-rate mea-

surement and one sediment. A set of charcoal and burned seeds were collected in hearth and

ashes areas from US 9a and US 8 [39] and dated by the AMS-radiocarbon method and are all

beyond the limits of radiocarbon dating (> 50 ka), confirming their antiquity. An attempt to

date occupations at the top of the sequence by the AMS-radiocarbon method [40] and OSL

[24] failed due to bioturbated context. As a result, the upper part of the cave deposits could

never be dated. Following the excavations from 2012 until 2015 in the main excavation area in

parallel with a new reading of the deposits, new dental material from large mammal remains

was unearthed, making new chronological applications possible to date the MSA occupations

directly.

Fig 3. Aterian MSA lithic industries from US 9a. a, b: tanged tools with a: retouched tanged point; b: retouched

Levallois blade; c: Levallois micro-blade; d: Levallois micro-nucleus; scale: 1 cm (© R. Nespoulet).

https://doi.org/10.1371/journal.pone.0261282.g003
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Material and methods

Combined US-ESR dating

The combined US-ESR method can be applied to fossil remains to directly date hominin or ani-

mal remains [41]. Tooth enamel contains hydroxyapatite and thus can be used as a natural

Fig 4. Material evidence of cultural/behaviour innovations and human remains found at El Mnasra cave.

https://doi.org/10.1371/journal.pone.0261282.g004
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dosimeter, and ESR can determine its accumulated dose. In parallel, U-series data are obtained on

the different tissues constituting the tooth (all of which incorporate uranium (U) during burial)

and combined with the ESR data. This coupling allows determination of the timing of uranium

uptake thanks to the calculation of the uptake parameter, the ’p-value’ determined for each tissue

[42]. The p-value ranges from -1 (corresponding to an early uptake, EU) to positive values, corre-

sponding to a recent uptake or RU [43]. The combined US-ESR method is used for samples that

did not experience U-leaching. Such leaching can result in overestimated U-series ages. Leaching

is indicated by 230Th/234U ratios in dental tissue> 1 or by U-series age> EU-ESR age [42].

Sampling, samples preparation and equipment. For combined US-ESR dating, six Bovi-

dae teeth stored at INSAP (EM-274, EM-209, EM-223, EM-293, EM-877, EM-816; S2 Fig and

S2 Table), well preserved in appearance, were selected. The sampling considered the current

spatial configuration of the excavation and the material available. These teeth originate from

US 7, 8a, 8b, 8c and 8d. ESR samples were prepared following the standard ESR dating proto-

col [22, 44] and analysed at the Geochronology laboratory (MNHN, Paris). The preparation

protocol is detailed in S2 Text in S1 File.

Three supplementary teeth (EM0601, EM0603 and EM0604), previously analysed by Janati-

Idrissi et al. [31], are from US 8b and 8d. Their ages were recalculated thanks to the new dose-

rates measurements provided in this work, leading to new ages.

ESR dose evaluation. The evaluation of the equivalent dose is based on the multiple ali-

quot additive dose (MAAD) method. The protocol of the ESR dose determination is detailed

in the S2 Text in S1 File. All ESR dose response curves (DRC) with detailed fitting results are

provided in S3 Fig.

Dosimetry. One of the difficulties in combined US-ESR dating is the determination of γ
and β-dose-rates received by the teeth. They calculate from the radioelement concentrations of

the sediments and it is impossible to measure the doses at the precise location of teeth used for

dating. To overcome this problem, eight sediment samples from the West-East section were

collected from US 7 to 8d, from which the teeth originated, and taken for subsequent labora-

tory analyses. Sediment samples were conditioned in plastic bags to preserve their moisture.

The spatial location of all samples is represented in detail in Fig 5.

Dosimetry in ESR dating of tooth enamel consists of the internal α- and β-dose-rates within

the dental tissues, and external components from β- and γ-radiation of radioelements from the

teeth encasing/surrounding sediments, plus a cosmic dose. The determination of the dosime-

try for the Combined US-ESR dating is detailed in the S2 Text in S1 File.

Age calculation. Combined US-ESR ages were calculated with the following parameters:

α-efficiency of 0.13 ± 0.02 for enamel [21], a water content of 5 ± 3 wt% in dentine and cement,

while 0% were assumed for enamel. The water content of the sediment was measured in the

laboratory by drying at 40˚C for ten days, and estimated from the weight difference sediment

before and after drying. Eight sediments presented low water contents, between 3.3 wt% to

11.4 wt%. The water contents used to calculate the β dose-rates for each US are average data,

presented with their standard deviation and ranging from 5.7 ± 0.5 to 7.8 ± 2.0% (S5 Table). α
and β-attenuation factors used for enamel follow Brennan et al. [22]. The cosmic dose rates

values considered are the same as those presented by Jacobs et al. [23], calculated from the

equations of Prescott and Hutton [24]. They include correction considering the site altitude,

geomagnetic latitude, density and thickness of cave rock (2.5 g/cm3) and sediment (1.8 g/cm3)

overburden, and the cos2
ϕ zenith angle dependence of cosmic rays. Values are ranging from

150 ± 20 μGy/a (US 8c/d) to 160 ± 20 (US 8c to US 7).

Combined US-ESR ages (1σ) were calculated using the DATA program [45] with error cal-

culations derived from Monte Carlo simulations. The sample geometry cement/enamel/
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dentine was used for the beta dose rate attenuations for EM-223 and sediment/enamel/dentine

configuration was used for the other samples.

Optically stimulated luminescence dating

Optically Stimulated Luminescence (OSL) dating method was employed to date quartz miner-

als and the sedimentary context (strictly the event(s) of bleaching and subsequent burial). Dur-

ing the burial, energy is trapped in quartz grains through time. OSL uses an intense light

source to release and measure this energy initially absorbed by the material, the equivalent

dose (De). Measurements performed on multi-grains aliquots provide a distribution of equiva-

lent doses (De). However, they do not allow identifying individual problematic grains (signal

saturated grains, incompletely bleached), which is crucial in the context of a cave, especially

when bioturbation is identified. To identify such grains, single-grain (SG) measurements were

therefore carried out.

Sampling, samples preparation and equipment. In the West-East section, the sediments

are extensively reworked by bioturbations, and the state of excavations between 2008 and 2012

did not make it possible to clearly identify US 6 to US 3. US 7 was already dated by single-grain

OSL in this section (Fig 5). Nevertheless, two sediment samples (S2 Table) were collected on the

North-South section in the MSA US 6 (EM-1701) and the sterile US 4 (EM-1702), the distance

between the two samples being about ca. 0.40 m. Our new single grain OSL dates allow us to

better constraint the chronology of the last occupations at the cave and the taphonomy of the

rest of the sequence. Both sediments were collected using opaque plastic tubes (25 cm in length

and 5 cm in diameter), sealed with adhesive tape and an aluminium cover, and packed in black

Fig 5. Location of OSL and combined US-ESR (altitudinal projection) samples analysed in this work. This spatial representation is an altitudinal projection that

can lead to a slight apparent offset of the sample locations and the US slops on the profile. The location of the teeth is also showing in the plan view. For the teeth

EM0601, EM0603 and EM0604, the squares are indicated in purple.

https://doi.org/10.1371/journal.pone.0261282.g005
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light-opaque bags to preserve the light-sensitive OSL signal during transport. The chemical

preparation and the measurement implementation are indicated in S3 Text in S1 File.

Equivalent dose determination. Preliminary tests were carried out in the laboratory on

single aliquots and detailed in S3 Text in S1 File. In order to discard the grains which were

unable to properly record the De, the Central Age Model (CAM) was applied with the progres-

sive removing of grains with the lower D0 values to obtain mean De values no longer influenced

by D0 values [46–48]. Subsequently, De are recalculated for subsamples of full distribution of De

by discarding the smallest D0. This process allows to obtain a plateau: the beginning of the pla-

teau indicates that the mean D0 no longer influences De values. This "threshold test" was carried

out in this work on the De obtained in single-grain mode (S5 Fig). To account for the possibility

of mixing phases in El Mnasra sediment, the Finite Mixture Model (FMM) was tested [49, 50]

by running 2–4 discrete dose components using the R package “RLumShiny” [51, 74].

Dose rate determination and age calculation. Gamma-dose-rates (field and laboratory)

were measured following the same protocol presented for US-ESR dating. In laboratory, ca. 10

g of sediment samples, previously dried at 40˚C during five days, homogenised, crushed and

sealed in plastic tubes were measured by High-purity germanium (HpGe) γ-ray spectroscopy

with a high-resolution detector Canberra-Eurisys well-type detector at the IRAMAT-CRP2A

laboratory. In this study, the quartz grains were not etched and the alpha contribution was

considered. For the 100–140 μm fraction, we used the α attenuation and β absorption factors

following Brennan et al. [52] and Guérin et al. [53], respectively.

OSL ages presented with 1σ have been calculated by the ANATOL software (version 2.0.6),

considering dose-rate conversion factors from Guérin et al. [53]. As for the US-ESR age calcu-

lations, the cosmic dose-rate for both samples was chosen following the value of 170 ± 20 μGy/

a as provided by Jacobs et al. [24]. Water content was measured and determined at 5.8 ± 0.6 wt

% and 2.8 ± 0.3 wt% and considering a matrix water saturation of 30 ± 15% and 15 ± 7% for

the sample EM-1701 and EM-1702, respectively.

Bayesian age modelling

A hierarchical chronostratigraphic model of the El Mnasra sequence derived from Bayesian

event modelling was built using Chronomodel V2.0.18 [54]. The main purpose of the Bayesian

model is to develop a global dating of all the US by including prior information on the samples

dated. The model implemented by Chronomodel combines several varying individual dates

(ti), individual uncertainties and information based on stratigraphy to estimate the age of the

target event (θ), here the new stratigraphic unit with preserved MSA occupations. The discrep-

ancy between ti and θ is modelled by an individual variance (σ2
i) that allows the model to be

robust to outliers and does not require additional analysis to remove them from the data set.

Three recalculated US-ESR ages (see section Results and Discussion) are considered to yield

terminus post quem ages and should be interpreted as a minimal age of samples in chronologi-

cal modelling: as this is not allowed in the chronomodel software, these three ages have not

been included in the Bayesian modelling.

We used Bayesian modelling to propose a global model that conciliates the chronologies

based on our OSL and US-ESR ages published by Schwenninger et al. [27], Jacobs et al. [24],

and the OSL and US-ESR dates obtained in this work. In this Bayesian approach, each dated

event is estimated from its posterior distribution calculated from its likelihood function and

prior information. We can then characterise a temporal period defined by a group of dated

events (often called phase).

First, we calculated a time range interval for each US modelled as a Phase, which character-

ises the period during which a Phase happened. Time range intervals represent the specified
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posterior probability (95% and 68%) of containing all samples ages affected to the US [55]. Sec-

ondly, the posterior density of the Start and End ages for each US is represented by their den-

sity curves, corresponding to the associated error. No supplementary boundaries have been

used to constrain the dates for the lowest US 11 and the uppermost US 4.

30 numerical dating results obtained using OSL and US-ESR methods have been included

as likelihoods in El Mnasra Bayesian model. The luminescence and ESR numerical results

were input into the model with their associated 1σ uncertainty ranges. Dating data are nested

in US (Phases) with succession constraints between them: all the samples dated at a same US

are older than those in the US above it, and vice-versa.

We build the Bayesian model considering two independent data sets for illustrative pur-

poses: 24 OSL ages and 6 US-ESR ages separately. Finally, we run Bayesian modelling by com-

bining OSL and US-ESR ages.

Markov Chain Monte Carlo (MCMC) algorithms known as the Metropolis-within-Gibbs

strategy is implemented in Chronomodel to approximate the posterior distributions of ages.

Three Markov chains are simulated in parallel. For each chain, 1000 iterations are used during

the Burn-in period, 20 batches of 500 iterations are used in the Adapt period and 100 000 itera-

tions are drawn in the Acquire period.

Results and discussion

A detailed presentation of the US-ESR measurements results is described in the S4 Text in S1

File and in S4–S6 Tables.

Combined US-ESR ages

In total in our study, six US-ESR ages were obtained (Table 2) and three ESR ages were

updated from data provided in Janati-Idrissi et al. (2012). Final ages were calculated using

average radioelements contents (S4 Table), and we provided ages calculated with average

external γ-dose-rate (S6 Table). P-values (S7 Table) describe the kinetic of uranium incorpo-

ration in each dental tissue [41] and indicate if the latter has significantly changed over time.

P-values for dental tissues are higher than −1 (between -0.55 and 0.52). 230Th/234U ratio is

lower than 1 (between 0.224 and 0.399, S4 Table), suggesting no uranium leaching in the den-

tal tissues.

Table 2. US-ESR ages were calculated with γ-external reconstructs with gamma in situ dosimetry and with α-Al2O3:C dosimetry.

Sample US De

(Gy)

± D(α + β)

(μGy/a)

± Dβ1

(μGy/a)

± Dβ2

(μGy/a)

± Dγ
(μGy/a)

± Dβ (ext.)

(μGy/a)

± Dcos

(μGy/a)

± Ḋ

(μGy/a)

± US-ESR

ages (ka)

±

EM-274 7 47.4 1.8 3 1 30 3 356 14 129 16 160 20 678 29 69.9 4.0

EM-209 8a 40.3 1.2 2 1 25 4 316 36 127 28 160 20 630 50 64.0 5.4

EM-223 8b 40.2 0.9 2 1 7 1 17 3 325 35 160 20 511 55 78.7 8.6

EM0603� 8b 38.2 0.7 24 8 31 5 32 5 325 35 160 20 572 41 66.8 4.9

EM-293 8b 45.2 1.3 1 1 12 1 325 35 89 9 160 20 587 56 77.0 7.7

EM0604� 8b 44.2 2.8 11 5 13 3 13 3 325 35 160 20 522 51 84.7 9.9

EM0601� 8d 37.2 0.7 31 10 18 4 20 6 340 62 150 20 559 66 66.5 8.0

EM-877 8d 47.1 0.9 5 1 13 2 340 62 60 9 150 20 568 67 82.9 9.9

EM-816 8d 49.7 1.7 5 2 12 2 340 62 64 8 150 20 571 82 87.0 12.8

Equivalent dose (De), Dose-rate and combined US-ESR age estimation presented at 1 σ confidence level. Key: e = enamel; d = dentine; c = cement. The dose-rate

components presented are: (D(α+β)—internal dose-rate of the enamel; Dβ1—beta contribution from the dentine; Dβ2—beta contribution from cement; Dβ (ext.)–beta

contribution from sediment; Dγ - gamma external dose-rate from sediment; Dcos–cosmic dose-rate. �: US-ESR ages recalculated from Janati-Idrissi et al. [24].

https://doi.org/10.1371/journal.pone.0261282.t002

PLOS ONE An improved chronology for the Middle Stone Age at El Mnasra cave, Morocco

PLOS ONE | https://doi.org/10.1371/journal.pone.0261282 February 11, 2022 11 / 28

https://doi.org/10.1371/journal.pone.0261282.t002
https://doi.org/10.1371/journal.pone.0261282


Combined US-ESR ages follow an apparent global stratigraphic order. EM-274 from US

7 is dated at 70 ± 4 and 64 ± 6 ka for EM-209 from US 8a. Considering the associated 1σ
errors, they are all indistinguishable. Samples from US 8b provided older ages, ranging

between 77–85 ka. The dose-rate value for sample EM-293 (587 ± 561 μGy/a) is higher than

that calculated for samples from the same US. This difference mainly comes from the dental

tissues, particularly the internal enamel dose-rate and the β-dose-rate from cement of EM-

223, EM0604 and EM0603. The ages of the MSA occupations in the US 8c/8d are between

83 ± 9 and 87 ± 10 ka. The probability intervals of 1σ ages cover a chronological range from

MIS 5c to MIS 4.

Three ESR ages from teeth samples (EM0601, EM0603, EM0604) published by Janati-

Idrissi et al. [31] were updated and compared to our data. These previous data were calcu-

lated with one inserted TL dosimeter in US 8b and using one sediment to calculate the β-

dose-rate from sediment. We recalculated the ages these authors published, considering (i)

the in-situ measurements performed within US 8b in this present and previous work, (ii)

the mean radioelement contents of the sediments taken in this present work. The recalcu-

lated ages (Table 2) are in the same time interval as the other teeth. However, in details, the

2/3 US-ESR samples (namely EM0603 and EM0601) are younger than the surrounding

US-ESR samples for the same US. The internal dose-rate is one of the significant differences

between the three teeth samples and those newly analysed in this work. There is a factor of

10 difference between the U-contents in the enamel of new samples (ca. 0.01 ppm) and

those of Janati-Idrissi et al. (ca. 0.1 ppm) obtained by α-spectrometry analyses, while the

contents in the dentine or cement are similar in both studies. This factor of 10 lead to an

internal dose-rate overestimated for EM0601, EM0603 and EM0604. This explains why

EM0603 and EM0601 are younger than others teeth for a given layer. EM0604 gave compa-

rable results with other teeth for the US 8b. Because of the uncertainties for 2/3 samples pre-

viously dated, we consider that these are minimum ages.

Luminescence measurement

The OSL measurements results are described in the S5 Text in S1 File.

Two OSL single-grain ages and associated dating details are shown Table 3. Dose-rate for

each sample is provided in S7 Table. For EM-1702 a total dose-rate of about

1441.7 ± 12.7 μGy/a was determined, which is 18% higher than EM-1701.

Table 3. OSL results.

Sample EM1701 EM1702

US 6 4

De (Gy) 57.72 ± 6.46 80.05 ± 4.58

OD (%) 72 ± 8 30 ± 5

K (%) 0.63 ± 0.016 0.67 ± 0.014

U (ppm) 1.19 ± 0.26 1.447 ± 0.027

Th (ppm) 3.9 ± 0.09 3.787 ± 0.075

Moisture content (%) 5.8 ± 0.6 2.8 ± 0.3

α (μGy/a) 23.1 ± 4 26.2 ± 3.7

β (μGy/a) 669.6 ± 33.5 754.3 ± 10.8

γ (μGy/a) 324 ± 32 491 ± 5.6

Cosmic (μGy/a) 170 ± 20 170 ± 20

Total (μGy/a) 1186.8 ± 46.5 1441.7 ± 12.7

Age (ka) 48.63 ± 6.87 55.52 ± 5.28

https://doi.org/10.1371/journal.pone.0261282.t003
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Results obtained using the Central Age Model (CAM) with the "threshold test" show a pla-

teau for D0 values around 80 Gy and 68 Gy (S7 Fig): the De selected for the sample EM-1701,

and EM-1702 are 57.72 ± 6.46 Gy and 80.05 ± 4.58 Gy, respectively.

Critically, for both samples, FMM showed no discrete De component representing the

majority of the grains in either of the two samples and untangle the De distribution. FMM is,

therefore, not the most appropriate model. Any further interpretation of the current data

would be speculation, and a more in-depth investigation will help understand this type of dis-

tribution. Then it is more reasonable to retain the CAM age at 1σ instead to avoid any bias.

Considering the CAM, sample EM-1701 is dated at 48.63 ± 6.87 ka, and sample EM-1702 is

dated at 55.52 ± 5.28 ka. Considering the 1σ errors, the two ages are relatively close.

OSL and combined US-ESR chronologies comparison

All ages available for El Mnasra cave are represented in Fig 6. First, combined US-ESR ages are

at least 38–49% younger than OSL single-grain [24] and multi-grains ages [27] for the same

US (7, 8a, 8b, 8c/d). Secondly, the CAM age for the US 6 is almost 50% younger than the age of

the sample EM10-5 (S1 Table) and placed in the same time range of the sample EM10-2 (US 5)

and sample EM1701 (US 4). In addition, CAM ages provided in this work are coherent and

close to the US-ESR ages for the uppermost US 7.

Several sources of uncertainty could explain the origin of this discrepancy between chronol-

ogies based respectively on combined US-ESR and OSL ages. A first hypothesis would be that

some teeth could be reworked from their original context. Although this hypothesis is plausi-

ble, all dated teeth were carefully selected and well contextualised during the excavations in the

area where archaeological material was found in situ.

We then explored the evaluation of the annual dose as the first factor of uncertainty. Ura-

nium incorporation represents at most 5% in the dental tissue analysed in this work and up to

~15% for previously analysed teeth. Our US-ESR data did not show uranium leaching into

dental tissue. Consequently, the uranium incorporation has minimal impact on US-ESR ages.

Cosmic-ray dose-rate represents ~23–31% of the annual dose: it is reasonable to assume that

this parameter can influence the US-ESR and OSL ages calculation. However, this parameter

Fig 6. OSL and US-ESR ages available for El Mnasra cave. Errors are displayed at 1σ.

https://doi.org/10.1371/journal.pone.0261282.g006
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has been standardised according to the values given by Jacobs et al. [23] and then, do not

explain the discrepancy between OSL and US-ESR ages.

Thirdly, we explored the evaluation of the environmental dose coming from sediments. For

example, we suspected an impact of the seasonal change in humidity in the cave. Many authors

of this paper (E. Ben Arous, D. Richter, R. Nespoulet, C. Falguères, A. Lenoble, E. Stoetzel)

have noted that lawn above the cave is regularly watered and possibly contributed to the circu-

lation of water from the oculus (Fig 1) to the deposits above. This leads to an increase of the

moisture in the West-East section in squares 7 to 11. We could consider in the first instance

that the water content measured in the sediment is unlikely to be an accurate estimate of the

long-term water content. There is a substantial variation of water in the sediments measured

by Jacobs et al. [23], leading to 35 ± 9 wt values for the upper US. We performed age sensitivity

tests by varying the long-term water content from 5 to 35% to possibly quantify the impact on

our US-ESR ages (S10 Fig). There is a non-significative increase of our ages, as the maximum

variation is < 7% (~5 ka).

The gamma dose-rates account for 50–64% of the external dose-rate value. The gamma

dose-rate determined in this work and its comparison with the available data provided in

Table 3 show consistent values at 1σ. If the US-ESR ages are recalculated using the extreme

gamma dose-rates values (i.e., the smallest value and the largest value for each US, Table 3),

this results in age variations with a non-significative impact of ~5% at the total for US 7 to sig-

nificant age variations for US 8 (~15% for US 8a, ~18% for US 8b, and up to 35% for US 8c/d).

The discrepancy between previous OSL ages and combined US-ESR ages could also be

explained by underestimating the De values obtained for the fossil teeth due to unstable radi-

cals in the hydroxyapatite as already observed [56, 57] on enamel fragments. However, ESR

dose reconstruction was carried out in the present study on homogeneous enamel powder,

which results in the randomly spatial distribution of the enamel fragment. This hypothesis

remains unlikely: this underestimation was demonstrated on tooth fragments from the Middle

Pleistocene, which are extremely rich in uranium and therefore have a different internal con-

tribution from the teeth analyzed in this work. Furthermore, Dirks et al. [58] showed that this

phenomenon might not affect all teeth analyzed by the combined US-ESR method.

The hypothesis of incomplete bleaching of the quartz grains resulting from remobilization

of a sedimentary stock present in the cave or extremely close to the cave entrance (S1 Text in

S1 File) cannot be entirely excluded and could explain the De overestimation for the OSL ages.

The sediment deposition processes in the cave are extremely complex and result from many

factors, as highlighted by A. Lenoble (S1 Text in S1 File). For example, the sediment deposits

of the US 10 to 8 (US 8 is the most important MSA occupations in terms of material density)

represent the product of remobilization by runoff from a coastal sedimentary stock mainly

represented by aeolianites in a secondary position. Therefore, it is still challenging to under-

stand the influence of such depositional processes in the OSL dating of quartz grains. Further

micro-morphological studies in the future will undoubtedly provide interesting elements for

discussion. Informatively, the previous OSL ages calculated using the FMM [24] indicate that

grains with De with a major component chosen represents between 64.3 ± 13.3 to 97.5 ± 1.2%,

while the minor components represent about 1 ± 0.6 to 35.5 ± 14.3% of the dated grains [24].

The recalculation of the OSL ages considering the different components of De determined to

result in ages for US 7 to US 8c-d closer to the US-ESR ages (S11 Fig).

Bayesian model and time range intervals

The results of the Bayesian modelling are summarised in Table 4 and Fig 7. Time range inter-

vals are rounded to the closest century. Each modelled Phase (US) is associated with time
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range intervals and reported in 68% and 95% probability. A posterior density curve represents

the Start and End ages for each US. No supplementary boundaries have been used to con-

straint the time range for the lowest US 11 and the uppermost US 4. All OSL and US-ESR

Table 4. El Mnasra 95%- and 68%-time range intervals calculated with OSL data, US-ESR data and combining all

the data.

OSL ages ESTIMATED TIME RANGE (ka)

68% probability 95% probability

from to from to

US 4 58 44 64 31

US 5 73 55 80 48

US 6 88 66 93 59

US 7 100 83 103 75

US 8a 106 94 109 90

US 8b 109 101 112 98

US 8c-d 112 104 115 101

US 9a

US 9b 114 108 117 104

US 9c 121 109 126 106

US 9d 131 116 139 112

US 10a

US 10b

US 10c

US 11 160 125 187 120

US-ESR ages ESTIMATED TIME RANGE (ka)

68% probability 95% probability

from to from to

US 7 67 55 74 39

US 8a 71 61 77 54

US 8b 85 66 94 61

US 8c-d 111 76 146 70

All ages ESTIMATED TIME RANGE (ka)

68% probability 95% probability

from to from to

US 4 56 43 62 28

US 5 68 52 73 44

US 6 74 59 80 53

US 7 89 67 94 62

US 8a 99 82 102 74

US 8b 105 91 108 86

US 8c-d 111 98 115 94

US 9a

US 9b 113 106 117 103

US 9c 120 108 125 104

US 9d 130 114 139 111

US 10a

US 10b

US 10c

US 11 160 124 186 119

https://doi.org/10.1371/journal.pone.0261282.t004
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samples within each Phase are nested with the robust cross-correlations of sedimentological-

lithological boundaries between the Phase-US.

This modelling aims to provide a Bayesian modelled chronology considering both OSL and

US-ESR dates. Therefore, we present the final Bayesian modelling, which incorporates the two

data sets (Fig 7). US 9e to US 10c are not covered by sampling. Consequently, it makes no sta-

tistical sense to model time intervals without dates. US 9e-US 9f are channels that intersect

with the US 10a but not the US 9d: they are necessarily younger than the time range interval of

the US 10a and posterior to the time range interval of US 9d. The time range above and below

allows it to be framed and considered as minimum and maximum intervals.

Fig 7. Bayesian model results of the 30 ages (OSL, combined US-ESR age) used to constrain the age of the US

obtained with Chronomodel v.2.0.18). A: the Bayesian modelling independently considers OSL and US-ESR data; B:

Bayesian modelling combines all data. Start and end ages have been estimated for each US and the curves of posterior

densities are represented. All ages are shown in thousand years (ka) before present.

https://doi.org/10.1371/journal.pone.0261282.g007
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The resulting representation by independently considering OSL and US-ESR ages shows an

expected discrepancy with the un-modelled OSL and US-ESR chronologies. In detail, modelled

Fig 8. Synthesis of the Middle Stone Age from El Mnasra cave. Time range intervals are indicated in front of each US (Lithostratigraphical log). Archaeological

materials for each US are also indicated. Adapated from Stoetzel et al. (2014b).

https://doi.org/10.1371/journal.pone.0261282.g008
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time range using US-ESR ages for the US 7 to 8 c-d are generally younger than those obtained

solely with OSL ages (Fig 6). Secondly, the main effect of considering all data has been to pro-

vide longer intervals than if we only considered US-ESR and OSL data for US 7 to 8c-d. Consid-

ering the 95% probability, the time range interval with combining all ages is around 14%, 44%,

56% and 44% (respectively for US 7 to 8c-d) longer than interval modelled by solely OSL ages.

Conversely, the time range intervals modelled solely with US-ESR ages are more precise of

about 8%, 32% and 78%, respectively for US 7, 8b and 8c-d. Finally, stratigraphic constraints on

ages have little effect on US 9b and US 11: the time intervals that consider all data are 10%, 6%

and 2% longer than those considering only OSL ages. Reasonably, we take into account the

model which combining various dates because (i) it includes all the data from the different stud-

ies, (ii) its remains more robust to uncertainties and inconsistencies, and (iii) the good robust-

ness properties of the event date model are counter balanced by a lower precision in the dates

for US 7 to 8c-d but compensated by a more reliabile chronology overall.

Chronology and MSA occupations model at El Mnasra cave

The time range intervals (95% of probability) were added to a synthesis considering a synthetic

section of the cave deposit, archaeological and paleoenvironmental data available for El Mnasra

cave. We have also considered the sparse paleoenvironmental data extracted from large and small

vertebrates [5, 18, 34, 38, 59–63]. These data are synthesised in S9 Table. Fig 8 summarises all

available archaeological and the time range intervals with 95% probability as presented in Table 4.

According to the lithological description and interpretation (S1 Text in S1 File), the sterile

US 11 is a coastal beach deposit trapped in the cave and associated with a high sea level of the

MIS 5e. Bayesian model confirms this observation by placing the edification of the US 11

between 186–119 ka.

The oldest evidence of human presence is attested in the US 9d by anthropogenic sediments

visible in section. We provide a period estimation between 139 and 111 ka for this US, pushing

the lower limit of the MSA to MIS 5d. The US 9c presents also very clear anthropogenic facies

delimited in the section, with laminated charcoals and ashes beds. Artefacts interpreted as

archaeological materials, namely fragments of hematite and stone tools [5] found in US 9c are

placed between 125 and 104 ka. This is relatively similar to the oldest MSA occupations pre-

served at the neighbouring caves (Fig 9) of Dar es Soltan 1 (112 ± 8 ka)[27, 32] and Contreban-

diers caves (level 6c, weighted mean age of 122 ± 5 ka [25]).

As the lithological reading of the US 8d to US 8a shows the absence of the marine contribu-

tion in their sedimentary edification (S1 Text in S1 File), there are probably placed around the

high sea level of the MIS 5d [64, 65]. Zooarchaeological studies [18] from MSA occupations of

the US 8 (US 8d to US 8a) show that North African Aterian populations at El Mnasra have

exploited a diversity of marine molluscs (Patellidae, Mytilidae, Trochidae and Muricidae,

[18]). Two specific marine taxa, Patellidae and Mytillidae, were preferably consumed. They are

intertidal molluscs living on a rocky substratum and likely accessible during low tides near the

cavities [38]. A study in the nearby cave of El Harhoura 2 showed the presence of characteristic

notches on Patellidae shells, suggesting that they were directly collected on the rocks by MSA

human groups [20]. Evidence of marine resources collecting and consumption could indicate

that the sea level was close to the current one at these periods and that the coastline was very

close to the cave’s entry: this is therefore consistent with the attribution of the sedimentary edi-

fication to the MIS 5c. For these US, the faunal spectrum is slightly diversified and mainly

dominated by Gazella dorcas/atlantica, including Bos primigenius, Equus sp., Connochaetes
taurinus and/or Oryx cf. dammah [5]. Microvertebrates and large mammals from US 8b sug-

gest that the climate was relatively humid and that the landscape was dominated by savanna-
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like environment, with sparsely wooded areas [34, 61, 62]. Time range intervals place the US

8c-d, 8b and 8a between 115–94 ka, 108–86 ka and 102–74 ka, respectively.

Patellidae and Mytilidae were found in abundance in the US 7 and US 6 [38], clearly visible

in section and, during the excavations, by well-delimited shell beds [38]. One of our hypothe-

ses attributes US 7 and/or US 6 to MIS 5a, around 80–70 ka. Time range for these two US pro-

vided by Bayesian modelling is consistent with this hypothesis, placing the US 7 and US 6

between 94–62 ka and 80–53 ka.

According to geomorphological observations, deposits of US 5 and US 4 are characterised

by a clear continental component and were ascribed to MIS 4/3 or MIS 2 (S1 Text in S1 File

and Table 1). The presence of organic soils in US 5 suggests preserving vegetation in an envi-

ronment with aeolian sediment accumulation (semi-arid environment) from the MIS 4,

whereas their absence in US 4 could indicate complete desertification of the landscape. Litho-

logical interpretation of the US 4 agrees with the microvertebrate assemblages: the presence of

jerboas (Jaculus sp.), today absent from this region, indicates an open and arid environment

(dry and rocky steppes), but the presence of a relatively good diversity in amphibians indicates

the persistence of soft waterbodies close to the site. The geomorphological interpretations and

faunal data could agree with the model, time range intervals are 73–44 ka and 62–28 ka. How-

ever, it was impossible to further constrain the end of US 4 due to the dearth of reliable dates

for the uppermost US 3. Therefore, we cannot exclude the possibility that the upper limit of

US 4 around 30 ka could reflect a statistical artefact. Preliminary zooarchaeological studies

associated to the MSA human occupations of US 5 showed that non-human predators seem to

be the main occupants of the cave, alternating with short human occupations. Many carnivore

marks attest this on the faunal remains and the low presence of lithic tools [60].

It is impossible to discuss US 3 and US 2 because no material suitable for dating has yet

made it possible to date them.

Fig 9. MSA chronological synthesis of Témara’s caves considering previous dates and new dates and time range

intervals provided in this paper for El Mnasra cave. Dates placed in the same vertical lines belong to the same

stratigraphical unit or level.

https://doi.org/10.1371/journal.pone.0261282.g009
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Based on the previous chronology [24], three probable periods of MSA occupations have

been identified approximatively around ~110–95 ka (MIS 5c), ~80 ka (MIS 5a) and ~70 ka

(MIS 4). The first two episodes displayed intense occupations, whereas the last corresponds to

a low human occupation associated with non-human predator activities [60]. Occupations ini-

tially attributed to the MIS 5c and MIS 5a are marked by coastal marine exploitation and the

hypothesis of their relation with the high sea levels has been explored further [60]. Our model

for the MSA timeline covers all the MIS 5 and MIS 4 and brings more nuance, showing that

such direct association is not apparent.

Regionally, the discrepancy between dating methods is not specific to El Mnasra cave: dif-

ferences between TL and OSL ages have already been found at Contrebandiers (Fig 9) and

between OSL ages at Dar es Soltane 1 (Fig 9). However, similarities exist between El Mnasra

cave and the others caves.

Contrebandiers cave yielded malacological spectra similar to El Mnasra with Patellidae and

Mytilidae [17, 66] in levels 5–6 (Mousterian MSA) and levels 4, IV-2, V-1, V-2 (Aterian MSA).

Based on OSL single-grain ages, these levels are dated between ~120 and 90 ka (Fig 9). At El

Mnasra, time ranges calculated with a Bayesian approach show a similar conclusion: a constant

presence of marine shells consumption from MIS 5e-MIS 5d (US 9b, 112–98 ka) to MIS 5a

(US 6, ~76–61 ka).

Occupations recorded in US 9b to 5 have yielded marine shell use and consumption. How-

ever, Nassariidae perforated shells are only present in US 8d to US 5 [38]. The abundance of

Nassariidae shells in US 8 deposits could be explained by the attractivity of the marine resources

in the Témara region for Aterian populations around the MIS 5c to 5a. To our knowledge, the

most ancient perforated marine gastropod shells were dated, in Africa, from the late Middle

Pleistocene (>~ 145 ka) at Bizmoune cave [67]. Elsewhere in Morocco, they were dated around

88–78 ka at Ifri n’Ammar [26, 68], ~82 ka at Taforalt [69] and around 75 ka at Blombos cave

[70]. Outside Africa, they were dated around 135–100 ka at Es Skhul in Israël [7]. At El Mnasra

cave, we provide chronological constraints for the largest African Nassariidae shell beads assem-

blage associated with an MSA context between ~115–94 ka (US 8c-d) to ~73–44 ka (US 5), end-

ing at the MIS 4/3 boundary. Red pigment residues have been associated with perforated

Nassariidae shells and an ongoing study (M. Lebon, pers. comm.) shows hematite in their com-

position. Moreover, colourant blocks have been discovered in US 8a-d and US 7 and some of

the block pigments display artificial sub-parallel scrape marks [5]. Here, we provide a period

estimation for the occurrence of these hematite fragments, between ~115–94 ka (US 8c-d) and

94–62 ka (US 7). The presence of Nassariidae perforated shells in many African sites suggests

an interlinking exchange system [67, 69]. The influence of climatic changes could be implicated

in the disappearance of the Nassariidae of the archaeological records postdating MIS 4 [71].

We propose for the first time an extended age for MSA occupations at El Mnasra cave. The

younger end of the MSA in this work contrasts with Contrebandiers cave and Dar es Soltan 2,

for which MSA assemblages are not persisting after MIS 5–4 according to luminescence ages

[25], whereas sediments with MSA tools dated to MIS 4–3 (60–40 ka) have been found at El

Harhoura 2 and Dar es Soltan 1 [22, 24, 32] (Fig 9). The MSA human groups would have

briefly occupied these caves after the MIS 4/MIS 3 [4]. The absence or rarity of human occupa-

tions in the caves after the MIS 4 could thus be related to fluctuations in sea level, and the

recording of coastal occupations in caves is probably incomplete [72]. Does the exploitation of

coastal environments during the MSA [18, 38] suggest that human populations followed the

coastline during this low sea level ? May these o sites (open air or caves) therefore be currently

below sea level? It would still be very hazardous to propose only this hypothesis, given the

great variability of terrestrial species consumed in El Mnasra cave [60] (S9 Table), the high

mobility strategies of the Aterian groups, and their complex socioeconomic organisation [4]. It
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would be more likely that there existed other passage areas further inland and that the coastal

sites of the Témara region were part of a larger network of occupation sites between the inland

and the coastal areas as attested by volcanic caves of M’Tsogatin discovered in 2012 and

located of about 100 km away from Temara region [73]. To date, our knowledge of such sites

is limited, as no research has provided key information about the chronology of MSA human

occupation in coastal and inland areas and the areas between them.

Conclusion

The present study proposes a chronostratigraphic model of the Middle Stone Age occupations

at El Mnasra cave with a new stratigraphy assessment and a new contextualisation of the dating

samples. This work has shown the difficulties with the ages of individual samples (e.g. the pre-

cision of the dates, the question of the average γ-dose-rate representativeness). It also showed a

visible discrepancy between un-modelled OSL and US-ESR dates. Further dating investigation

will be crucial in refining the chronology at the top of the sequence. However, our chronostra-

tigraphic Bayesian model using Chronomodel is a statistically robust tool that considers vari-

ous data and adds stratigraphic constraints. It proposes a compromise between the different

chronologies based on the OSL and US-ESR ages and offers a great consistency with lithostra-

tigraphic, geomorphological, and archaeological interpretations for El Mnasra cave.

With the revision of the lithostratigraphy, we confirm a human presence between 124–104

ka, earlier than what the previous OSL and US-ESR data showed. Future studies and excava-

tions will make it possible to better characterise these human occupations, and to refine the

population dynamics model in Témara for the MIS 5. This is especially relevant for the Aterian

in Northwest Africa, which is now placed at the first part of the MIS 5 and demonstrates that

the emergence of the Aterian (and with it, behavioural and social changes) was not a response

to rapid climatic/environmental changes at the end of the MIS 5 or the beginning of the MIS 4.

Our time range intervals allowed us to extend the age of the MSA occupations considerably

to the MIS 4/3 boundary (~62–30 ka), marked by the disappearance of the Nassariidae perfo-

rated shells. Outstandingly, our model pushed back the age of the largest record of Nassariidae

perforated shells and placed the age of their use by the Aterian groups at El Mnasra from the

MIS 5d-5b (~115 and 94 ka)

This new chronological model for El Mnasra is consistent with the data from the other

caves and thus makes it possible to show that regionally, the MSA is present from the MIS 5e-

5d to the MIS 4/3.

The singular and interdisciplinary works at El Mnasra cave allowed a better cultural, climatic,

and now temporal characterisation of the cave sequence. The implications of the new chronostra-

tigraphic model are far-reaching for the human occupation of the region and the whole of North-

west Africa, as they raise questions regarding the participation of North African populations in

dispersals inside Africa and beyond. El Mnasra and the other coastal sites of the Témara region

show that the reasons for the disappearance of MSA innovation markers are still challenging to

understand. It requires refining the climatic and behavioural resolution models to better under-

stand population dynamics and behavioural variability in coastal and surrounding areas.
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S1 Table. Previous dates available for El Mnasra cave [39]. �: The age of these sediments was
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S1 Fig. Lithostratigraphy of the El Mnasra cave established by A. Lenoble. The indicated

number refers to the eleven US.

(TIF)

S2 Fig. El Mnasra dental samples dated by combined US-ESR method. Photos: E. Ben

Arous.

(TIF)

S3 Fig. ESR dose response curves (DRCs) computed by Origin Pro 8 software using Single
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S7 Fig. Proportion of the different US-ESR dose-rate components. Key: Internal = dose-rate

α + β contribution from the enamel, β1 = beta contribution from the dentine, β2 = beta contri-

bution from cement or β (ext.) = beta contribution from sediment.

(TIF)

S8 Fig. Cut-heat test combined with the DRT for the sample EM-1701 for a standard PH

temperature at 260˚C. Each point corresponds to an average of 3 aliquots.

(TIF)

S9 Fig. Radial plot and kernel density plot of equivalent dose distributions of single grains

for samples EM-1701 and EM-1702, generated using RLumShiny package [71, 74].

(TIF)

S10 Fig. Sensitivity tests by varying the long-term sediment water content from 5 to 35%.

(TIF)

S11 Fig. Previous single grain OSL ages calculated with the FMM components presented in

Jacobs et al. [24].

(TIF)

S12 Fig. Diagram presenting the relation between dates–“events” assigned to US–“Phases”.

The arrow indicates stratigraphic constraints. The position of the OSL and US-ESR ages are

given in the Table 1. A: OSL ages; B: combined US-ESR ages; C: global with all ages.

(TIF)
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gie. 2017; 121: 122–132. https://doi.org/10.1016/J.ANTHRO.2017.03.012

PLOS ONE An improved chronology for the Middle Stone Age at El Mnasra cave, Morocco

PLOS ONE | https://doi.org/10.1371/journal.pone.0261282 February 11, 2022 25 / 28

https://doi.org/10.1016/j.quaint.2011.03.015
https://doi.org/10.1007/978-1-4419-8219-3
https://doi.org/10.1016/j.quaint.2015.11.136
https://doi.org/10.4000/quaternaire.5166
https://doi.org/10.4000/quaternaire.5166
https://doi.org/10.1371/journal.pone.0137162
http://www.ncbi.nlm.nih.gov/pubmed/26376294
https://doi.org/10.1016/J.QUASCIREV.2014.09.008
https://doi.org/10.1016/j.quaint.2019.02.029
https://doi.org/10.1371/journal.pone.0162280
http://www.ncbi.nlm.nih.gov/pubmed/27654350
https://doi.org/10.1016/j.jhevol.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22245146
https://doi.org/10.1016/j.jas.2011.08.033
https://doi.org/10.1016/j.jhevol.2010.07.024
http://www.ncbi.nlm.nih.gov/pubmed/20880568
https://doi.org/10.1098/rspb.2009.2019
http://www.ncbi.nlm.nih.gov/pubmed/20219731
https://doi.org/10.1016/j.jhevol.2012.10.010
https://doi.org/10.1016/j.jhevol.2012.10.010
http://www.ncbi.nlm.nih.gov/pubmed/23399349
https://doi.org/10.1016/j.quaint.2012.09.008
https://doi.org/10.1002/evan.21527
http://www.ncbi.nlm.nih.gov/pubmed/28627786
https://doi.org/10.1016/j.quascirev.2009.03.010
https://doi.org/10.1016/J.ANTHRO.2017.03.012
https://doi.org/10.1371/journal.pone.0261282


34. Stoetzel E, Campmas E, Michel P, Bougariane B, Ouchaou B, Amani F, et al. Context of modern

human occupations in North Africa: Contribution of the Témara caves data. Quat Int. 2014; 320: 143–
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Morocco) influenced by climate change? J Hum Evol. 2015; 78: 122–143. https://doi.org/10.1016/j.

jhevol.2014.08.008 PMID: 25281232

61. Stoetzel E. Adaptations and Dispersals of Anatomically Modern Humans in the Changing Environments

of North Africa: the Contribution of Microvertebrates. African Archaeol Rev. 2017; 34: 453–468.

62. Stoetzel E, Bailon S, El Hajraoui MA, Nespoulet R. New herpetofaunal data from Temara’s caves

(Morocco): archaeological and palaeoecological implications (Oral communication). 12ème colloque de

l’International Council for Archaeozoology (ICAZ) -. San Rafael; 2014.

63. Stoetzel E, Denys C, Bailon S, El Hajraoui MA, Nespoulet R. Taphonomic analysis of amphibian and
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