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Contemporary classification of human disease derives from
observational correlation between pathological analysis
and clinical syndromes. Characterizing disease in this way
established a nosology that has served clinicians well to the
current time, and depends on observational skills and
simple laboratory tools to define the syndromic phenotype.
Yet, this time-honored diagnostic strategy has significant
shortcomings that reflect both a lack of sensitivity in
identifying preclinical disease, and a lack of specificity in
defining disease unequivocally. In this paper, we focus on
the latter limitation, viewing it as a reflection both of the
different clinical presentations of many diseases (variable
phenotypic expression), and of the excessive reliance on
Cartesian reductionism in establishing diagnoses. The
purpose of this perspective is to provide a logical basis for
a new approach to classifying human disease that uses
conventional reductionism and incorporates the non-
reductionist approach of systems biomedicine.
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Introduction

Contemporary classification of human disease dates to the late
19th century, and derives from observational correlation
between pathological analysis and clinical syndromes. Char-
acterizing disease in this way established a classification
schema that has served clinicians well to the current time,
relying on observational skills to define the syndromic
phenotype. Throughout the last century, this approach became
more objective, as the molecular underpinnings of many
disorders were identified and definitive laboratory tests
became an essential part of the overall diagnostic paradigm.

Yet, this classic diagnostic strategy has widely recognized
shortcomings that reflect both a lack of sensitivity in
identifying preclinical disease and a lack of specificity in
defining disease unequivocally. Some have argued that the
lack of specificity is a consequence of the false positive rate of
any objective diagnostic test. For this reason, probabilistic
frameworks have been used to improve diagnostic accuracy
(Schwartz et al, 1981); however, these frameworks also rely on
choices grounded in reductionism and, thus, suffer from the
limitations of a reductionist approach. The purpose of this
perspective, then, is to provide a logical argument for a new
approach to classifying human disease that both appreciates
the uses and limits of reductionism and incorporates the tenets
of the non-reductionist approach of complex systems analysis.

Disease classification: history and
shortcomings

Current disease classification and medical diagnosis are the
direct consequence of inductive generalization predicated on
Occam’s razor. This scientific approach has served clinicians
well in their effort to establish syndromic patterns that
streamline the number of phenotypes to consider. In addition,
owing to the dearth of quantitative information available to
refine and parse these phenotypes further, the diagnostic
exercise was intrinsically limited but tractable for the
individual practitioner.

These diagnostic limitations, however, will soon become a
historical footnote. With the complete sequence of the human
genome a reality, and with a growing body of transcriptomic,
proteomic, and metabolomic data sets in health and disease,
we are now in a unique position in the history of medicine to
define human disease precisely, uniquely, and unequivocally,
with optimal sensitivity and specificity. Theoretically, this
precise molecular characterization of human disease will
allow us to understand the basis for disease susceptibility and
environmental influence; to offer an explanation for the
different phenotypic manifestations of the same disease; to
define disease prognosis with greater accuracy; and to refine
and, ideally, individualize disease treatment for optimal
therapeutic efficacy.

The importance of redefining human disease in this
postgenomic era cannot be overemphasized. Several examples
serve to prove this point well. Subcategorizing histologically
similar cancers by differences in surface biomarkers, tran-
scription profiling, or proteomic analysis is currently being
applied to several malignancies, including lymphomas (Dave
et al, 2006) and adenocarcinoma of the breast (Hedenfalk et al,
2001; Hall et al, 2006), in an effort to provide better
information about prognosis and response to therapy. This
approach defines the expanding field of molecular pathology,
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in which molecular signatures replace histopathology to
diagnose disease and predict outcome.

As an example of a disease whose genetic basis not only is
felt to be much simpler than that of malignancies, but also is
affected by host genomic and environmental complexities,
consider sickle cell disease. This classic Mendelian disease is,
by definition, viewed as a monogenic disorder, in which all
affected individuals have a single point mutation at position 6
of the beta-chain of hemoglobin, leading to a substitution of
valine for glutamic acid. This single mutation changes the
oxygen affinity of hemoglobin, and leads to its ability to form
polymers under hypoxic conditions, which, in turn, deform
the erythrocyte into the characteristic sickle shape. Yet, despite
this well-defined mutation, and its biochemical and physiolo-
gical consequences, the genotype simply cannot invariably
predict the phenotype of patients with the disease. Patients
with this mutation are not at all homogeneous in their clinical
presentations: some develop principally painful crises with or
without bony infarcts; others are prone to hemolytic crises;
some develop vasoocclusive crises, including stroke; still
others develop acute chest syndrome; while many are
phenotypically normal, except for mild anemia. There are
many reasons for these different clinical phenotypes, including
the presence of disease-modifying genes (Sebastiani et al,
2005) and environmental influences (ambient oxygen con-
centration, infection, dehydration), which can interact to yield
different phenotypes (Kato et al, 2007). This example points
out that our true understanding of even the most straightfor-
ward of genetic disorders is quite limited.

As a second example, consider familial pulmonary arterial
hypertension (PAH) (Farber and Loscalzo, 2004). This disorder
is associated with mutations in members of the TGF-b receptor
superfamily, including bone morphogenetic protein receptor-2
(BMPR-2), Alk-1, and endoglin. In this disorder, there is a
common phenotype, but many different genotypes yielding it:
for example, over 50 different mutations in BMPR-2 have been
identified. While all of these mutations are in the same gene,
the mechanisms by which they confer the phenotype are not
entirely clear and range from dominant negative effects to
haplo-insufficiency. Importantly, only approximately one-
quarter of individuals with the mutations manifest the disease;
this incomplete penetrance is also likely a consequence of the
effects of disease-modifying genes, environmental influences,
or both in a given individual.

As a third example, consider yet another disorder with a
phenotype common to many different mutations, familial
hypertrophic cardiomyopathy. In contrast to familial PAH,
hypertrophic cardiomyopathy can be caused by mutations in
several different genes that code for different sarcomeric
proteins, including myosin heavy chain, myosin light chain,
tropomyosin, and troponin C (Seidman and Seidman, 2001), as
well as non-sarcomeric proteins. Clearly, in this particular
disorder, the common phenotype is misleading, suggesting a
single disease as its cause when, in fact, the pathophenotype
comprises multiple genetically distinct diseases. Another
lesson learned from hypertrophic cardiomyopathy is knowing
the sarcomeric protein involved and the specific mutation
does not invariably provide prognostic information about
the course of the disease, including the risk of sudden cardiac
death. The logical reductionist approach to this disorder

suggesting that different mutations have different effects on
myocardial function, clinical disease course, and outcome risk
is an erroneous oversimplification. The reasons for this failing
range from insufficient information from which to predict
system behavior to the inability of a complex biologic system
to be reductively explicable by the basal elements (genes,
proteins) from which it emerges (Kim, 2006) (vide infra). One
example of this latter principle is the property of robustness, or
the ability of a complex biological system to maintain stable
function in the face of perturbation (Kitano, 2004), a property
that cannot be predicted without understanding the compo-
nent parts and their (non-linear) interactions.

Definition and determinants of disease
phenotype

These illustrative examples compel us to consider what
precisely defines disease phenotype. Let us begin by stating
the obvious fact that all disease phenotypes reflect the
consequences of defects in a complex genetic network
operating within a dynamic environmental framework. Even
classical Mendelian disorders have different clinical pheno-
types that are a consequence of polymorphic or mutant
disease-modifying genes and their interactions with environ-
mental factors. The disease-modifying genes can be sub-
classified into two groups, those whose actions are uniquely
affected by the primary genetic mutation (e.g., they are in the
biochemical/molecular module) and those whose actions
reflect generic responses to organism stress evoked by the
principal mutation and/or environmental exposures. These
generic responses define intermediate phenotypes that
comprise to varying extents all basic pathobiologies and
include inflammation, thrombosis and hemorrhage, fibrosis,
the immune response, proliferation, and apoptosis/necrosis
(Figure 1).

Together with this network of genetic mutations and
polymorphisms, we must consider the environmental factors
to which the individual is exposed, either acutely or
chronically. From an evolutionary perspective, organisms
evolved to accommodate a range of environmental stresses,
and have done so with varying degrees of success depending
upon the duration and magnitude of the stress. Viewed in this
way, environmental exposures include temperature, radiation,
hydration and tonicity, oxygen tension, micro- and macro-
nutrients, infective agents and parasitism, and toxins. The
interaction between the human host and microbes reflects a
unique exposure that not only can lead directly to disease
expression, but also can lead to changes in human host
phenotype that is not directly pathogenic. Recent work by
Gordon’s group, for example, demonstrates that the commen-
sal gut microbiome of an individual influences the efficiency of
energy harvesting from ingested foodstuffs and, as a result,
can directly influence the extent of weight gain associated with
food consumption (Turnbaugh et al, 2006).

With this brief background, let us consider how one might
use this information to classify disease. We begin with four
different modular networks within and between which nodes
(in this case, genes, mRNA, proteins, biochemical or physio-
logical properties, or environmental factors) interact to yield
the ultimate phenotype. The first of these networks is that
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comprising the principal molecular abnormalities (genetic or
acquired), when known, that have been associated with the
general phenotype (primary disease genome or proteome, G).
In the classic Mendelian case, this is a network of two nodes,
one for each allele; in the case of a complex trait, such as PAH,
there will be many nodes (B100 currently) comprising known
mutations in BMPR-2 and Alk-1 alleles. The second modular
network comprises known disease-modifying genes (secondary
disease genome or proteome, D) and their polymorphisms
or haplotypes. In the case of sickle cell disease, for example,
this network will include the hemoglobin F gene, the
hemoglobin C gene, thalassemic beta-chain deletion, glu-
cose-6-phosphate dehydrogenase gene mutations, and single
nucleotide polymorphisms in three genes in the TGF-b
pathway found to be associated with stroke in sickle cell
disease (Sebastiani et al, 2005). The third modular network
incorporates known polymorphisms or haplotypes that influ-
ence each of the generic responses to organism stress
(intermediate phenotype, I, or response genome or proteome),
and will define, for example, the extent to which an individual
can mount an inflammatory response, develop thrombosis, or
accommodate oxidant stress. The fourth modular network
comprises environmental determinants, E. The interactions
among nodes of these modular networks define all disease
phenotypes. Environmental factors interact with the different
subgenomes to modify the transcription of their component
genes and to modulate the translation of protein products and
their posttranslational modification, yielding changes in protein
and cellular function and metabolism, and defining an
intermediate phenotype. The patterns of these polymorphic
genes and their expression profiles comprise the molecular
signatures of unique pathophenotypes, offering the promise of
diagnostic, prognostic, and therapeutic specificity; the defini-
tion of disease becomes ‘personalized’, as does its specific
therapeutic targets. These intermediate phenotypes combine to
define the pathophysiological states (PS), which, in turn,
underlie all disease phenotypes (pathophenotype, P;
Figure 2A). Examples of this approach are included in Table I

and Figure 2B for sickle cell disease, and in Table II for PAH. In
the latter case, note that both heritable (BMRP-2 mutations) and
acquired (anorexigen induced) forms of the disease are
incorporated in the table; also note that this approach allows
one to define genetic susceptibility to environmentally induced
phenotypes.

Importantly, cataloging disease in this way is only the
beginning of a rigorous analytical process that can lead to
defining prognostic determinants and better-individualized
therapeutic responses. Nicholson (2006) has long been a
proponent of the application of systems analysis to diagnostics
and therapeutics, focusing, in particular, on the metabolome
and its environmental (including microbial) modulation. To
achieve this level of insight will require a network-based
analysis of the associations among the individual genes,
proteins, metabolites, intermediate phenotypes, and environ-
mental factors that conspire to yield the pathophenotype.
Defining the network interactions among these modular
elements (and their probabilistic relationships, where appro-
priate) not only will account for the ultimate pathophenotype
but also can lead to the identification of potential regulatory
nodes within the network that can modify phenotype (i.e.,
potential therapeutic target). Representative examples of
modular network representations of disease are shown in
Figure 3.

Network principles in biological systems

Experimental feasibility and analytical tractability have been
the driving forces behind reductionism in medical science.
Over the past 50 years, the biomedical community has
operated fully within this scientific framework, applying it
successfully to basic molecular medicine and clinical trials.
With the advent of the genomic era, however, biological
investigators are confronted daily with ever-growing data sets
that contain potentially useful functional information which
cannot readily be analyzed optimally with the conventional
approach. Most analytical approaches to this problem are

Genome-transcriptome-proteome Environmental perturbations

Inflammation
Thrombosis
Hemorrhage

Fibrosis
Immune
response

Cell
proliferation

Apoptosis
Necrosis

Distinct pathophenotypes:
clinical syndromes and diseases

Intermediate pathophenotypes

Figure 1 Diagram indicating associations among genetic and environmental factors reduce and their interactions with intermediate phenotypes to yield distinct
pathophenotypes. The intermediate phenotypes determine, in part, variation in disease expression and clinical presentation among individuals with equivalent underlying
genetic or environmental exposures that predispose to a disease state.
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rather rudimentary and involve calculating simple correlations
among the genes whose expression changes in response to a
perturbation, clustering the genes by molecular or known
functional class, and drawing crude inferences about mechan-
ism on that basis. This is not a very conceptually satisfying
situation and does little to advance our understanding of the
mechanism(s) underlying the changes in gene expression in

response to the perturbation or its implications for clinical
phenotype.

Until recently, system-based analysis of complex biological
networks was limited by the quantitative tools available, and
by the grossly incomplete knowledge of the network nodes
and their interactions. With the development of novel
quantitative approaches to network analysis, and with the
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Figure 2 (A) Theoretical human disease network illustrating the relationships among genetic and environmental determinants of the pathophenotypes. Key: G,
primary disease genome or proteome; D, secondary disease genome or proteome; I, intermediate phenotype; E, environmental determinants; PS, pathophysiological
states leading to P, pathophenotype. (B) Example of this theoretical construct applied to sickle cell disease. Key: red, primary molecular abnormality; gray, disease-
modifying genes; yellow, intermediate phenotypes; green, environmental determinants; blue, pathophenotypes.
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explosion of currently available genomic, transcriptomic,
proteomic, and metabolomic data sets, the scientific landscape
has changed considerably and biological network analysis is
now a tractable exercise (Barabási and Oltvai, 2004). We will
next consider the methods available to analyze biological
networks, demonstrate the application of these principles to
selected problems in biology and medicine, and discuss the
implications of biological network theory as a construct for
characterizing human disease and defining novel therapies.

Networks can be briefly classified as random or scale free
(Albert and Barabási, 2002). Random networks are those in
which the connections among nodes are driven by chance,
each node having the same likelihood of being connected to
any other node, with the resulting probability, P, of the
numbers of links per node following a Poisson distribution. In
scale-free networks, the probability of the number of links per
node follows a power law (or scale free) distribution
(P(k)¼k�g, where k is the number of links per node and g is
the slope of the log P(k) versus log(k) plot) (Barabási and
Albert, 1999; Albert and Barabási, 2002). A power law
distribution decreases more slowly than the exponential
distribution of random networks; in scale-free networks some
nodes are highly connected (hubs), while the majority of
nodes have few connections.

Real networks are scale free because they evolve with new
nodes added one at a time to nodes that are already highly

linked (Barabási and Oltvai, 2004). In biological systems in
particular, this scale-free addition of new nodes is likely a
consequence of gene duplication (Qian et al, 2001), and is also
affected by alternate splicing and posttranslational modifica-
tion in protein networks (Qian et al, 2001; Bhan et al, 2002;
Pastor-Satorras et al, 2003; Vazquez et al, 2003), as well as the
variable chemical versatility of the metabolic intermediates in
metabolic networks.

There are many beneficial consequences of scale-free
networks in biological systems. They facilitate chemical
diversity at minimal energy cost and minimize the transition
time between metabolic states (Wagner and Fell, 2001).
They recapitulate natural selection and evolution: in
complex gene networks, mutations or deletions of highly
linked (hub) genes lead to embryonic lethality, while
mutations of weakly linked genes account for biological
variability and natural selection (Oikonomou and Cluzel,
2006). Driven by random mutation and selection, scale-free
networks are capable of evolving rapidly toward an optimal
functional state, without any tuning (Albert et al, 2000).
Scale-free networks also minimize the consequences of most
biochemical or genetic errors (Wagner and Fell, 2001), and
accommodate perturbations to the network with minimal
effects on critical functions (Pastor-Satorras and Vespignani,
2002), unless hubs are the targets of the perturbations
(Albert, 2005) (vide infra).

Table I Sickle cell disease

Primary molecular
abnormality (disease
genome or proteome)

Disease-modifying genes or
proteins (secondary disease
genome or proteome)

Intermediate phenotype
(response genome or
proteome and pathological
manifestations)

Environmental determinant Pathophenotype

Hb AVal6Glu Hb F Thrombosis Hypoxia Hemolytic anemia
Hb C Inflammation Dehydration Aplastic anemia
b-Thalassemia Immune response Infective agent Stroke
G6PD Fibrosis Bone infarction
TGF-b Apoptosis/necrosis Painful crisis

Acute chest syndrome

Abbreviation: Hb, hemoglobin.

Table II Pulmonary arterial hypertension

Primary molecular
abnormality (disease
genome or proteome)

Disease-modifying genes or
proteins (secondary disease
genome or proteome)

Intermediate phenotype
(response genome or
proteome and pathological
manifestations)

Environmental determinant Pathophenotype

BMPR-2 mutations 5-HT2B Thrombosis Hypoxia Pulmonary hypertension
Alk-1 mutations 5-HTT Vasospasm Infective agent (HIV, HHV-8) Cor pulmonale
Endoglin mutations Thromboxane synthetase Inflammation Crotolaria sp./toxin Pulmonary

thromboembolism
Prostacyclin synthetase Fibrosis Cocaine
5-Lipoxygenase Proliferation Anorexigens
NADPH oxidase Immune response Alcoholic cirrhosis
Endothelin Apoptosis/necrosis
Hemoglobinopathies
Hereditary spherocytosis
HHT
Thrombocytosis

Abbreviations: 5-HTT, serotonin transporter; 5-HT2b, serotonin 2b receptor; HHT hereditary hemorrhagic telangiectasias.
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The application of network analysis to problems in
biological systems is evolving rapidly. This approach provides
a method for analyzing the connections and interactions
among elements in the ever-expanding genetic, proteomic,
and metabolic data sets of organisms. In addition, it has been
used to identify key regulatory elements in complex gene and
metabolic networks. The dynamic response of a biological
network can be quantitated using a variety of approaches,
including reverse engineering (Basso et al, 2005), non-linear
differential equations coupled with multiple linear regression
(Gardner et al, 2003), Bayesian analysis (Yu et al, 2004), and
cellular automata (Wurthner et al, 2000).

Network approaches to human disease

These methods have recently been applied successfully to
human disease. Network analysis has been used to character-
ize the spread of epidemics (Pastor-Satorras and Vespignani,
2001; Eubank et al, 2004; Madar et al, 2004) and to determine
ways to control them (Pastor-Satorras and Vespignani, 2001;
Dezso and Barabasi, 2002; Madar et al, 2004). Systems
approaches have also been used to identify novel targets that
influence the metastatic propensity and lethality of adenocar-
cinoma of the prostate (Ergun et al, 2007). Using a reverse-
engineered analysis of gene networks involved in malignant
transformation of prostate cancer cells coupled with expres-

sion (transcription) profiling, these investigators computed
the likelihood that genes within the network and associated
pathways mediate disease pathogenesis. The results of this
analysis identified a novel pathway and genetic mediator of
metastasis for adenocarcinoma of the prostate, the androgen
receptor gene. This conclusion is biologically plausible
because androgen suppression therapy is a standard approach
to the treatment of primary prostate cancer, and recurrence
invariably is associated with a loss of growth-dependence on
androgens.

Lim et al (2006) have also recently used systems analysis of
protein–protein interaction networks to identify potential
disease-modifying proteins that are common to a wide range
of neurodegenerative disorders causing ataxia. Inherited
ataxias are associated with gain-of-function or loss-of-function
mutations in many (over 23) seemingly unrelated genes. These
investigators used network analysis to demonstrate that many
ataxia-causing proteins share proteins with which they
interact, some of which can modify neurodegenerative
responses in animal models.

Lu et al (2007) have used a network approach to analyze the
allergic response in experimental asthma. They devised a
biological interaction network using the Biomolecular Object
Network Databank database of molecular interactions curated
from the biomedical literature, then mapped differentially
expressed genes from expression array data onto the network.
They next analyzed the topological characteristics of the
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Figure 3 Examples of modular network representations of disease. Key: G, primary disease genome or proteome; D, secondary disease genome or proteome;
E, environmental determinants; I, intermediate phenotype; P, pathophenotype.
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differentially expressed genes, and then determined the
correlation between topology and biological function using
the Gene Ontology classifications. Using this approach, these
investigators found that nodes (genes) with high connectivity
tend to have lower levels of change in expression than
peripheral nodes, consistent with the notion that disease-
causing genes are typically not central hubs in a molecular
module.

Recently, Goh et al (in press) have used network analysis
methods to characterize the set of disease-gene associations
documented in the Online Mendelian Inheritance in Man
database. They observed that genes associated with similar
disorders (e.g., cataracts and cardiomyopathies) show a
greater likelihood of association between their products and
greater similarity among their transcription profiles than those
not associated with similar disorders (Figure 4). Similarly,
proteins that are associated with the same disease show a
10-fold increased tendency to interact with each other than
those not associated with the same disease. These observa-
tions support the concept of disease-specific functional
modules, which comprise a comprehensive network of known
genetic diseases. These investigators also demonstrated that
the vast majority of disease genes are not essential and show
no tendency to encode highly connected protein hubs, rather
being localized to the functional periphery of the network. In
contrast, essential genes whose defects often lead to lethality
in utero or in early extrauterine life tend to encode hubs and to
occupy a central position in the network.

Network approaches to therapeutics

The development of network strategies for the analysis of
biological systems raises the question of whether one can use
these approaches to characterize and treat human disease.
Identifying the molecular causes of disease represented a
major breakthrough in the history of medicine, moving the
discipline from pattern recognition and therapeutic strategies
based on syndromic pathophysiology to molecular mechanism
and evidence-based therapies derived from clinical trials
designed on the basis of molecular mechanism. Clearly, this
transition reflects the success of the conventional scientific
method, upon which medical research has been based, and
cast the discipline of medicine in an entirely different light as
scientifically rigorous, rational, and deterministic.

Notwithstanding this record of success, the medical
literature is rife with counterexamples that fail to support a
straightforward approach to pharmaco-therapeutics derived
from reductionist principles. An example will serve to
illustrate this point for a therapeutic trial. Hyperhomocystei-
nemia, a know risk factor for atherothrombosis, can be treated
by facilitating the methylation of homocysteine to methionine.
For this reason, several large-scale clinical trials were initiated
to test the hypothesis that lowering homocysteine with folic
acid and vitamin B12 can reduce the risk of atherothrombotic
events in individuals with established vascular disease and
hyperhomocysteinemia. Unfortunately, three of these trials
recently completed yielded negative results: while homocys-
teine levels were reduced with the therapy, event rates were
unchanged compared with those in the population treated

with placebo. A possible reason for this unexpected outcome,
in retrospect, is that the assumed exclusivity of the homo-
cysteine-lowering effect of supplemental folic acid and vitamin
B12 dramatically oversimplifies their potential effects in this
complex system (Loscalzo, 2006): these vitamin cofactors not
only lower homocysteine but also promote DNA synthesis,
thereby supporting cell proliferation; they can also enhance
methylation potential in the setting of hyperhomocysteinemia,
by increasing the ratio of S-adenosylmethionine to S-adenosyl-
homocysteine, which can alter gene expression by modulating
the methylation status of CpG-rich promoter regions.

As with diagnostics, this example suggests that reductionist
approaches to therapeutics have their limitations and can, in
the worst case, be misleading. Optimizing therapeutic
approaches to human disease will clearly require the applica-
tion of network analysis (Morel et al, 2004; Kitano, 2007):
network analysis can be used to identify new drug targets (e.g.,
the androgen receptor in prostate cancer; Ergun et al, 2007), to
determine the appropriate dosing of a drug, based on
metabolomic profiling (Nicholson, 2006), and to ascertain
the causes of resistance to therapies or enhanced toxicities of
drugs based on the robustness-fragility trade-off inherent in
the system (Kitano, 2007).

Organizational principles of biological
networks and their application to human
disease networks

Are there organizational principles at the molecular level that
govern biological networks and their transition to disease from
which we can develop rational therapies? A key principle is
that cellular functions are conducted in a highly modular
manner (Hartwell et al, 1999; Ravasz et al, 2002). In general,
modularity refers to a group of physically or functionally
linked nodes (in this case molecules) that work together to
achieve a distinct functional phenotype. Biology is rife with
examples of modularity: the overwhelming majority of
molecules in a cell is either part of an intracellular complex
with modular activity, such as the ribosome, or participates in
an extended (functional) module as a temporally regulated
element of a relatively distinct process (e.g., signal amplifica-
tion in a phosphorylation-mediated signaling pathway). The
identification of the specific functional modules in a network is
complicated by the fact that at face value, the scale-free
organization and modularity seem to be internally incon-
sistent network properties. Modules by definition imply the
existence of groups of nodes that are relatively isolated from
the rest of the system. Yet, in a scale-free network, hubs are in
contact with a high fraction of nodes, making the existence of
relatively isolated modules unlikely. Clustering and hubs can
naturally coexist; however, if topological modules are not
independent but combine to form an hierarchical network in
which small, highly integrated modules assemble into larger
modules each of which combines in an hierarchical fashion
into even larger modules (Hartwell et al, 1999). Signatures of
such hierarchical modularity are present in all cellular
networks that have been investigated to date, ranging from
metabolic (Ravasz et al, 2002) to protein–protein (Yook et al,
2004) interaction and regulatory networks.
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What can this rapidly evolving knowledge of cellular
networks tell us about diseases? For several disorders known
to arise from mutations in any one of a few distinct genes, the
corresponding protein products have been shown to partici-
pate in the same cellular pathway, molecular complex, or
functional module. For example, Fanconi anemia arises from
mutations in a set of genes encoding proteins involved in DNA
repair, many of them forming a single heteromeric complex.
Recent findings indicate that such association between
disorders and distinct functional modules is more than
anecdotal. Indeed, the protein products of the genes that
belong to common disorder classes tend to interact with each
other via protein–protein interactions, to display high coex-
pression levels, and to exhibit synchronized expression as a
group (Yook et al, 2004). Taken together, these findings
support the idea of a global functional relatedness for disease
genes and their products, and offer a network-based model for
the disease propensity in an individual (Goh et al, in press).
Cellular networks are modular, consisting of groups of highly
interconnected proteins responsible for specific cellular func-
tions. In this construct, a disease represents the perturbation or
breakdown of a specific functional module caused by variation
in one or more of the components producing recognizable
developmental and/or physiological abnormalities. This mod-
el offers a simple explanation for the emergence of complex or
polygenic disorders: a phenotype often correlates with the
inability of a particular functional module to carry out its basic
functions. For extended modules, many different combina-
tions of perturbed genes could incapacitate the module, as a
result of which mutations in different genes will appear to lead
to the same phenotype (e.g., hypertrophic cardiomyopathy).
This correlation between disease and functional modules can
also inform our understanding of cellular networks by helping
us to identify which genes are involved in the same cellular
function or network module. Importantly, this association of
disease with functional modules can also inform our choice of
rational therapeutic targets.

Conclusion

What, then, is the benefit of a network analysis of disease and
its treatment? First, systems-based network analysis can
identify those determinants (nodes) or combinations of
determinants that strongly influence network behavior and
disease expression or phenotype. Second, these regulatory
determinants may not always be obvious from reductionist
principles, and, thus, the analysis provides unique insight into
disease mechanism and potential therapeutic targets. Third,
network analysis of disease gives one the opportunity to
consider with quantitative rigor the relationships within the
network genome, environmental exposures, and environmen-
tal effects on the proteome (posttranslational proteome) that
define the specific pathophenotype. In this construct, disease
can be considered the result of a modular collection of
genomic, proteomic, metabolomic, and environmental net-
works that interact to yield the pathophenotype. Fourth,
disease network analysis ultimately provides a mechanistic
basis for defining phenotypic differences among individuals
with the same disease through consideration of unique

genetic and environmental factors that govern intermediate
phenotypes contributing to disease expression. Lastly, disease
network analysis offers a unique method for identifying
therapeutic targets or combinations of targets that can alter
disease expression. In short, this approach offers a novel
method for classifying human disease. The novelty in this
approach rests not simply in nosology, but in defining disease
expression on the basis of its molecular and environmental
elements in a holistic and fully deterministic way. As we have
reviewed here, the application of these principles to specific
diseases is in its infancy, but the early concepts are internally
consistent and the early results encouraging.
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