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The development of genetic engineering techniques has speeded up the
growth of the biotechnological industry, resulting in a significant increase in the
number of recombinant protein products on the market. The deep knowledge of
protein function, structure, biological interactions, and the possibility to design
new polypeptides with desired biological activities have been the main factors
involved in the increase of intensive research and preclinical and clinical
approaches.Consequently, newbiological entities with added value for innovative
medicines such as increased stability, improved targeting, and reduced toxicity,
among others have been obtained. Proteins are complex nanoparticles with sizes
ranging from a few nanometers to a few hundred nanometers when complex
supramolecular interactions occur, as for example, in viral capsids.However, even
though protein production is a delicate process that imposes the use of sophisti-
cated analytical methods and negative secondary effects have been detected in
some cases as immune and inflammatory reactions, the great potential of biode-
gradable and tunable protein nanoparticles indicates that protein-based biotech-
nological products are expected to increase in the years to come.

I. Introduction
The design of new chemical entities (NCE) for diagnosis and treatment of
humandiseases has relied on the discovery of active chemical drugs froma diverse
library of compounds or from naturally occurring molecules.1,2 Further chemical
modifications improve pharmacokinetic properties to obtain a final product with a
known mechanism of action and decreased toxicity.3 Nonetheless, using such
approaches, the final products present low specificity for their target molecules,
interacting with many other molecules and accumulating in some tissues, dis-
turbing the correct homeostasis of the system. In some cases, the adverse effects
of drug administration exceed pharmacological effect and despite the concise
mechanism of action of the drug over the target molecule representing an
improvement in the patient’s state, the treatment has to be prevented or discon-
tinued.4 In fact, although amaintained steady increase in the number of launched
NCEhas been observed in the last years, the question arises whether this classical
approach has already exhausted the discovery of innovative molecules.5

On the other hand, macromolecular new biological entities (NBE) have
been used to supplement cellular deficiencies or to inhibit cellular pathways
exploiting their relatively specific mode of action. Proteins and peptides have
been obtained first from their natural source or produced as recombinant
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versions after the development of genetic engineering techniques in the late
1970s. However, the delivery of biological entities is sometimes hampered by
its low half-life in the bloodstream by unspecific degradation, resulting in an
expensive and ineffective process. Nevertheless, some solutions have already
been explored for biopharmaceuticals to increase solubility and stability and
to reduce immunogenicity including postranslational modifications such as
glycosylation and covalent conjugation of polyethylene glycol.6

Thus, one of the main objectives in the use of drugs (for either NCE or
NBE) is the need to optimize the delivery system to reduce the pharmacologi-
cal dose which would consequently represent a concomitant reduction in
toxicity and cost. In that scenario, new delivery approaches have been imple-
mented using biological interactions such as antigen–antibody binding (immu-
noliposomes)7 or more sophisticated interactions including the binding
between nutrient concentrator SPARC (secreted protein acidic and rich in
cysteine) and albumin in the treatment of some types of cancer (AbraxaneÒ).8,9

Proteins can be then used for their targeting qualities as molecular delivery
vehicles both for the specific delivery of drugs or nucleic acids in gene therapy
approaches and by themselves as therapeutic molecules. One of the interesting
characteristics of proteins is their ability to form intermolecular driven com-
plexes as sophisticated and structurally perfect as in the case of viral capsids. In
addition, through the use of genetic engineering, recombinant proteins can be
tuned to include additional properties to optimize drug delivery and nucleic
acid delivery in gene therapy.

In this chapter, the main available strategies to develop protein-based
nanovehicles or biopharmaceuticals will be described. In this context, several
parameters will be defined such as proper formulation, stability, immunogenic-
ity, and delivery to the correct cell type and cell compartment. Modular protein
engineering, virus-like particles (VLPs), and other self-assembling entities are
envisioned as modulatable novel protein nanoparticles able to include many
desirable properties in the correct delivery of drugs and nucleic acids. Finally,
some successful examples of protein nanoparticles on the market will be
described in addition to protein products currently in clinical trials and under
preclinical research in order to envision which type of protein nanoparticles
will be available soon on the market.
II. Protein Nanoparticle Formulation and Biological Barriers

When a protein-only nanoparticle is meant to be used as a vector to deliver
therapeutic nucleic acid, drug, or peptide, there are several steps that the
nanoparticle has to perform to successfully get inside the target cell. In the
first instance, it is necessary to obtain the proper formulation of the complex
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with the therapeutic molecule to generate a vehicle capable of being trans-
ported in the blood if a systemic administration is needed and retaining a
significant stability before reaching the target cell.10,11 In addition, the
biological system poses specific barriers that have to be overcome such as
membranes (cytoplasmic, endocytic, and nuclear), degradation (protease deg-
radation induced by acid denaturalization in lysosomes, cytosolic proteosomes,
and nucleases), cytosolic transport, and nuclear entry if necessary.12,13 For
central nervous system therapies, the blood–brain barrier (BBB) represents
the main bottleneck, and for that, a specific strategy has to be designed.14

Furthermore, the therapeutic complex has to be flexible enough in order to
release the therapeutic molecule in the specific cell compartment.

Thus, several protein motifs have been described to overcome each and
every process described earlier so that a modular multifunctional protein can
be generated including those modules that are necessary to achieve its goal. In
order to get a rational construction of the multifunctional vector, each step has
to be carefully taken into account so as to overcome every step which is needed
to achieve its final goal (Table I).
A. Interaction with Drugs and Nucleic Acids

The DNA/RNA condensation or drug interaction with the protein vector is

a critical step in the formulation of protein nanoparticles for gene therapy. They
have to remain attached to the vector during the whole transport process
through the body and the cell until it can be released in the desired localization
within the target cell. Highly positively charged peptides containing a large
number of arginines or polylysines have been used to promote electrostatic
interactions since nucleic acids are highly negatively charged molecules.15–22

Natural DNA-condensing proteins as nuclear histidines or protamines can also
be used to bind nucleic acids.22–25 Protamine, which is the protein that replaces
histidines during the spermatogenesis process, is a sperm chromatin compo-
nent and just as the histidines do, it has very high DNA condensation ability to
protect nucleic acids form cytosolic endonucleases.23,26 In addition, as soon as
the complex reaches the cellular nucleus, protamine is degraded by chromatin-
remodeling proteins, releasing the transported DNA allowing its expres-
sion.15,23 In contrast, polycationic DNA condensation modules such as
polylysines and polyarginines—even they can present higher DNA condensa-
tion ability depending on the polycationic chain length—usually present lower
DNA-releasing ability, interfering negatively with the accessibility of cellular
transcription factors and DNA expression capacity.15

All these DNA condensation modules described above interact with any
DNA that is incubated in an unspecific way. However, there are proteins such
as GAL4 that are able to recognize specific DNA sequences27–29 and that
permit to bind and condensate specific DNA sequences in the final vector.30,31



TABLE I
SELECTION OF PEPTIDE MOTIFS USED IN GENE THERAPY AND DRUG DELIVERY TO IMPROVE PROTEIN NANOVEHICLE PERFORMANCE

Peptide motif Sequence References

Nucleic acid condensation peptides
Polylysine (KKKKKKKKKKKKKKKKKKKK)n 16–18
Polylysine containing

peptides
YKAKKKKKKKKWK and derivatives 19–22

Salmon protamine PRRRRSSSRPVRRRRRPRVSRRRRRRGGRRRR 23–25
GAL4 MKLLSSIEQACDICRLKKLKCSKEKPKCAKCLKNNWECRYSPK 30,31

Blood–brain barrier (BBB) peptides
g7 H2N-Gly-L-Phe-d-Thr-Gly-L-Phe-L-Leu-L-Ser(O-b-d-glucose)-CONH2 107
RVG YTIWMPENPRPGTPCDIFTNSRGKRASNG 56
Tat YGRKKRRQRRR 108
R9 RRRRRRRRR 14

Cell-penetrating peptides (CPP)
Tat GRKKRRQRRPPQ 36–41
R9 RRRRRRRRR 42
Penetratin CRQIKIWFQNRRMKWKK 43,44
bPrPp MVKSKIGSWILVLFVAMWSDVGLCKKRPKP 43
Transportan CLIKKALAALAKLNIKLLYGASNLTWG 44–46

Receptor-specific ligands (ligand/receptor)
RGD/integrins (mainly

avb3)
GRGDSP 47,48

CXCL12/CXCR4 KPVSLSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWIQEYLEKALN 49,50
Transferrin receptor ligand

(12Aa)/transferrin
receptor

THRPPMWSPVWP 51,52

EGF/EGF receptor NPVVGYIGERPQYRDL 53,54

(Continues)



TABLE I (Continued)

Peptide motif Sequence References

Asioaloglycoprotein/
asioaloglycoprotein
receptor

55

RVG/acetil-colin receptor YTIWMPENPRPGTPCDIFTNSRGKRASNG 56
PLAEIDGIELTY/integrin
a9b1

PLAEIDGIELTY 57

Molossin (RGD)/integrin ICRRARGDNPDDRCT 58
Secretin/Secretin receptor HSDGTFTSELSRLRDSARLQRLLQGLV 59
NL4 (loop 4 of nerve
growth factor)/TrkA

CTTTHTFVKALTMDGKQAAWRFIRIDTAC 60

Neurotensin/Neurotensin
receptor (NTRH)

ELYENKPRRPYIL 61

LSIPPKA, FQTPPQL,
LTPATAI/LOX-1

LSIPPKA, FQTPPQL, LTPATAI 62

Monoclonal Abs/antigen
recognized by the
antibody

– 63–65

Endosomal escape fusiogenic peptides
HA-2 GLFGAIAGFIENGWEGMIDGWYG 12,69,70
GALA WEAALAEALAEALAEHLAEALAEALEALAA 12,71–74
KALA WEAKLAKALAKALAKHLAKALAKALKACEA 12,75
JTS-1 GLFEALLELLESLWELLLEA 12,19
ppTG20 GLFRALLRLLRSLWRLLLRA 12,76
PPTG1 GLFKALLKLLKSLWKLLLKA 12,76
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ 12,77
Tat GRKKRRQRRRPPQ 12,39,40
Penetratin RQIKIWFQNRRMKWKK 12,78,79
Transportant GWTLNSAGYLLGKINLKALAALAKKIL 12,45,46
INF 7 GLFEAIEGFIENGWEGMIDGWYG 12,80



Endosomal escape histidine-rich peptides
CHK6HC CHKKKKKKHC 12,22
H5WYG GLFHAIAHFIHGGWHGLIHGWYG 12,80–82
LAH4 KKALLALALHHLAHLALHLALALKKA 12,83

Nuclear import peptides
SV40 large T antigen PKKKRKV 36
Tat VIH transcription factor 37
EBNA-1 Epstein–Barr virus 91
Melittin Honeybee venom (Apis mellifera) 77
M1 (c-myc transcription

factor)
PAAKRVKLD 92

M2 (c-myc transcription
factor)

RQRRNELKRSP 92

GAL4 amino terminal
domain

Transcription factor 93

Protamines Sperm DNA condensation protein 23
Histone H1 Nuclear DNA condensation protein 94,95
M9 (heterogeneous nuclear

ribonucleoprotein A1
(hnRNP A1)

NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY 96

Vp3 SV40 estructural protein Vp3 97
Adenovirus E1 protein C-

terminus
KRPRP 98

Xenopus N1 protein VRKKRKTEEESPLKDKDAKKSKQE 99
Fibroblast growth factor 3

(FDF3)
RLRRDAGGRGGVYEHLGGAPRRRK 100

Poly ADP-ribose
polymerase (PARP)

KRKGDEVDGVDECAKKSKK 101

Xenopus protein
nucleoplasmine

KRPAATKKAGQAKKKK 102
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B. Protein Stability in Serum

In many cases, the multifunctional protein vector is in vivo administrated

by the systemic route in order to travel in the blood and reach the target cells.
That exposes the vector to all blood components, making it susceptible to be
degraded. Thus, it is completely necessary that the vector remain in the blood
long enough to be able to reach the target cells. It has also been described that
naked DNA has an estimated half-life in blood of minutes10; so protein nano-
vehicles in gene therapy, among other properties, are intended to protect
nucleic acids from degradation.

One important factor when the vector is exposed to the blood is that it can
be recognized by the immune system components and produces an immune
response against the vector. Thus, it is also very important to try to make the
vector as less antigenic as possible in order to avoid being degraded or even
being toxic to the organism.32
C. Defeating Biological Barriers
1. CELL BINDING AND INTERNALIZATION
Peptide uptake or internalization involves a step before the protein binding
to the cell surface. This attachment can be either specific or unspecific but in all
cases the promotion of its internalization is required.33

Positively charged peptides usually bind the cellular surface by unspecific
electrostatic interactions with the negatively charged cell surface proteoglicans.
This kind of peptides can be used in the multifunctional protein if specific
targeting is not required.33 Cell-penetrating peptides (CPPs) have been widely
described as unspecific cell-binding and internalization peptides34–46 (see also
the chapter ‘‘Peptide Nanoparticles for Oligonucleotide Delivery’’ by Lehto
et al. in this volume). However, specific interactions can be obtained by
incorporating cell receptor ligands if cell or tissue targeting is required for
the therapeutic action. Moreover, some of those ligand–receptor interactions
promote the ligand–receptor complex internalization. Many peptides have
been described in the literature as receptor-specific ligands so any of them
can be added to the multifunctional proteins in order to confer them cell
specificity.47–62 The most natural specific ligands that can also be used for cell
targeting are monoclonal antibodies.32,63–65 In addition, if no specific peptides
are available for an intended target, new specific binding peptides can be found
by using phage display66 or combinatorial chemistry.67
2. ENDOSOMAL ESCAPE
Several internalization pathways are possible depending on the vector
properties,27,33 including endocytosis (clathrin/caveolae-mediated, clathrin/
caveolae-independent), macropinocytosis, and non-endocytic pathways.
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It is known that more than one internalization pathway can be performed at
the same time but usually the peptide-based vector uses endocytic pathways.68

Moreover, it seems that proteins that interact with a specific cellular receptor are
internalized by the clathrin-mediated endocytic pathway.33Most of the generated
endosomal vesicles will converge to late endosomes that eventually will fuse with
cellular lysosomes.15,33 Remaining in the cellular endosomes, the multifunctional
protein will be degraded, so it is strictly necessary that the internalizedmultifunc-
tional proteins be released into the cellular cytoplasm escaping from degradation.

Several peptides have been described that are able to promote endosomal
escape and can be classified into two types depending on their escape mecha-
nism: fusiogenic peptides and histidine-rich peptides.36 The fusiogenic pep-
tides are small peptides that have hydrophobic amino acids (Aa-s) interspersed
at constant intervals with negatively charged Aa-s.12,19,39,40,45,46,69–80 Thus,
when early endosomes become late endosomes, their low pH induces a confor-
mational change in the peptide, which adopts a alpha-helix structure, in an
amphipathic structure able to fuse with the endosomal membrane, leading to
pore formation and releasing all the endosomal content into the cell cyto-
plasm.36 The histidine-rich peptides are small peptides with a high histidine
content whose endosmolytic activity is mediated by a mechanism called
‘‘proton sponge’’.12,22,80–83 When the endosomal pH becomes low in late
stages, the imidazole groups of the histidines are protonated and attract endo-
somal Cl� ions, buffering against the proton pump. Thus, the endosomes
collapse by an osmolytic swelling process and the endosomal content is re-
leased to the cell cytoplasm.36 Further details are given in the chapter ‘‘Peptide
Nanoparticles for Oligonucleotide Delivery’’ by Lehto et al. in this volume.
3. VECTOR STABILITY IN THE CYTOSOL
Once the protein has achieved the cellular cytosol, it can be degraded by
cellular proteases or by the cellular proteosome system.84 It is important to
avoid this process, especially if the protein has to reach the cellular nucleus. If
the final target of the nanoparticle is the cellular cytoplasm, it is necessary that
it remain there at least long enough to perform its therapeutical action.

Several peptide proteosome inhibitors have been described that are able to
avoid this type of protein degradation. By adding these peptides to the final
protein vector it is possible to protect it and enhance cytoplasmatic stability.
Epstein–Barr virus nuclear antigen 1 (EBNA1) contains a proteosome inhibi-
tor consisting of glycine–alanine repeats able to prevent proteosomal proteoly-
sis. It has been shown that a minimum of 4 Aa-s Gly-Ala repeats are necessary
to achieve such protective activity.85–87 If the protein vector is carrying nucleic
acids (DNA or RNA), degradation by the cytosolic endonucleases has to be
taken into account, so it is also very important to protect this nucleic acid in
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order to maintain its integrity. Some DNA/RNA condensing peptides as pro-
tamines also protect the DNA against cytoplasmic endonucleases and enhance
its stability as has been described above.15
4. INTRACYTOSOLIC MOBILITY
The cellular cytoplasm is a very crowded and compartmentalized environ-
ment where cellular organelles and cytoskeleton make the free diffusion of
macromolecules such as protein vectors difficult. However, cytoskeleton ele-
ments such as microtubules are used by endosomes and other cytosolic macro-
molecules for intracytosolic mobility.33 Dyneins have been described as being
capable of carrying those macromolecules and endosomes along the microtu-
bules in a retrograde transport toward the nucleus. Some small peptides that
are able to bind dyneins have been identified. They can be added to the
multifunctional protein vector in order to mediate an intracytosolic mobility
toward the cellular nucleus.36 Several dynein-binding proteins have been
identified in viruses that are able to use this transport system. Comparing
those protein sequences, a consensus peptide sequence (KSTQT) that is able
to bind to the dynein LC8 light chain has been identified.88
5. NUCLEAR DNA DELIVERY AND EXPRESSION
Molecules lower than 45 kDa/10–30 nm are able to enter in the cellular
nucleus by passive diffusion. However, macromolecules higher than 45 kDa/
10–30 nm generally require an active transport system through the nuclear
pore system. This transport mechanism generally requires a specific targeting
signal peptide named nuclear localization signal (NLS). These signaling pep-
tides are usually rich in basic Aa-s, which are recognized by the cellular
importines and actively transported through the nuclear pore.15,89 Monopartite
or bipartite NLS sequences which are NLS peptides that have one or two NLS
recognized sequences respectively have been described.12 Thus, these peptidic
sequences can be added into the final multifunctional protein if nuclear locali-
zation is required in order to express a carried DNA. It has been reported that a
single NLS sequence is sufficient to transport the vector to the nucleus and that
a large number of NLS sequences can result in inhibition of its activity.90

One of the most used NLS signal peptides are fragments derived from the
111–135 Aa-s of the simian virus SV40 large tumor antigen (T-ag). Other NLS
sequences can be found in GAL4, protamines, or Tat.23,36,37,77,91–102

It is important that when the transportedDNA reaches the cellular nucleus,
it has to be released in order to be accessible to the nuclear transcription
factors and achieve the desired expression level. Thus, while designing the
multifunctional protein vector, this aspect has to be taken into account.
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Once the DNA has been released in the cell nucleus, it will be necessary to
control its expression level depending on which therapeutic action is being
promoted. When the goal is to kill a cell as in cancer therapies, the uncontrolled
DNA expression levels would not be a problem. However, when a specific
protein expression level is required, achieving good control is very important.13

Some expression systems have been developed that can be pharmacologically
regulated by oral drug formulation.103 Cell-specific promoters and enhancers
can be also used in order to confer high cell specificity to the therapy.104,105
D. Ways to Get Over the BBB

The BBB is a hermetic barrier that only allows nonlipophilic molecules

smaller than 400 Da to cross it. However, some human proteins such as insulin,
transferrin, insulin-like growth factor, or leptins are able to go across it by
receptor-mediated transporters. Thus, the most important factor limiting central
nervous system-targeting therapeutics is the presence of the BBB.106 Finding the
way to cross it will be the main challenge.

Some peptides have been described that are able to reach the brain crossing
the BBB. Moreover, it has been seen that they can be associated with another
molecule and transported through the barrier. Thus, they could be interesting
candidates to be included in themultifunctional vectors if central nervous system
targeting is required.14,56,107,108

Antibodies have also been described that bind transferrin and insulin
receptors and that are able to cross the BBB efficiently. They can be conjugated
with large molecules, allowing its translocation to the central nervous
system.63,64,109–111
III. Multifunctional Proteins
A. Protein Engineering: Direct Evolution, De Novo
Synthesis, and Rational Design

The development of genetic engineering techniques has increased the

natural repertoire of proteins for the design of useful and/or valuable proteins
with the aim to obtain new proteins with desired functions. There are three
main strategies leading to the construction of engineered proteins: (a) direct
evolution, (b) de novo protein design, and (c) rational design.

Directed evolution has developed quickly to become a method of choice
for protein engineers in order to create enzymes having desired properties for
all kind of processes. Over the past decade, this technique has become a daily
part of the molecular toolbox of every biochemist. This is emphasized by the
increasing number of publications about the subject.112
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In nature, evolution and creation of new functionalities is achieved by
mutagenesis, recombination, and survival of the fittest. Directed evolution
mimics this and is a process of iterative cycles of producing mutants and
finding the mutant with the desired properties. Mutations can be introduced
at specific places using site-directed mutagenesis or throughout the gene by
random mutagenesis. Several mutagenesis techniques have been developed in
order to avoid codon bias.113,114 The first technique used to mimic evolution
was DNA shuffling.115 This method is based on the mixing and subsequent
joining of different related small DNA fragments in order to form a complete
new gene. In the process of shuffling, the recombination frequency is depen-
dent on the degree of homology. A high level of recombination is important to
get all possible combinations of mutations. Since recombination can be
biased, several methods to overcome problems arising from the use of shuf-
fling in the early years were tackled by novel strategies, all having their own
advantages and disadvantages.112 The products obtained by these methods
have to be screened for desired qualities and not all of them can be easily
screened.

De novo protein design offers the broadest possibility for new structures.
It is based on searches for amino acid sequences that are compatible with a
three-dimensional protein backbone template using in silico techniques. Sev-
eral research groups in the field have applied in silico methods to design the
hydrophobic cores of proteins, with the novel sequences being validated with
experimental data.116 In silico protein design has allowed novel functions on
templates originally lacking those properties, modifying existing functions, and
increasing protein stability or specificity. Beyond any doubt, intense research
activities are ongoing in the field, the potential of which is simply enormous.117

So far there have been numerous examples of full sequences designed ‘‘from
scratch’’ that were confirmed to fold into the target three-dimensional struc-
tures by experimental data.118 The zinc-finger protein designed by Dahiyat and
Mayo119 was the first one to appear by this method.

Rational design of proteins is based on the modification or insertion of
selected amino acids or domains in a polypeptide chain backbone to obtain
proteins with new or altered biological functions. When using that strategy, a
detailed knowledge of the structure and function of the backbone protein is
needed to make desired changes. This generally has the advantage of being
inexpensive and technically feasible. However, a major drawback of this ap-
proach is that detailed structural knowledge of a protein is often unavailable or
it can be extremely difficult to predict the effects of various mutations. Modular
engineering enables, by using simple DNA recombinant techniques, the con-
struction of chimerical polypeptides in which selected domains, potentially
from different origins, provide the required activities. An equilibrate combina-
tion and spatial distribution of such partner elements has generated promising
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prototypes, able to deliver expressible DNA or molecules to tissue culture but
also to specific cell types in whole organisms.120 Modular fusion proteins that
combine distinct functions required for cell type-specific uptake and intracel-
lular delivery of DNA or drugs present an attractive approach for the develop-
ment of self-assembling vectors for targeted gene or drug delivery.121 One of
the first examples was described by the group of Uherek et al. They combined a
cell-specific target module (antibody fragment specific for the tumor-associated
ErbB2 antigen), a DNA-binding domain (Gal4), and a translocation domain for
endosomal escape.121

In this context, many strategies for the construction of safer vehicles are
being explored and the number of nonviral prototype vectors for gene and drug
delivery is noticeably increasing. Here, the common steps that an approach like
this might explore are presented (Fig. 1).
B. Designing a Protein Nanoparticle

When designing a new protein for drug or gene delivery there are many

critical aspects, namely (a) design of the vehicle itself, required functions,
stability, etc.; (b) production of the protein, suitable expression system,
purification procedure, scaling up process, etc.; (c) characterization of the
vehicle by physicochemical and functional tests; and finally (d) the administra-
tion route and regulatory guidance for biological products. Although all these
aspects belong to different disciplines, they have to be overviewed together.
Here, the major needs of a modular protein for gene and drug delivery are
presented.

To enhance the physicochemical stability of the cargo molecules and their
resistance to nuclease/protease-mediated degradation, protein vehicles should
ideally exhibit, like their natural counterparts (viruses), nucleic-acid binding
and condensing properties.27 Such abilities are, in general, conferred by cat-
ionic segments of the main scaffold molecules that interact with nucleic acids,
mainly through electrostatic interactions. In addition, such complexes need to
efficiently release the nucleic acid in the nucleus (if the cargo is a therapeutic
gene), for which endosomal escape is required. Such functions have been
found in some peptides in many natural molecules and they are suitable for
functionalizing protein vehicles.

The ability to bind a particular cell type with high specificity is especially
significant in a systemic delivery in which appropriate biodistribution and
tissue targeting are essential.122 For nuclear targeting, only naked short nucleic
acids can freely enter the nucleus of nondividing cells via free diffusion through
the nuclear pore. Large molecules require active transport mediated by NLSs
that are often found in viral proteins. Because the molecular mass of plasmidic
DNA varies from to 2 to 10 MDA, DNA that is to be expressed, and essentially
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any macromolecular complex for nucleic acid delivery, requires NLSs.123 The
role and types of functional modules peptides used for all these purposes will
be discussed in depth in the following sections.
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Finally, which protein or peptide is better for a given cargo is to be
determined empirically and only few rules can be taken literally.38,124
C. Production of Protein Nanoparticles

Some steps in the production of a protein-based vehicle after molecular

cloning such as protein production and protein purification125 might be exper-
imentally labor intense with a variable success rate. For that reason, when small
proteins are needed, solid-phase peptide synthesis44 guarantees the process.
However, the classical procedure of biological production allows scaling up the
process in most of the cases and the production of larger polypeptides and full-
length proteins.

Generally, in protein nanoparticle approaches, the protein is composed by
different modules of natural sources such as the cell-penetrating peptide
transactivator of transcription (TAT) derived from the TAT of the human
immunodeficiency virus (HIV)126 or artificial sequences not present in any
organism such as the polylysine DNA-condensing sequence.127

Once it has been defined which modules will be part of the protein, it is
important to define the order they will have in the final construct. It has been
demonstrated by Boekle and coworkers using melittin conjugated to polyethy-
lenimine (PEI) that depending on the side of the linkage (C- or N-terminus),
the lytic activity could be changed. Some other modules have the need to be in
a determined position for its correct function.128

When producing a protein for gene or drug delivery, it is important to know
the origin of its domains to choose the most suitable expression system for its
production. For instance, if any module naturally carries a posttranslational
modification that is essential for its biological function, the expression system
chosen will have to be able to reproduce the same crucial modification.

The main biological production systems for protein drugs are described
below.

Escherichia coli is the most widely used prokaryotic organism for the
expression of recombinant proteins.129 The use of this host is relatively simple
and inexpensive.130 Added advantages include its short duplication time,
growth to high cell densities, ease of cultivation, and high yields of the recom-
binant product. However, since it lacks fundamental prerequisites for efficient
secretion, recombinant proteins manufactured by E. coli systems are mainly
produced as inclusion bodies.125,131 Moreover, posttranscriptional modifica-
tions are not achieved with this system. There are many examples of proteins
for gene delivery produced in E. coli with probed efficiency.132,133

Like E. coli, yeasts can be grown cheaply and rapidly and are amenable to
high-cell-density fermentations. Besides possessing complex posttranslational
modification pathways, they offer the advantage of being neither pyrogenic nor
pathogenic and are able to secrete more efficiently. Species established in



262 DOMINGO-ESPÍN ET AL.
industrial production procedures are Saccharomyces cerevisiae, Kluyvero-
myces lactis, Pichia pastoris, and Hansenulapolymorpha. S. cerevisiae is the
best genetically characterized eukaryotic organism among them all and is still
the prevalent yeast species in pharmaceutical production processes.131 In spite
of their physiological advantageous properties and natively high expression and
secretion capacity, the employability of yeasts in some cases, however, might
reach a limit, particularly when the pharmacological activity of the product is
impaired by the glycosylation pattern. In such cases, either a postsynthetic
chemical modification has to be considered or the employment of more highly
developed organisms. Most examples of nanoparticles produced in yeast are for
VLPs.134

Animal cell expression systems show the highest similarity to human cells
regarding the pattern and capacity of posttranslational modifications and the
codon bias. However, their culture is more complicated and costlier and usually
yields lower product titers. Among the known systems, insect cells infected by
baculovirus vectors have reached popularity since they are considered to be
more stress-resistant, easier to handle, and more productive compared with
mammalian systems and are thus frequently employed for high-throughput
protein expression. For commercial application, scale-up related questions
have to be solved.135–137 Preferably applied in pharmaceutical production
processes are mammalian systems like chinese hamster ovary (CHO) cells
and baby hamster kidney (BHK) cells. These systems are genetically more
stable and easier to transform and handle in scale-up processes, to grow faster
in adherent and submerged cultures, and to be more similar to human cells and
more consistent in their complete spectrum of modification.138 In some cases,
mammalian cell systems can be the only choice for the preparation of correctly
modified proteins.

Peptides, being complex and unique complex molecules with regard to its
chemical and physical properties, can be produced synthetically by the solid-
phase method.139,140 This technology can be used to avoid problems related to
biological production. General advantages of synthetic peptides are that they
are very stable compounds, solid-phase chemistry produces highly standar-
dized peptides, and the crucial polycation component is provided by a ‘‘natural’’
polycation, thus minimizing toxicity.141

However, some disadvantages related to synthetic peptides have been
reported such as the difficulty to synthesize long and well-folded oligopeptides,
peptides with multiple cysteine, methionine, arginine, and tryptophan residues
due to technical limitations or production cost.141
D. Physicochemical Characterization

When working with protein nanoparticles, it is very important to character-

ize them physically and functionally in order to understand their behavior.



PROTEIN NANOPARTICLES ENGINEERED FOR DRUG DELIVERY AND GENE THERAPY 263
The size and charge of protein/cargo particles are crucial properties
which influence rates of diffusion, binding to polyanionic components of
connective tissues, transversal of anatomical barriers, binding of serum pro-
teins, attachment to cells, and mechanisms of endocytosis, among other
factors. Stability in physiological salt solutions is a key issue for in vivo
delivery, as salt is found everywhere in the body.141 Mixing a multivalent
polycation and DNA results in electrostatic binding of both molecules, with
charge neutralization of DNA and a particle formation named conjugate.
Charge neutralization can be easily seen by retardation gel assays and particle
formation by dynamic light scattering (DLS). DLS is a good method to see
particle formation but not to quantify relative number of particles of different
sizes.142

To visualize particles, many groups have used transmission electron mi-
croscopy (TEM)15,143 with good results while others have used fluid particle
image analyzer (FPIA) to photograph individual particles in physiological
solutions.58

The net charge of protein/cargo particles is an important variable. Gener-
ally, optimal gene delivery for cell lines requires a net positive charge but, as
stated previously, it has to be determined empirically. One of the best techni-
ques to determine the net charge is by calculating the Zeta potential that
measures the electrophoretic mobility of particles.144

Despite the fact that physical characterization is a key element, under-
standing and testing the functionality and pharmacokinetics of a gene or drug is
the most important part of its development process. Most of the initial tests are
done using cell lines in in vitro experiments using reporter genes, RNA, or
drugs.145,146 Quantifying the percentage of transfected cells or drug-induced
changes is a very valuable tool to evaluate nanoparticle performance in both
nuclear and cytoplasmic delivery, respectively. In addition, in vitro experiments
may be designed to select a candidate for the in vivo experiments from a group
of possible therapy vectors.

The quantitative kinetics of particle binding, the molecular basis of particle
interactions with target cell membranes, the efficiency of particle internaliza-
tion, and endosomal escape are all poorly understood.141

Interaction of particles with plasma membranes prior to protein internali-
zation can be either unspecific or specific. Untargeted delivery normally is the
consequence of electrostatic interactions between anionic ligands in the cell
surface and cationic components of the vehicle. On the other hand, targeted
delivery to specific membrane molecules is a more sophisticated approach.
It aims to improve cell specificity and efficiency, by directing to molecules, only
expressed or overexpressed in a particular cell type, that initiate internalization
by endocytosis. Targeting moieties include many types of molecules and is
discussed afterwards.
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Internalization of particles, its mechanisms, and kinetics are not well known
and most studies about nanoparticle delivery do not focus on this aspect. There
are several endocytic pathways each initiated by different ligands.147 Enhanc-
ing the delivery by addition of chloroquine, a synthetic molecule used primarily
for the prophylaxis and treatment of malaria that disrupts endosomes,148 is an
accepted parameter to demonstrate endosomal localization of particles.

Endosomal escape is the area most intensively investigated but is poorly
understood. An important practical point to note is that some reagents that are
used can be toxic.141 To enhance this step, anionic fusogenic peptides can be
used. These peptides fuse to membranes in an acidic-dependent manner
causing its disruption.149

In gene delivery approaches, translocation of DNA expression plasmids
into the cell nucleus involves an active, energy-dependent process through the
nuclear pore complex.150 Directly injected DNA into the cytosol is usually, but
not always, poorly transferred to the nucleus150,151 and because of that, the use
of proteins carrying cationic nuclear-localizing sequences (such as that of SV40
large T antigen) has been widely used to overcome this step.143
IV. Natural Self-Assembling Protein Nanoparticles: VLPs

Ideal drug delivery and gene therapy vehicles must accomplish some
desired features such as appropriate packaging size for its cargo, target cell-
specificity, safe and efficient cargo delivery, and protection against immune
recognition, or capability to escape immune recognition. Moreover, these
vehicles must avoid inflammatory toxicity and rapid clearance.152

In this context, viral vectors have been exploited as one of the vehicles of
choice. Viruses are nano-sized (15–400 nm) supramolecular nucleoprotein-
based entities, covered or not with a lipid bilayer (enveloped/nonenveloped
viruses) that satisfy, into relatively simple structures, outstanding properties
and functions that are relevant to drug and gene delivery. Viruses are able to
recognize and interact specifically with cells by receptor-mediated binding,
internalize, escape from endosomes, and uncoat and release nucleic acids
in different cellular compartments. They are also capable of transcribing
and translating their viral proteins to self-assemble into new infectious virus
particles and exit the host cell.120,153–155

Despite all these relevant properties of viral vectors or some other rising
vehicles in drug and gene delivery such as cationic liposomes, their therapeutic
use presents some limitations and risks because of the complexity of produc-
tion, limited packaging capacity, insertional mutagenesis and gene inactivation,
low probability of integration, reduced efficacy of repeat administration or
reduced expression overtime, unfavorable immunological recognition or strong
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immune response against vehicle and transgene, inflammatory toxicity, and
rapid clearance.120,152 In this context, virus capsids or VLPs, produced by
recombinant capsid proteins but lacking the viral genome, have noticeably
emerged as a safer alternative to viral vectors.
A. Structure of Protein Self-Assembled Nanovehicles

VLPs are classically described as self-assembling, nonreplicative and non-

pathogenic, highly organized supramolecular multiprotein nanoparticles
(coats) (ranging from 20 to 100 nm) that can be formed from the minimal
spontaneous self-assembling of one or more viral structural capsid proteins.
It has been described that the self-assembling process of the structural viral
proteins for VLP formation involves both spontaneous assembly, under favor-
able experimental conditions, and the requirement of scaffold proteins as
catalysts.156,157 Therefore, VLPs are considered protein ‘‘coats’’, ‘‘shells’’, or
‘‘boxes’’ that lack the viral genome, still conserve the structure, morphology, and
some properties of viruses. Some of these properties such as cellular tropism
and uptake, intracellular trafficking, membrane translocation, and transfer of
nucleic acids or molecules across the cytoplasmic, endosomal, and nuclear
membranes are important for drug delivery and gene therapy.120,153,155,158–160

Usually, the degree of similarity of VLPs and their viruses depends on the
number of proteins incorporated into the constructs.161,162

Since the first description in 1983 of the viral DNA packaging into mouse
polyomavirus (MPyV) VLPs and its transduction in vitro,163 VLPs of different
viruses such as papillomaviruses,164–166 hepatitis B, C, and E viruses,167–169

polyomaviruses,163,170–179 lentivirus,180,181 rotavirus,145,182 parvovirus,183,184

and norovirus185 have been generated.
B. Characteristic Features of VLPS and Their Limitations

VLPs offer some structure, dynamics, characteristic features, and functions

that make them appealing bionanomaterials to be exploited in the biomedicine
arena as drug and gene delivery vehicles and are discussed in detail afterward.

On the one hand, viral coat proteins have the ability to spontaneously self-
assemble, which ensures the formation of highly organized, regular, repetitive
structurally stable, and very low morphological polydisperse particles that
provide useful properties to be used as scaffolds for bioimaging, synthesis of
bionanomaterials, and as nanocarriers in drug and gene therapy.186 In addition,
homogeneity of particle size and composition is a desired production factor
when developing therapeutic molecules. The overexpression of structural viral
proteins in a convenient expression system renders recombinant proteins
capable of being folded and assembled in discrete organized nanoparticles
with a defined size corresponding to the natural capsid geometry.187–189 More-
over, even though VLPs are structurally stable particles, some biochemical and
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structural studies have observed that viral capsids and bacteriophages may
show some structurally dynamic properties varying in shape, size, or rearrange-
ments of the coat proteins, in response to different factors such as pH.190–193

On the other hand, VLPs are considered biologically safe nanostructures
since they are not infectious (lack of viral genome) and do not replicate,
representing a safer alternative to viral vectors.160,194–197 However, they can
elicit immune and inflammatory responses, especially when repeated adminis-
tration is needed.152 It has to be also noted that when used in vaccination, VLPs
could show excellent adjuvant properties and the majority of VLPs stimulate
strong cellular and humoral immune responses as direct immunogens.198 It has
been suggested that recombinant VLPs derived from infection of insect cells
with baculovirus or even those derived from prokaryotic systems could be
contaminated with different residual components of these host cells, contribut-
ing those impurities to the adjuvant properties.153

One interesting property of VLPs is that coat viral proteins present an
enormous elasticity and adaptability to be modified chemically and/or by
protein genetic engineering154,160,199 to incorporate multiple directed func-
tionalities, in order to be addressed in biomedical applications such as drug
delivery or gene therapy. It has been recently reviewed that chemically and/or
genetically modified VLPs, including CPMV, CCMV, MS2, M13 bacterio-
phages, and other virus-based nanoparticles,155,186 could maintain their struc-
tural integrity and improve their physical stability154 and, moreover, these
modifications could also confer desired cell-targeting properties to the nano-
vehicle.153–155,186,200,201 VLPs can be successfully engineered with spatial pre-
cision to incorporate (attached or genetically displayed on the surface)
targeting tissue-specific ligands such as epidermal growth factor (EGFR) and
antibodies, or other molecules such as oligonucleotides, peptides, gold, and
other metals, target proteins, carbohydrates, polymers, fluorophores, quantum
dots, drugs, or small molecules.152,154,155 Moreover, one of the potential ben-
efits of such modifications is that the specific geometric rearrangement confers
precise recognition patterns.200,201

Furthermore, accessibility of the materials carried within the particle and the
ability of inclusion and separation of nucleic acids, small molecules, and unusual
cargoes with appropriate charge is another outstanding feature and key advan-
tage of VLPs that has also made them excellent vessels for gene and drug
delivery.152,195 As described above, VLPs can be used as empty nanocarriers to
transport molecules chemically attached on their surface or can be loaded ex vivo
with therapeutic small molecules such as drugs, DNAs, mRNAs, siRNAs, oligo-
nucleotides, quantum dots, magnetic nanoparticles, or proteins.155,157,160 VLPs
of different papillomavirus and polyomavirus have been widely characterized
and used for directed delivery in biomedical applications.132,165,173,174,194,202

Osmotic shock and in vitro self-assembling of VLP subunits in the presence of
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the cargo have been the two main strategies used to packaged nucleic acid or
other small molecules. It has to be taken into account that some attachment of
the cargo on the VLP surface can occur.195 Besides, diversity of natural tropism
including liver for hepatitis B VLPs, spleen for some papillomavirus and poly-
omavirus VLPs, antigen-presenting cells for certain papillomavirus VLPs, and
glial cells for human polyomavirus JC (JCV) VLPs, among others152 is one of the
key advantages offered by VLPs providing a wide spectrum of specific targeting
and distribution profiles depending on the directed application. Although each
VLP has its own characteristic receptors, entry pathway, and intracellular traf-
ficking, it has been demonstrated that tropism of VLPs could be customized,
modifying the residues identified as ligands of the cellular receptor on VLPs’
surface or even varying the delivery routes.155,189,203

Another key advantage of VLPs is that they can be easily produced by using
a wide range of hosts and expression systems, each of them with its own
conditionings.162 In the past years, there has been an increasing need to
improve and optimize efficient large-scale production systems, process control
and monitoring, and up- and down-streaming processes.153,157,159,204 Produc-
tion of VLPs usually involves transfection of the cell host expression system of
choice with a plasmid encoding one or more viral structural proteins, further
and rigorous purification for the removal of immunogenic cellular contami-
nants, and quality control of the produced VLP and encapsulation of the cargo
ex vivo before administration.152,158 The most frequent and convenient expres-
sion systems, adaptable to large-scale processes are (1) yeast cells176, (2)
mammalian cells, (3) insect cells infected with recombinant baculovirus205,206,
(4) bacteria204,207, (5) green plants infected with modified viruses208,209, and (6)
cell-free systems.163,204 The preparative and large-scale manufacture of VLPs
in some of these hosts has been reviewed by Pattenden et al. and can be
classified into two main methods of bioprocessing: in vivo and in vitro sys-
tems.157 In addition, the capability of in vitro dissociation and reassociation of
VLPs contribute to the application of easy and more accurate purification
methods than those of viral vectors.152,157 Furthermore, depending on the
expression system, the resulting VLP might be significantly different even
though expressing the same viral proteins. Thus, a broad spectrum of VLPs
could be customized depending on the VLP type, the number of proteins
needed for VLP assembling, and the targeted final application.158,210

As described above, VLPs have great potential as nanocarriers in drug and
gene delivery. At the same time, although there is an increasing flow of devel-
opments in this area, these vehicles also present some limitations that should be
addressed and taken into account, such as residual cellular components, variable
yield of functional VLPs after disassembly/reassembly process, immunostimula-
tion and unsuitability for repeated administration, tolerance to the transgene,
ineffective therapeutic molecule loading, and low transfection rates.152
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C. Tuning VLPS (Chemically or Genetically) for
Their Uses/Applications in Gene Therapy and
Drug Delivery

Due to their versatile nanoparticulate structure and morphology, and non-

replicative and noninfecting nature combined with their natural immunogenic
properties and ease production, VLPs have principally emerged as an excellent
alternative tool to attenuate viruses for vaccination.152,153,204,210 There are cur-
rently commercialized upon the US Food and Drug Administration (FDA)
approvals of some VLP-based vaccines that effectively protect humans from
hepatitis B virus (HBV) (GlaxoSmithKline’s EngerixÒ and Merck and Co.,
Inc.’s Recombivax HBÒ) and human papillomavirus (HPV) (CervarixÒ, an
HPV 16/18 VLP vaccine developed by GlaxoSmithKline’s and GardasilÒ devel-
oped by Merck against types 6, 11, 16, and 18 HPV). Other immunogenic VLP-
based vaccines are already under clinical trials, preclinical test, or basic investi-
gation including HBV,211,212 HIV,180,213 influenza virus,214 parvovirus,159 Nor-
walk virus,185 rotavirus,182 and Ebola virus.215,216

Although VLP-based vaccines have been primarily developed for their use
against the corresponding virus, in the last decades genetic engineering or
chemical modifications have been applied in order to generate chimeric VLPs.
Thus, on the one hand, commonly short heterologous peptide epitopes or full
proteins that are unable to form VLPs or that are unsafe for vaccination have
been presented on surface-exposed loops or fused to N- or C-exposed termini of
structural viral capsid proteins on VLPs.154,161,210 Different HPV,217–219

HBV,220,221 parvovirus,222,223 and chimeric polyoma VLPs have been engi-
neered170,175 and tested for different applications including vaccination against
viral or bacterial diseases, against virus-induced tumors, and more recently, for
immunotherapy of nonviral cancer.161,210 On the other hand, chemical biocon-
jugation for covalent coupling of protein epitopes and small molecules to lysines,
cysteines, or tyrosine residues of VLP surfaces has been applied in viral or cancer
vaccines.200 Chackerian et al. have demonstrated the efficient induction of
protective autoantibodies using self-antigen conjugation to HPV VLPs.224

It is important to point out that VLPs can also be engineered to incorporate
heterologous cell-specific ligands to cell receptors, thus altering their cellular
tropism.154,155,186,201 This great convertibility and flexibility of VLPs to be mod-
ified (chemically and/or genetically), their high stability, natural and diverse
tropism, their nanocontainer properties, and their ability to enter in the cell and
incorporate, bind, and deliver nucleic acids and small molecules have positioned
VLPs as appealing entities not only for vaccination applications but also for a
broad spectrum of other diverse and emerging applications in nanomedicine and
nanotechnology such as immunotherapy against cancer,210,225 gene therapy de-
livery of therapeutic genes into specific cells,161,165,171,184,226,227 and targeted
delivery of drugs and small molecules using VLPs as nanocarriers.174,196
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Although there is no commercial VLP as vector in gene therapy, since the
initial work in 1970 of uncoating polyoma pseudovirus in mouse embryo cells as
gene delivery vector228 and the establishment in 1983 of the viral DNA packag-
ing intoMPyV VLPs and its transduction in vitro,163 different VLPs such as HBV
and hepatitis E virus,229 HPV and polyomavirus nanoparticles172,178,229 have
been modified toward the specific delivery of therapeutic genes and proteins
in different target cells, organs, and tissues in vitro and in vivo by systemic
injection229 or oral administration.230 For example, recombinant VP1-based
polyomavirus VLPs can encapsulate in vitro exogenous DNA, and deliver it by
cell surface sialic acid residues to human brain cells and fetal kidney epithelial
cells.178 Furthermore, VLPs have recently emerged as novel nanocarriers or
nanocontainers to store unnatural cargos, deliver modified oligonucleotides,154

synthetic small interfering RNAs, and plasmids expressing short hairpin RNAs as
therapy to downregulate gene expression.171,231 In this context, Chou et al. have
recently described the use of JCV VLPs as an efficient vector for delivering RNAi
in vitro using murine macrophage RAW 264.7 cells and in vivo using BALB/c
mice in silencing the cytokine gene of IL-10 without significant cytotoxicity for
systemic lupus erythematosus gene therapy.171

One of the key aspects in targeted gene and drug delivery is cell-specific
delivery. It is important to point out that VLPs are tunable nanoparticles that
can also be chemically or genetically engineered to modify their natural cellular
tropism in order to diversify the range of therapeutic applications in targeted
gene or drug delivery.154,201 Some effective approaches to modify the natural
cellular tropism include:
(1) Genetic engineering of VLP chimeras incorporating heterologous cell-
specific short peptides that contain recognition sites of target cell recep-
tors.232 In this context, polyoma and papillomavirus, with solved atomic
structures of their major structural capsid proteins, have been extensively
used to obtain chimeric VLPs as delivery vector systems.165,233 However,
this approach has some bioprocessing limitations such as low production
levels as a consequence of VLP modification, alterations of size and proper-
ties of the VLPs that could affect the structural interactions and conforma-
tions for VLP assembly, disassembly and packaging, and low transduction
efficiencies.157

(2) Chemical bioconjugation of purified VLPs with epitope-containing
peptides234,235 or a wide range of small molecules conferring cell-specific
targeting such as transferrins, folic acid, or other targeting molecules.
As an example, CMPV VLPs have been successfully conjugated with Tfn
using ‘‘click’’ chemistry236 and with NHS-ester-derivatized folic acid,
demonstrating both as internalized into HeLa cells and KB cells,
respectively.183,184
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(3) High-throughput library and directed evolution method is a rational
approach that has been recently used to engineer viral vectors with the
desired tropism properties.237

(4) Pseudotyping, which consists of replacing the envelope protein of one
virus species by the envelope protein of another virus species.238

(5) Modification of the delivery route of the VLPs. It has been shown that
the levels of expression of b-galactosidase in heart, lung, kidney, spleen,
liver, and brain are different depending on the delivery route of polyoma-
virus VP1 VLPs.203
The great accessibility and reactivity showedbyVLPs, aswell as their ability to
serve as nanocarriers, which made them suitable to be exploited in gene therapy,
have also been applied to targeted drug delivery.195 Genetic modification and/or
chemical functionalization of exposed amino acid residues on the capsid surface in
order to attach small molecules, such asmarkers or bioactives molecules, is one of
the most common approaches applied to target drug delivery.174,239 As an exam-
ple, canine parvovirus (CPV) VLPs produced in a baculovirus expression system
and exhibiting natural tropism to transferrin receptors (TfRs) were chemically
modifiedonaccessible lysinesof the capsid surfacewithfluorescent dyemolecules
and delivered to tumor cells. Derivatization of CPV-VLPs did not interfere with
the binding and internalization into tumor cells.183,184

One limitation of VLPs in gene therapy is the low efficiency of gene
transduction due to inefficient DNA packaging. However, a recent study pre-
sented a novel in vivo DNA packaging of JCV VLPs in E. coli that effectively
reduced human colon carcinoma volume in a nude mouse model. In this study,
the exogenous plasmid DNA was transformed into the JCV VP1 expressing
E. coli. The packaging of the second plasmid occurs simultaneously as the
in vivo assembly of the JCV VLP. Even though it is still not clear how the
plasmid DNA molecules are encapsidated in the VLP, the authors showed that
gene transduction efficiency by their in vivo package system was about 80% in
contrast to the 1–2% of gene transduction efficiency achieved by the in vitro
osmotic shock system.226 In addition, the administration of exogenous proteins
may induce the immune system response, reducing therapy effectiveness or
causing undesirable secondary effects, albeit immunological response of pro-
tein nanoparticles can be modulated.240
V. Nonviral Self-Assembling Proteins

Spontaneous protein self-assembly to form ordered oligomers is a common
event in biology. It can prove advantageous in terms of genome-size minimiza-
tion, formation of large structures, stabilization of complexes, and inclusion of
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functional features.241 It has been widely documented that cellular oligomer
proteins as well as viral capsids are stabilized by several weak noncovalent
interactions as hydrophobic interaction, electrostatic energy, and Van der
Waals forces.242–244 These interactions result in a complex quaternary structure
described by three symmetry point groups named cyclic (Cn), dihedral (Dm),
and cubic (T, O, I).245,246

The development of computational techniques to predict protein–protein
interactions using solved 3D protein structures makes it possible to predict
and/or strengthen experimental data performing in in silico approaches.247

Furthermore, its use opens up the possibility to design proteins not only
displaying specific biological functions but also interesting intermolecular
interactions to obtain increased multivalency in the resulting complexes. More-
over, it should be considered that not only whole proteins can self-assemble in
smart nanoparticles; oligopeptides are also capable of forming organized struc-
tures. Many applications are possible due to the enormous quantity of different
combinations and features that can be exploited with peptides.248,249

Furthermore, protein–protein interactions are not the unique parameters
involved in particle formation, nucleic acid–peptide interactions, salt concen-
tration, order of mix, and ratio between nucleic acid and protein can also
strongly influence the condensation process.250,251

Due to their natural tendency to self-assemble forming highly ordered
structures, viruses provide a wide variety of scaffold proteins which are used
as gene/drug carriers. Among them, VLPs have been reviewed in the previous
section. However, simple bacterial proteins can be also utilized as carriers for
gene delivery. For example, heat shock proteins (HSP) from hyperthermophilic
archeaon Methanococcus jannaschii can assemble in a small structure of 24
subunits having an octahedral symmetry. These 12 nm structures are stable at
high temperature, up to 70 �C, and wide range of pH. Residue modifications
are allowed to elicit specific attachment of small molecules.186,252

In bacteria, bacterial microcompartments (BMC) which are intracellular
organelles consisting of enzymes encapsulated within polyhedral, protein-only
shells, somewhat similar to viral capsids, have been described. BMCs are
composed of a few thousand copies of a few repeated protein species (including
one or more enzymes involved in specific metabolic pathways), and with sizes
of around 100–150 nm in cross section. The general role of BMCs is to confine
toxic or volatile metabolic intermediates, while allowing enzyme substrates,
products, and cofactors to pass.

The first described BMC, the carboxysome, was isolated in the early
1970s253,254 and has been found to contain both CO2-fixing ribulose bispho-
sphate carboxylase/oxygenase (RuBisCO)253,254 and carbonic anhydrase255–257

enzymes. Carboxysomes’ function is to enhance autotrophic CO2 fixation at low
CO2 levels.
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Other BMCs were later identified in cyanobacteria and some chemoauto-
troph bacteria. Among them, BMC proteins have been later found to be
encoded in the propanediol utilization operon (pdu) of the heterotroph Salmo-
nella258 and by an operon for metabolizing ethanolamine (eut) in enteric
bacterial species, including Salmonella and Escherichia.259 Salmonella enterica
forms a polyhedral organelle during growth on 1,2-propanediol (1,2-PD) as a
sole carbon and energy source, but not during growth on other carbon
sources.260,261

The pdu organelles’ function is to minimize the harmful effects of a toxic
intermediate of 1,2-PD degradation (propionaldehyde).261–263 Other studies
have shown that a polyhedral organelle is involved in ethanolamine utilization
(eut) by S. enterica.259 The function of the eut microcompartment is to metab-
olize ethanolamine without allowing the release of acetaldehyde into the
cytosol, therefore minimizing the potentially toxic effects of excess aldehyde
in the bacterial cytosol264–266 and also preventing volatile acetaldehyde from
diffusing across cell membrane.267

So far, about 1700 proteins containing BMC domains have been identified,
covering at least 10 different bacterial phyla. The typical BMC protein consists
of approximately 90 amino acids, with an alpha/beta fold pattern.268,269 Some
individual BMC proteins self-assemble to form hexamers, which further
assemble side by side to form the flat facets of the shell.268,270,271 The formation
of icosahedral, closed shells from such flat layers was elucidated in part by
structural studies in carboxysomes: some BMC proteins assemble to form
pentamers, which are located at and form the vertices of the icosahedral
shell.270

Mechanisms directing enzyme encapsulation within protein-based BMCs
have been studied during the last years. It has been described that, in some
carboxysomes, protein CcmM is used as a scaffold to form interactions between
both shell proteins and enzymes,272,273 through a CcmM C-terminal region
with homology to the small subunit of RuBisCO.274 Other studies revealed that
pdu shells can self-assemble without needing interior enzymes275 and that
carboxysomes can self-assemble in vivo when RuBisCO has been deleted.276

Regarding properties of the encapsulated enzymes, in the pdu BMC some
of the internal enzymes are encapsulated by specific N-terminal targeting
sequences.275,277 In this line, Sutter and colleagues278 described a conserved
C-terminal amino acid sequence that mediates the physical interaction of an
iron-dependent peroxidase (DyP) or a protein closely related to ferritin (Flp)
with a specific type of BMC (encapsulins).

In another example, an icosahedral enzyme complex, lumazine synthase
(AaLS) from Bacillus subtilis and Aquifex aeolicus, was engineered to encap-
sulate target molecules by means of charge complementarity and can also be
modified to give different characteristics to the assembled structure.279,280
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Moreover, enzymatic subunits, like E2 of pyruvate dehydrogenase from
Bacillus stearotermophilus, can be modified to be used in gene delivery. E2
peptides naturally form a dodecahedron of 60 subunits of 24 nm in diameter
allowing modification for drug-like accommodation. The assembling/disassem-
bling of these structures can be modulated by changing the operative pH in the
experimental environment. These nanoparticles can also be functionalized with
antigens for vaccine development.281,282

According to these results, specific targeting sequences could be of use
in biotechnological applications to package proteins inside the stable self-
assembled icosahedral shell of BMCs, offering appealing opportunities to
manipulate in the laboratory such nanocages to fill them with therapeutic
molecules. The simplicity of this system makes it very attractive for engineering
studies to design, mimicking nature, new applications in biotechnology,
providing a new, intriguing platform of microbial origin for drug delivery.

Bovine serum albumin (BSA) is able to form microspheres after sonochem-
ical treatment in aqueous medium. Chemical effects of ultrasound radiation
and coupling with an anticancer drug such as Taxol (paclitaxel) led to the
assembling of a spherical carrier with an average diameter of 120 nm. BSA
particles resulting from S–S bonds, due to HO2 radical formation, are able to
release the encapsulated Taxol in cancer tissue with best results if compared
with mere Taxol treatment. This drug for breast cancer treatment is commer-
cially available.283,284

Also little cationic peptides can lead to self-assembling particles. Among
others, arginine-rich cationic peptides are widely known as good tools for gene
delivery. For example, purified R9-tailored GFP in solution is described to
form nanodisk particles 20 nm in diameter. This structure is proved to be
induced by the 9 arg tails and is able to bind and condense DNA. These
nanodisks are also able to deliver DNA toward the nucleus where the reporter
gene is expressed.285

On the other hand, the expression of recombinant proteins over physiolog-
ical rates can cause a bad functioning of cellular quality control system, leading
to self-organizing, pseudo-spherical, protein aggregates known as inclusion
bodies. These mechanically stable nanoparticles, ranging from 50 to 500 nm
in diameter, were considered for a long time as undesired bio-products. Re-
cently, it became clearer that they are suitable for medical approaches when
utilized as scaffold surface to promote cellular proliferation.286–288

One of the most difficult goals for a foreign gene delivery is to reach the
nucleus. An approach to overpass this obstacle is by fusing an NLS in a
nonessential position of a DNA-binding protein. Such type of modification
has been described for a tetracycline repressor protein (TetR) fused with an
SV40 NLS. The TetR–NLS affinity and specificity to TetO DNA sequence is
exploited to form spontaneous protein–DNA complexes which allow an
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enhancing of DNA transportation into the nucleus and subsequent expression
of foreign genes, combining the two peculiar characteristics of each fusion
component.289
VI. Medical Applications of Protein Nanoparticles

There is still a tremendous gap between progresses made in protein-based
nanoparticle research for drug delivery and clinical reality. Hundreds of pub-
lications in basic research describe the combination of two or more functional
elements in a single protein nanoparticle, by which the delivery of a carried drug
is enhanced. These agents act by improving critical steps in the drug delivery
process, such as increasing the systemic stability or tissue specificity, favoring
internalization, endosomal escape, and entry into the nucleus, or transporting
therapeutic material through the BBB, in in vitro and in vivo studies.

Besides the human recombinant therapeutic proteins currently on the
market (or functional segments of them), there are also some fusion proteins
approved for clinical use (most by incorporating an antibody fragment or a
ligand to enhance cell specificity). Sadly no gene therapy trials have so far used
full protein carriers in vivo, but rather peptide-functionalized vehicles.

Bottlenecking the gap between research and clinical application, the US
FDA/European Medicines Agency (EMEA) only approves human proteins, to
avoid the risk of an immune response that could affect not only the effective-
ness of the nanoparticle but also challenge patients’ health. Another critical
factor is the administration route, where the protein is degraded before arriving
at the target; this problem could be solved or minimized by the use of protein
d-isomers, PEGylation, or the design of protecting groups for labile sites.
Despite the current situation mentioned above, there are many good examples
of multifunctional modular proteins that, when carrying therapeutic material,
can improve the prognosis in vivo in animal models for different diseases.
These examples are reviewed below, along with those few protein nanoparticles
that are currently on the market or in clinical trials.
A. Therapeutic Protein Nanoparticles Currently
in the Market

Albumin is a natural protein transporter of hydrophobic molecules

throughout plasma that has been approved by the FDA to reversibly bind
water-insoluble anticancer agents, as is the case of albumin-bound (nab) pacli-
taxel, AbraxaneÒ. This albumin-nab technology-based drug is in use in patients
with metastatic breast cancer who have failed combination therapy, and it is the
first protein nanoparticle approved by the FDA. Albumin potentiates paclitaxel
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concentration within the tumor by increasing paclytaxel endothelial transcyto-
sis through caveolae formation. It also contributes to the fact that tumors
secrete an albumin-binding protein SPARC (also called BM-40) to attract
and keep albumin-bound nutrients inside the tumor cell.290 The albumin–
paclitaxel complex was not formally considered a nanoparticle in the United
States (due to an average size of 130 nm) but only so in Europe.

Apart from whole recombinant therapeutic proteins being currently com-
mercialized, there are also some examples of vehicles formed by chimerical
proteins with target ligands already in the market. DAB389IL-2 (denileukin
diftitox or Ontak) is a fusion of Diphtheria toxin catalytic and translocation
domains for lethal effect and interleukin-2 (IL-2) to gain cell specificity in the
treatment of persistent or recurrent T-cell lymphoma. Belatacept (BMS-
224818) is a CTLA4-Ig fusion protein formed by the cytotoxic T-lymphocyte-
associated antigen 4 joined to an immunoglobulin G1 Fc fragment fusion
protein, developed by Bristol–Miers–Squibb. Etanercept (Enbrel) fusion
tumor necrosis factor receptor (TNFR), which binds and inhibits specifically
TNF activity, to an immune globulin G1 Fc, to prevent inflammation mediated
by TNF in autoimmune diseases like arthritis and psoriasis.

On the other hand, fusion proteins which include an antihuman epidermal
growth factor receptor 2 (HER2) monoclonal antibody that binds tumor cell
surfaces, among them the so-called ‘‘trastuzumab’’ (commercialized as Her-
ceptin by Roche), associated to DM-1, an antimitotic drug, aimed at improving
the treatment of breast cancer.

Finally, VLPs, that is, empty viral entities formed by the self-assembly of a
viral capsid protein, are the only truly protein nanoparticles (architectonically
speaking) which are currently used in clinical practice. HBsAg recombinant
protein of HBV expressed in yeast and the capsid L1 recombinant protein of
HPV (types 6, 11, 16, and 18) administered currently as vaccines tend to form
spontaneously VLPs that elicit T and B immune response. Recently, there have
been preclinical and clinical trials to test the security and efficacy of VLP
vaccines against Chikungunya291 and seasonal influenza virus (http://www.
medpagetoday.com/MeetingCoverage//ICAAC/22129), respectively. Influenza
VLP vaccines have proven to provide complete protection against H1N1 2009
flu pandemics,292 within a record preparation time when compared to 9 months
for traditional vaccines. The use of VLPs as a delivery system for drugs or
nucleic acids in gene therapy is still under investigation.194

Drugs and proteins may be transformed through pegylation, a process that
can assist them in overcoming some of the potential problems that delay the
adoption of protein nanoparticles for clinical use. The covalent attachment of
PEG can reduce immunogenicity and antigenicity by hiding the particle from the
immune system, can increase the circulating time by reducing renal clearance,
and can also improve the water solubility of a hydrophobic particle. The use of

http://www.medpagetoday.com/MeetingCoverage//ICAAC/22129
http://www.medpagetoday.com/MeetingCoverage//ICAAC/22129
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pegylation has been approved for commercial use by the FDA and EMEA, and
some examples of pegylated protein products are AdagenÒ (PEG-bovine adeno-
sine deaminase), the first pegylated protein approved by the FDA in 1990,
PegasysÒ (PEG-interferon alpha), and OncasparÒ (PEG-l-asparaginase).
B. Therapeutic Protein Nanoparticles Currently in
Clinical Trials

The majority of protein nanoparticles studied in clinical trials (http://clin-

icaltrias.gov) are fusion proteins composed of a therapeutic protein/peptide
and a target cell-specific ligand. An example is ALT-801, a biologic compound
composed of IL-2 genetically fused to a humanized soluble T-cell receptor
directed against the p53-derived antigen. The clinical trials evaluated whether
directing IL-2 activity using ALT-801 to the patient’s tumor sites that over-
express p53 results in clinical benefits (NCT01029873, NCT00496860). Anoth-
er ligand joined to IL-2 is L19, a tumor-targeted immunocytokine constituted
of a single chain fragment variable (scFv) directed against the ED-B domain of
fibronectin, one of the most important markers for neoangiogenesis. L19–IL-2
is in a Phase I/II study for patients with solid tumors and renal cell carcinoma
(RCC) (NCT01058538). L19 has also been fused to TNFa with the intention to
target TNFa directly to tumor tissues resulting in high and sustained intrale-
sional bioactive TNFa concentrations. The L19TNFa is under clinical trial
using isolated inferior limb perfusion (ILP) with the standard treatment with
melphalan 10 mg/l limb volume in subjects affected by stage III/IV limb
melanoma (NCT01213732). NGR-hTNF is another bifunctional protein
which combines a tumor-homing peptide (NGR) that selectively binds to
amino peptidase N/CD13 highly expressed on tumor blood vessels, thus affect-
ing tumor vascular permeability, and hTNF, with direct anticancer activity.
NGR-hTNF is undergoing 14 clinical trials as a single agent to treat different
cancers, as well as in combination with chemotherapy agents.

Another strategy to direct a therapeutic protein to the target cell is through
fusion to a growth factor receptor ligand. An example is TP-38, a recombinant
chimerical protein composed of the EGFR binding ligand (TGF-a) and a
genetically engineered form of the Pseudomonas exotoxin, PE-38, to treat
recurrent grade IV malignant brain tumors (NCT00071539).

Many clinical trials are based on a therapeutic protein fused to a targeting
antibody, as is the case of APC8015. This drug stimulates the immune system
and stops cancer cells from growing by the combination of biological therapies
with BevacizumabÒ, an already approved monoclonal antibody that locates
tumor cells and kills them in a specific way (NCT00849290). There are also
many putative protein drugs against cancer which include antibodies anti-
integrins (e.g., cilengitide and IMGN388), sometimes in combination with

http://clinicaltrias.gov
http://clinicaltrias.gov
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classical therapies. A recently developed tool, the nanobodies or single domain
antibodies,293 have several advantages: small size (only 12–15 KDa), which
lowers the possibility of triggering immune response, safety in clinical trials
(NCT01020383), and is easy to be joined to different kinds of compounds. All
these features make nanobodies competent drugs against different diseases,
and have been tested in vivo as bifunctional proteins associated to a prodrug,
very efficient in mice cancer xenografts.294

Even though CPPs are very useful tools to deliver drugs and in gene therapy
(see the chapter ‘‘PeptideNanoparticles for OligonucleotideDelivery’’ by Lehto
et al. in this volume), their toxicity and endosomal entrapment slows their
inclusion for systemic delivery in clinical trials. Nevertheless, there are a few
examples of use to prevent undesirable cell proliferation in coronary artery
bypass grafts, as is the case of a CPP (R-Ahx-R)4AhxB–PMO conjugate targeted
to human c-myc to be applied ex vivo. The trial, in phase II, has been completed
in 2009 (NCT00451256). Another case is PsorBanÒ, a product patented for the
treatment of psoriasis based on a cyclosporine–polyarginine conjugate of local
application, which circumvents the specificity problem of intravenous (i.v.)
application. It is in clinical trial phase III, but not yet in the market. Finally,
KAI-9803, a PKCd inhibitor peptide conjugated to Tat to function as an intra-
venous drug for the treatment of acute myocardial infarction, is currently in
phase 2b clinical trial (NCT00785954, KAI pharmaceuticals).
C. Therapeutic Protein Nanoparticles in Preclinical
Models of Human Diseases

There are many proteins, often organized as nanoparticles, that when

associated to a drug, therapeutic protein, peptide, or nucleic acid increase
the therapeutic efficacy of a cargo alone in the treatment of various diseases.
Some of them proved effective in animal models, which are discussed in more
detail in this section, with relevant examples listed in Table II.

These nanoparticles may simply be (a) a CPP to promote nonspecific
internalization,295–300 (b) a peptide to confer cargo specificity by joining a
receptor distinctive of a cell type, including scFvs or peptides obtained by
phage display,301 and (c) a mixture of both,302 since as observed in several
studies the CPP does not reduce ligand specificity and increases nanoparticle
potency.303–305 Complex and multifunctional vehicles including endosomal
escape peptides enhance the therapeutic potency of the complex, or other
domains that allow their selective activation in certain contexts.306,307

Apart from the cases listed in Table II, the spectrum of additional examples
of multidomain protein nanoparticles tested in vivo is wide, and a considerable
proportion of them include CPPs, mainly Tat and polyarginines. A classical Tat
fusion protein is the transducible d-isomer RI-TATp53C0’ fusion protein that



TABLE II
REPRESENTATIVE EXAMPLES OF PROTEIN NANOPARTICLES THAT, ACTING AS CARRIERS, IMPROVE THE EFFICIENCY OF CARGO ALONE IN THE TREATMENT OF

DISEASES USING IN VIVO MODELS

Carrier Cargo Administration route Disease References

VP-22 Gata4 Transplant of transfected cells Myocardial infartion 295
(RXR)4XB Dystrophin exon skipping PMO i.p.a Duchenne muscular dystrophy 296
Tat-ErbB2 STAT3BP i.p. Breast cancer xenograft 302
Penetratin scFVs-radionuclide i.v.b Colon carcinoma xenograft 305
8R Taxol i.p. i.p. tumor xenografts 297
Penetratin Caveolin-1 i.p. Inflammation models 298
Tat-HA Bcl-xL i.p. Cerebral ischemia 313
Protamine-Erb2 Ab Fab c-myc, MDM2, VEGF-siRNA i.v. Breast cancer 301
9-d-arginine-RVG JEV-siRNA i.v. JEV infection 56
Pegylated Pep-3 Cyclin B1 -PNA i.v. Human prostate carcinoma xenograft 299
Chol-MPG-8 Cyclin B1-siRNA i.v. Prostate and lung cancer xenografts 300
Tat pVHL i.p. Mice with renal tumors dorsally implanted 310
Tat MHC class I antigens s.c.c Dendritic cell vaccine for tumor regresion 311

aIntraperitoneal.
bIntravenous.
cSubcutaneous.



PROTEIN NANOPARTICLES ENGINEERED FOR DRUG DELIVERY AND GENE THERAPY 279
activates p53 protein in cancer cells, but not in normal cells. RI-TATp53C0
treatment in terminal peritoneal carcinomatosis and peritoneal lymphoma pre-
clinical models results in significant increases in life span (higher than sixfold)
and full recovery from the disease.308 There are also several studies in vivo using
Tat-fused therapeutic proteins which have proven effective in treating
tumors309–311 and cerebral ischemia312,313 when applied intraperitoneally (i.p.).

Regarding polyarginines, Kumar and colleagues have presented two differ-
ent models in which a bifunctional peptide formed by nine arginines (9R) and a
specific ligand constitute an effective siRNA vehicle. In the first model, a
chimerical peptide derived from rabies virus glycoprotein (to confer neuronal
specificity) fused to 9- d-arginines (RVG-9R), was able to transport si-RNA
across the BBB and silence specific gene expression in the brain when applied
intravenously.56 In the second model, a CD7-specific single-chain antibody was
conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific anti-
viral siRNA delivery in humanized mice reconstituted with human lympho-
cytes. In HIV-infected humanized mice, this treatment controlled viral
replication and prevented the disease-associated CD4 T cell loss. Moreover,
it effectively suppressed viremia in infected mice.314

Some other examples of polyarginines in tumor models are 9-d-arginines
fused to a tumor-suppressor peptide, which stopped tumor growth in hepato-
cellular carcinoma-bearing mice when applied intraperitoneally, and also coles-
teryl oligoarginines carrying VEGF siRNA, which inhibited tumor growth in
colon adenocarcinoma after local application.315 Another BBB-crossing pep-
tide is g7, which is able to transport nanoparticles loaded with Loperamide.107

In general, the partner fusion peptide can confer specificity instead of
penetrability, as is the case of EGFR Fab fragment associated to liposomes
that contain anticancer drug, which increases efficiency of anticancer effect in
EGF overexpressing xenograft tumors316; in addition, RGD-4 C-doxorubicin in
human breast xenografts increases efficacy and diminishes toxicity.317

In many conjugates, the therapeutic peptide of the chimerical proteins is a
toxin. Anthrax lethal toxin has been modified to be activated by methalopro-
teases, and it has probed to be effective for human xenografted tumors such as
melanoma, lung, and colorectal cancer.318 Anthrax toxin has also been asso-
ciated to antibodies or growth factors for lethal effects specifically on cancer
cells.319 The specific cytotoxicity desired to treat a tumor might derive from a
tissue factor, which promotes clotting to restrict blood supply in tumor vessels,
fused to peptides that provide specificity, like V-CAM antibodies, fibronectin,
and integrin ligands.320

Eventually, drug activity may decrease when conjugated to a carrier pro-
tein, although if the entry of the drug is favored, the overall balance of activity
can be much more efficient.321 On the other hand, the use of noncovalent bond
drug carrier could avoid interfering with the activity of the drug.
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An important issue in a preclinical study to be considered for a clinical trial is
the administration route. In in vivo experiments, most of the protein nanoparti-
cles are administered by local or intraperitoneal injection, avoiding systemic
spreading and clearance in the vascular system, in a way very similar to in vitro
experiments. TheFDAandEMEA, on the other hand,will preferentially approve
i.v. and oral administrations rather than intraperitoneal or local injections except
for very accessible tissues. Another relevant issue is the number of active domains
to be included in a therapeutic protein carrier, an issue that seems to be relevant
for the functionality of the construct. For example, the CPP neutralization of a
ligand may depend on the CPP/ligand ratio that is in the vehicle.322 It has also
been observed that the integrin binding power of RGD-containing motives
increases with the number of RGD domains over the monomer until a maxim
of four moieties.323 Another example is Tat activity empowerment when attached
to molecules that form tetramers, such as beta-galactosidase108 and p-53.324

Some multidomain protein carriers allow the drug entrance only in select-
ed target cells by tailored smart selective mechanisms.325 For instance, CPPs
neutralized by polyanions are activated and enter the cells when they are
released by metalloproteases326 or by lowering the pH,327 both situations
being very common in tumors.

CPP-morpholino oligomer (PMO) nanoparticles have also shown their
effectiveness in treating viral infections by inhibiting viral replication, as
demonstrated with the carrier (R-ahx-R) 4AhxB-PMO administered i.v. in
animal models infected with picornaviruses, i.p. in mice infected with corona-
viruses and flaviviruses, and the carrier R9F2C-PMO administered also i.p. in
mice infected with Ebola virus. Furthermore, it has also been shown in some of
these studies that the efficacy of the treatment is dependent on the incorpora-
tion of arginine-rich peptides in the nanoparticle.328

A good example of how a CPP can improve the internalization of a thera-
peutic protein is the case of insulin. The instability and low absorption in the
digestive tract of insulin prevents its oral administration, even though it would
be very convenient for a daily administrated drug. In recent studies, noncova-
lent conjugation of insulin to different CPPs enhances its absorption without
toxic intestinal effect, l-penetratin being the most efficient as insulin carrier.329

Among the protein nanoparticles tested in vivo, it is worth making special
mention of Trojan horses generated in Pardridge’s laboratory to cross the BBB,
through a strategy of fusing within a chimerical peptide the therapeutic protein
which has to reach the CNS to a monoclonal antibody against the human
insulin receptor (HIRMAb). This Trojan horse is very potent for humans and
primates, and has proven effective to transport b-glucuronidase, a-l-iduroni-
dase, GDNF, Abeta amyloid peptides, paroxonase, etc., with potential benefits
in diseases like mucopolysaccharidosis type VII, Hurler syndrome, Parkinson,
Alzheimer, and organophosphates toxicity, respectively.330



PROTEIN NANOPARTICLES ENGINEERED FOR DRUG DELIVERY AND GENE THERAPY 281
There are also promising results when protein nanoparticles have been
tested as carriers for gene therapy in vivo, some examples being listed in
Table II. In this regard, the use of modular proteins generated by insertional
mutagenesis of b-galactosidase condensing the SOD gene are able to protect
neurons against ischemic injury133; a bifunctional galactosylated polylysine is
able to conjugate plasmid DNA and to differentially promote expression in
hepatocytes that display asialoglycoprotein receptor331; a suicide multidomain
protein particle formed by herpes simplex virus thymidine kinase (HSV-TK)
conjugated to transferrin (Tf) by a biotin-streptavidin bridging, which, admi-
nistered i.v. in K562 massively metastasized nude mice, was able to reduce
tumor size and to increase mouse survival.332
VII. Conclusions

In this chapter, proteins and peptides have been envisioned as potent bio-
technological tools for the development of new biocompatible biological entities
that can be used as therapeutic agents by themselves or as nanovehicles for the
delivery of associated drugs. Proteins are nanostructures that can form complex
high-order entities such as VLPs, resulting in appropriate cages for the internali-
zation of therapeutic molecules. In addition, the design of modular proteins
displaying selected functions has been possible by using in silico approximations
to the feasibility of recombinant protein production. This approach has demon-
strated the versatility of such molecules in the generation of novel delivery
nanovehicles opening up the possibility of new functional combinations to en-
hance the specific interactionwith the target tissue. Such tunable specificity in the
delivery of drugs, nucleic acids, or other proteins is one of themain properties that
make multifunctional proteins appealing as more rational delivery vehicles.

The presence on the market of such complex entities, which started with the
approval of Insulin for the treatment of diabetes, has been increasing over the past
years, and this tendency is expected to continue. In fact, there are some products
in clinical trials that will probably end up being approved and some more are
being explored in preclinical experiments which might enter in clinical trials.
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