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Abstract

Despite the relevance of landscape, regarding the spatial patterning of microbial

communities and the relative influence of environmental parameters versus

human activities, few investigations have been conducted at this scale. Here, we

used a systematic grid to characterize the distribution of soil microbial commu-

nities at 278 sites across a monitored agricultural landscape of 13 km². Molecu-

lar microbial biomass was estimated by soil DNA recovery and bacterial

diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first

maps of microbial community at this scale and revealed a heterogeneous but

spatially structured distribution of microbial biomass and diversity with patches

of several hundreds of meters. Variance partitioning revealed that both micro-

bial abundance and bacterial diversity distribution were highly dependent of

soil properties and land use (total variance explained ranged between 55% and

78%). Microbial biomass and bacterial richness distributions were mainly

explained by soil pH and texture whereas bacterial evenness distribution was

mainly related to land management. Bacterial diversity (richness, evenness, and

Shannon index) was positively influenced by cropping intensity and especially

by soil tillage, resulting in spots of low microbial diversity in soils under forest

management. Spatial descriptors also explained a small but significant portion

of the microbial distribution suggesting that landscape configuration also shapes

microbial biomass and bacterial diversity.
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Introduction

Soil microorganisms are the most abundant and diverse

living organisms on earth and are key players in the biogeo-

chemical cycles. However, the environmental factors

shaping soil microbial community abundance and assembly

are still unclear, which limits our understanding of the role

of soil biodiversity in ecosystem services (Gardi et al. 2009).

Since the 18th century, ecologists studying macroorganisms

have often used spatial approaches to better understand the

processes and filters which drive the magnitude and the

variability of biodiversity (Martiny et al. 2006). More

recently, microbial ecologists have found that these

approaches can also be applied to soil microorganisms

(Ettema and Wardle 2002). Consequently, the number of

soil microbiology studies integrating a spatial dimension

has increased considerably during the last decade. These

studies have systematically demonstrated a significant spa-

tial structuring of microbial communities over multiple

spatial scales (i.e., that the high spatial variability/heteroge-

neity of microbial community characteristics is not ran-

domly distributed in space), such as: the microscale (from

lm2 to mm2, Nunan et al. 2003), plot scale (from m2 to

hundreds of m2; Rousk et al. 2010), regional scale (from

km2 to hundreds of km2, Dequiedt et al. 2009; Drenovsky

et al. 2010) and global scale (ca. >100 000 km2; Dequiedt

et al. 2011; Griffiths et al. 2011; Fierer and Ladau 2012;

Serna-Chavez et al. 2013). All these scales are relevant to

better understand the ecology of soil microorganisms and

the determinism of their diversity as they represent the

multiple levels of spatial heterogeneity in the soil matrix,

climatic conditions, geomorphology, and land use that

drives soil microbial diversity (Ettema and Wardle 2002).

Even if the sets of environmental variables were not

always completely similar among the studies at the differ-

ent spatial scales, each of them allowed the identification of

environmental filters shaping soil microbial communities.

On a broad scale, environmental filters involved in the dis-

tribution of microbial communities were identified as soil

type, with a significant effect of pH, carbon content and

soil texture, as well as of additional factors such as land use

and climatic conditions (Fierer and Jackson 2006; Bissett

et al. 2010; Pasternak et al. 2013). At the soil microscale,

factors such as porosity (Chenu et al. 2001) conditioning

carbon substrate and nutrients availability as well as the

level of protection of aggregates for microorganisms to sur-

rounding perturbations (Constancias et al. 2013), were

identified as drivers of microbial community variation

between the different microhabitats. At the intermediate

plot scale, proximal factors such as pH (Rousk et al. 2010),

organic carbon content (Saetre and B�a�ath 2000), texture,

and land management (Philippot et al. 2009) have been

highlighted as important drivers. Altogether, these studies

suggested that although similar environmental drivers are

involved in shaping microbial communities at every scale,

particular filters may have a significant influence at a par-

ticular scale. In this context, it is now crucial to investigate

an up scaling approach and provide a generic response to

the question: which filter for which scale?

Considering the added complexity of shaping soil

microbial diversity while up scaling, a gap remains in our

knowledge of community distribution at the landscape

scale, that is, intermediate between the plot and territory

scales. This scale is relevant since it may integrate a strong

variability in soil types potentially close to that of a region

and because it is the scale of human activities at which land

use and agricultural practices are integrated. Microbial

investigations at this particular spatial scale are rare and

have focused on particular homogeneous ecosystems in

terms of land management. Zinger et al. (2011) focused on

Alpine natural ecosystems to decipher the influence of

plant cover, soil physicochemistry and space in determining

soil microbial communities. Other studies focused on an

agricultural landscape, but were limited to a restricted

mosaic of experimental plots and did not integrate land-

scape variability or spatial configuration (Enwall et al.

2010; Wess�en et al. 2011). Altogether, they have highlighted

the need for investigations on a landscape scale to better

understand the impact of land management versus soil

physicochemical characteristics on indigenous microbial

communities. Landscape is also the scale for human activi-

ties and decision makers, and a deeper understanding of

the relative influence of land use and habitat heterogeneity

on below ground soil diversity could be helpful to formu-

late management strategies for a sustainable land use.

The present study was designed to map and characterize

the spatial variation of the soil microbial community across a

landscape and to rank the environmental and land use filters

influencing this distribution. The studied landscape consisted

of forest and arable plots under various types of agricultural

management. Soils (n = 278) were sampled within a system-

atic sampling grid (spacing of 215 m) covering the entire

landscape (13 km2). Physicochemical characteristics and the

type of land management were precisely referenced for each

soil. Soil molecular microbial biomass was determined from

the DNA yield of each soil sample (Dequiedt et al. 2011) and

bacterial diversity by massive inventory of the 16S rRNA gene

sequences amplified from this soil DNA. Geostatistical

approach was used to explain the spatial variability in micro-

bial abundance and diversity and to provide prediction

maps. The relative contributions of land management, soil

physicochemical characteristics, and space in determining

microbial abundance and bacterial diversity distribution

were identified and ranked by variance partitioning. We

hypothesized that land management, especially agricultural

practices, would be the main drivers of microbial abundance
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and diversity at the landscape scale, due to smaller variations

of soil physicochemical characteristics than at wider scales.

Spatial descriptors were also integrated into the analysis to

better decipher their relative contributions to community

variation across landscape and to consider other neutral pro-

cesses in community distribution.

Experimental Procedures

Site description, sampling strategy, and
data collection

The study was carried out on a monitored landscape cover-

ing 13 km2 in Burgundy (France, Lat: 47°140N, Long:

5°030E), characterized by oak hornbeam deciduous forests

(3.86 km2) and intensive agricultural croplands (9.22 km2).

The site is under continental climate, with a mean annual

air temperature of 10.4°C and a mean annual rainfall of

762 mm (period 1968 – 2011). The whole area is situated

on deep calcisol (IUSS Working Group, WRB 2006) of

mainly silty or silty clay texture and is slightly sloping.

Croplands were planted with winter crops (winter wheat,

oilseed rape) in rotation with late sown crops (spring bar-

ley). Crop species and management practices were recorded

from 2004 to 2011 over the whole study area.

The sampling design covers the entire landscape and is

based upon a square grid with spacing of 215 m which cor-

responds to 248 sites. It also includes 30 additional observa-

tions positioned randomly within the grid, which permit

exploration of the variation over distances less than 215 m

(10–100 m from the closest site). All sites were sampled in

September 2011. At each site, five soil cores (core diameter:

5 cm; 0–20 cm depth) were collected on a surface of 4 m2

at inter row for agricultural sites and at least 1 m away

from trees, then bulked and sieved through 2-mm mesh.

Samples were lyophilized at �80°C and stored at �40°C in

the soil conservatory of the GenoSol platform (http://

www2.dijon.inra.fr/plateforme_genosol). Samples were

randomized prior to analysis to avoid batch effects. Physi-

cochemical analyses (pH, organic carbon, total nitrogen,

CaCO3 and texture) were performed as described by

Dequiedt et al. (2011). Soil organic carbon was determined

by loss on ignition method (https://www6.lille.inra.fr/las/

Methodes-d-analyse/Sols/04.-Carbone-Azote-Matieres-Or-

ganiques/SOL-0402-Perte-au-feu-a-1100-C.).

Molecular characterization of soil microbial
communities

Soil DNA extraction, quantification and
purification

DNA was extracted and purified from the 278 soil samples

using the GnS-GII procedure as described by Plassart et al.

(2012). Crude DNA extracts were quantified by agarose gel

electrophoresis stained with ethidium bromide and using calf

thymus DNA as standard curve, reported to be reliable for

estimating microbial biomass in Dequiedt et al. (2011). Crude

DNA was then purified using a MinElute gel extraction kit

(Qiagen, Courtabeoeuf, France) and quantified using Quanti-

Fluor staining kit (Promega, Madison, Wisconsin, USA),

prior further investigations.

PCR amplification and pyrosequencing of 16S
rRNA gene sequences

Amplification targeted the 16S rRNA V3-V4 gene region

using primers F479 and R888 and a nested PCR strategy

to add an 10-bp multiplex identifier (MID) barcode, as

initially described by Plassart et al. (2012). Equal amounts

of each sample were pooled, and all further steps (adapter

ligation, emPCR and 454-pyrosequencing) were carried

out by Beckman Coulter Genomics (Danvers, MA, http://

www.beckmangenomics.com/) on a 454 GS-FLX-Tita-

nium sequencer (Roche, Basel, Switzerland). The raw data

sets are publicly available in the EBI database system (in

the Short Read Archive) under project accession no.

PRJEB5219.

Bioinformatics sequence analysis

The bioinformatics analyses were performed using the

GnS-PIPE at the GenoSol platform Terrat et al. (2012).

Sequences obtained after an initial quality filtering step

(>350 bp, no base ambiguity), were aligned with Infernal

alignments using a secondary structure of the 16S rRNA

gene (Cole et al. 2009), and clustered at 95% sequence sim-

ilarity into operational taxonomic units (OTU). Clustering

was done with a custom PERL program that does not take

into account differences in homopolymer length, which

can constitute one of the major 454 sequencing errors (Bal-

zer et al. 2011). Procedure details are provided in Table S1.

A subsample of 10,800 quality sequences for each sample

was randomly selected to allow rigorous comparison of the

data. Bacterial diversity was characterized by OTU richness,

evenness, and Shannon index (Haegeman et al. 2013).

Metadata analysis

Clustering of land cover and agricultural practices
into land management categories

In order to summarize the land management practices

over the entire landscape, a factor analysis for mixed data

was used to define land management clusters using the

FactoMineR package (Lê et al. 2008) with input data such

as land use, soil tillage, crop rotation diversity (number
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of plant types in the crop rotation), pesticide treatment

frequency index.

Interpolated mapping

A geostatistical method was used to map physicochemical

data and microbial communities and to characterize their

spatial variations. As the studied variables do not follow a

required Gaussian distribution, they were first trans-

formed using the non parametric rank order (or normal

scores) transformation prior to considering the spatial

correlations (Juang et al. 2001). Conventionally in geosta-

tistical analysis, an estimate of a variogram model is com-

puted based on the observations which describe the

spatial variation of the property of interest. This model is

then used to predict the property at unsampled locations

using kriging (Webster and Oliver 2007). A usual method

for variogram estimation is first to calculate the empirical

(so called experimental) variogram by the method of

moments (Matheron 1965), and then to fit a model to

the empirical variogram by (weighted) nonlinear least

squares. We investigated also an alternative method which

uses maximum likelihood (ML) to estimates parameters

of the model directly from the data, on the assumption

that it is a multivariate normal distribution. We retained

the Mat�ern model which can describe various spatial pro-

cesses (Minasny and McBratney 2005). The validity of the

fitted geostatistical model was assessed in terms of the

standardized squared prediction errors (SSPE) using the

results of a leave one out cross-validation. If the fitted

model is a valid representation of the spatial variation of

the soil or microbial property, then these errors have a v2

distribution which has a mean of 1 and median 0.455

(Lark 2002). The mean and median values of the SSPE

were also calculated for 1000 simulations of the fitted

model to determine the 95% confidence limits. The

ordinary kriging estimation was performed in the stan-

dardized rank space and then the kriging estimates were

back transformed into the original space. We used the

geostatistical analysis gstat and GeoR R package for vario-

grams analysis and kriging (Ribiero and Diggle 2001).

Variance partitioning

The relative contributions of soil physicochemical parame-

ters, land management (Fig. 1), and space in shaping the

patterns of soil microbial abundance and bacterial diver-

sity were estimated by variance partitioning. A Principal

Coordinates of a Neighbour Matrix approach (PCNM)

was used to describe and identify the scales of spatial rela-

tionship between samples (Dray et al. 2006). This PCNM

method was applied to the geographic coordinates and

yielded 76 PCNM with significant Moran index

(P < 0.001), representing the spatial scales that the sam-

pling scheme could perceive (Ramette and Tiedje 2007).

The spatial neighborhood described by each PCNM was

determined from Gaussian variogram models (Bellier et al.

2007). All quantitative (response and explanatory) data

were standardized in order to have an approximated

Gaussian and homoskedastic residual distribution. To

determine the environmental parameters significantly

shaping bacterial communities, a stepwise selection proce-

dure was first applied to all physicochemical and land

management variables by maximizing the adjusted r2 while

minimizing the Akaike Information Criteron (Ramette

2007). Spatial descriptors were then selected from the

model residuals (Brocard et al., 2004). These selection

steps were done to limit over fitting and to exclude co lin-

ear variables (Ramette 2007). The respective amounts of

variance (i.e., marginal and shared) were determined by

canonical variation partitioning and the adjusted r2 with

RDA (Ramette 2007) for microbial biomass, bacterial rich-

ness, evenness, and Shannon’s diversity index. The statisti-

cal significance of the marginal effects was assessed from

999 permutations of the reduced model. All these analyses

were performed with R using the vegan package (Oksanen

et al. 2011). All these analyses were performed with the R

free software (http://www.r-project.org/).

Results

Landscape variability and distribution of
environmental characteristics

Most soils (70%) in the studied landscape were silty

(median 56.7%) or clayey (median 34.3%) with alkaline

pH (median 8.0, Table 1). Organic carbon and total

nitrogen contents were highly correlated (r2 = 0.92,

P < 0.001) and ranged from 1.74 to 174 and 0.835 to

14.6 g.kg�1, respectively (Table 1). Geostatistical mapping

of the environmental variables revealed a heterogeneous

distribution of soil characteristics across the landscape,

which was spatially structured (Fig. 1). High values of soil

organic carbon content were systematically found under

forest and in agricultural plots beside the “La Sans Fond”

and “Grand Foss�e” rivers (Fig. 1A). Acidic soils were

mainly located at the north east of “F�enay” village and in

the western part of the studied area. Alkaline soil zones

were found near the “La Sans Fond” river (Fig. 1B),

together with high sand and CaCO3 contents (Fig. 1C–E).
The validity of the spatial predictions of soil characteris-

tics was confirmed by the results of the cross-validation.

All the indicators (median and mean of the SSPEs) fall

within the 95% confidence intervals (Table S2). The fitted

models gave effective ranges from 611 to 839 m, depend-

ing on the soil parameters (Fig. 1, Table S2), indicating
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that all soil characteristics were spatially structured in

patches of several hundreds of meters.

Land use and agricultural practices were clustered into

six categories (from forest to agricultural plots with a gra-

dient of cropping intensity; see materials and methods)

and mapped across the landscape. Six clusters were identi-

fied and discriminated first by land cover (forest vs.

agricultural plots), secondly by soil tillage intensity (no till-

age, minimum tillage, mechanical hoeing, conventional till-

age) and finally by the presence of a catch crop. The

(A) (B)

(C) (D)

(E) (F)

Figure 1. Maps and variogram soil and land use characteristics observed at the scale of the F�enay Landscape. Map of (A) soil organic carbon

content, (B) soil pH, (C) CaCO3, (D) sand content, (E) clay content, and (F) land management clusters. Points indicate the sampling locations.

Min., minimum; mech., mechanical; conv., conventional. For each kriged map the color scale to the left of each map indicates the extrapolated

values expressed as g.kg�1 of sample excepted for pH. Points represent the experimental variogram, continuous lines the Mat�ern models fitted by

maximum likelihood method. Geostatistics and cross-validation parameters are provided in Table S2.
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pesticide treatment frequency index and crop rotation

diversity (number of plant types) were not discriminating.

These clusters followed a gradient in cropping intensity

and in the diversity and persistence of plant cover, that is,

Forest (forest, no tillage, no catch crop, n = 44); Perennial

crop (three frequently mowed grasslands, three blackcur-

rant and 1 Miscanthus, n = 7); Catch crop (agricultural

plot, minimum tillage, catch crop, n = 22); Minimum till-

age (agricultural plot, minimum tillage, no catch crop,

n = 57); Conventional tillage (agricultural plot, conven-

tional tillage, no catch crop, n = 104); Mechanical hoeing

(agricultural plot, mechanical hoeing, no catch crop,

n = 33).

Agricultural plots in the conventional tillage and

mechanical hoeing clusters were mainly situated between

the villages of “Chevigny” and “F�enay” whereas most

plots in the minimum tillage cluster (with or without

catch crop) were found to the extreme south west and

south east. The forests plots were mainly situated beside

the two rivers (“La Sans Fond” and “Grand Foss�e”,

Fig. 1F).

Landscape distribution of molecular
microbial biomass

The amount of DNA recovered from the 278 soils of the

landscape ranged from 2.28 to 372.0 lg DNA.g�1 dry soil

(Table 1). The mean recovery was 65.2 lg DNA.g�1dry

soil with most soils (90%) yielding concentrations below

126 lg DNA.g�1dry soil. The map of microbial biomass

highlighted its heterogeneous distribution and revealed

high values under forest and under agricultural plots close

to the “Grand Foss�e” river, at the west of “Chevigny” and

“Saulon-La-Rue” and at the extreme east of the F�enay

landscape (Fig. 2A). The validity of the spatial prediction

is confirmed by the cross-validation results (Table S2).

The fitted model gave an effective range of 521 m (Fig. 2,

Table S2) confirming the spatial structure of microbial

biomass in patches of several hundreds of meters across

the F�enay landscape. Moreover, the small value of the m
parameter indicated a rough spatial process over small

distances (Table S2).

Landscape distribution of bacterial diversity

Pyrosequencing of 16S rRNA genes yielded a total of 5.106

sequences (10,800 quality sequences per sample). The rare-

faction curves of bacterial OTU confirmed that our

sequencing effort allowed a fine description of the bacterial

diversity in each soil sample (data not shown). Bacterial

richness across the F�enay landscape ranged from 850 to

1,761 OTU with a mean of 1,276 OTU (Table 1). Most

soils (85%) exhibited a bacterial richness between 1,100

and 1,480 OTU (Table 1). Soil bacterial evenness ranged

from 0.64 to 0.83 with a mean of 0.77 and most samples

(90%) exhibited an evenness value >0.74. Shannon index

ranged from 4.43 to 6.17 with a mean of 5.2. Eighty percent

of the soils gave values between 5.3 and 5.9 (Table 1).

Visual examination of maps of bacterial richness, even-

ness, and Shannon index evidenced a heterogeneous dis-

tribution and broad similar patterns (Fig. 3A–C).
However, a more precise inspection revealed several dif-

ferences between bacterial diversity parameters with hot-

spots of bacterial richness located all along the “Sans

Fond” river as well as at the east of “Chevigny” and “Sau-

lon-La-Rue” villages (Fig. 3A). Bacterial evenness was dis-

tributed in more numerous and smaller patches than

bacterial richness, with high values located between the

“F�enay” and “Saulon-La-Rue” villages and cold spots in

Table 1. Summary statistics of soil characteristics (n = 278).

Mean (SD) Median [min; max]

Physicochemical

Organic carbon (g.kg�1) 21.9 (15.8) 17.1 [1.7; 174]

Total nitrogen (g.kg�1) 2 (1.3) 1.6 [0.8; 14.6]

C:N ratio 10.7 (1.6) 10.4 [1; 22.2]

pH 7.7 (0.7) 8.0 [4.7; 8.4]

CaCO3 (g.kg�1) 84.6 (161.2) 3.3 [0; 835]

Clay (%) 33.3 (9.5) 34.3 [8; 61.7]

Silt (%) 57.9 (9.6) 56.7 [35.5; 86.2]

Sand (%) 8.8 (4.8) 7.4 [2; 29.3]

Microbial characteristics

Microbial biomass 65.2 (55.9) 48.5 [2.28; 372.0]

Bacterial richness 1276.2 (145.3) 1262.0 [850; 1761.0]

Bacterial evenness 0.8 (0.02) 0.8 [0.7; 0.8]

Bacterial Shannon index 5.5 (0.2) 5.5 [4.5; 6.1]
Figure 2. Map and variogram of soil molecular microbial biomass

observed at the scale of the F�enay landscape. The color indicates the

extrapolated values expressed as lg of DNA.g�1 of soil sample. Points

represent the experimental variogram, and continuous lines the

Mat�ern models fitted by maximum likelihood method. Geostatistics

and cross-validation parameters are provided in Table S2.
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the north east of “Chevigny” (Fig. 3B). The interpolated

map of Shannon diversity index showed an intermediate

distribution between bacterial richness and evenness with

hotspots of diversity along the “Sans Fond” river as well

as at the east of “Saulon-La-Rue”, whereas cold spots were

found in the north east of the landscape (Fig. 3C).

The results of the cross-validation confirmed the valid-

ity of the spatial predictions of the bacterial diversity

(Table S2). The fitted Mat�ern models showed effective

ranges of 807 m, 521 m, and 758 m for bacterial richness,

bacterial evenness, and Shannon index, respectively

(Fig. 3, Table S2). The small values of m parameter indi-

cated rough spatial processes of bacterial diversity over a

small distance (Table S2).

Variance partitioning of microbial
community

The partial regression models demonstrated a systemati-

cally significant influence of soil characteristics, land

management, and spatial descriptors on microbial bio-

mass and bacterial diversity variation. The total amount

of explained variance was 78.1% for microbial biomass,

and 54.6%, 74.4%, and 73.1% for bacterial richness, even-

ness, and Shannon index, respectively (Fig. 4). Soil char-

acteristics were the best predictors of microbial biomass

(21.4%), bacterial richness (43.7%), and Shannon diver-

sity index (29.3%) whereas land management was the best

descriptor of bacterial evenness (32.4%, Fig. 4) which was

not explained by the spatial variations of the environmen-

tal variables. Physicochemical parameters and land man-

agement clusters jointly explained a large amount of the

total variance (from 4.8% to 34.2%, Fig. 4) that could

not be tested.

The marginal effects of each filter within the sets of soil

characteristics and spatial descriptors were ranked accord-

ing to their respective amounts of variance explained, and

to their standardized estimated coefficients (Table 2). For

each filter, the marginal effect accounted for relatively

(A)

(B)

(C)

Figure 3. Maps of (A) bacterial richness, (B) bacterial evenness, and

(C) bacterial Shannon index parameters measured on the scale of the

Fenay landscape. The color indicates the extrapolated values. Points

represent the experimental variogram, and continuous lines the

Mat�ern models fitted by maximum likelihood method. Geostatistics

and cross-validation parameters are provided in Table S2.

Figure 4. Variance partitioning of molecular microbial biomass and

bacterial diversity parameters. The amount of explained variance

corresponds to the adjusted r2 values of the contextual groups using

partial redundancy analysis: soil physicochemical characteristics;

land management space; shared amount of variance between

soil characteristics and land management that could not be tested.

The significance level of the contribution of the sets of variables is

indicated as follows **P < 0.01 and ***P < 0.001. NVar is the number

of explanatory variables retained after selecting the most

parsimonious explanatory variables (by minimizing the AIC, akaike

information criterion).
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small, but significant, proportions of the total variance

(from 0.1% to 10%) due to the large number of parame-

ters involved. Regarding the soil characteristics, organic

carbon content (10.1%), C:N ratio (1.5%) and clay con-

tent (0.5%) were the main drivers of microbial biomass,

with organic carbon and clay content having a positive

effect (indicated by a positive sign for the standardized

coefficient) and C:N ratio a negative effect (Table 2). The

positive influence of soil organic carbon might be partly

explained by the fact that microbial biomass represents a

proportion (between 2% and 5%) of soil organic matter.

On the other hand, pH, clay, and CaCO3 contents were

the main drivers of bacterial richness, evenness, and Shan-

non index (explained variance ranging from 0.8% to

6.1%) with pH and CaCO3 having a positive influence

and clay content a negative influence (Table 2).

Land management was not included in the filter rank-

ing since it was impossible to determine the relative con-

tributions of each category. However, comparison of the

signs and values of the standardized estimated coefficients

highlighted a contrasting influence of forest and perennial

crops vs. annual crops (Table 2). More precisely, increase

of the microbial biomass by land management categories

followed the sequence: Forest>Perennial crops>Catch
Crop�Conventional tillage>Mechanical Hoeing>Mini-

mum Tillage. An opposite trend was highlighted for bac-

terial diversity parameters with annual croplands having a

positive influence and forest and perennial crops having a

negative one (Table 2), following the sequence: Mechani-

cal Hoeing>Catch Crop>Conventional Tillage>Minimum

Tillage>Perennial Crops>Forest (Table 2).

The spatial descriptors of the studied area corre-

sponded to 76 significant PCNM vectors, each represent-

ing different spatial scales (coarse, medium, and fine,

Table 2). The variance explained by spatial descriptors,

independently of environmental variables, ranged from

0.3% to 1.6% of the total variance. Spatial descriptors

representing coarse and medium scales were mainly

involved in microbial biomass and bacterial diversity dis-

tribution. Fine scale descriptors were only involved in

bacterial evenness and Shannon index. The influence of

the scale was ranked, as described above, by comparing

the signs of the standardized coefficients. Both positive

and negative influences of spatial descriptors were high-

lighted to explain variations in microbial biomass whereas

only negative influences were highlighted for bacterial

diversity. Therefore, microbial biomass distribution was

mainly explained by coarse (PCNM11, 804 m radius) and

medium scales (PCNM25 and PCNM15, 670 and 630 m

radius), the coarse scale having a positive influence and

the medium scale a negative one. A negative effect on

bacterial richness was also highlighted at the scales of

PCNM11 (804 m radius) and PCNM24 (624 m radius). A

larger number of PCNMs were involved in explaining

bacterial evenness and Shannon variations, describing

coarse scale (PCNM3 and PCNM2, for bacterial evenness

and Shannon, respectively), medium scale (PCNM21 for

both evenness and Shannon), and fine scale (PCNM59

and PCNM44, respectively).

Discussion

Most recent studies of soil microbial biogeography have

highlighted the major contribution of proximal soil charac-

teristics as drivers of microbial community (Fierer and Jack-

son 2006; Griffiths et al. 2011). However, the considerable

soil heterogeneity occurring on a wide scale may mask other

drivers associated with human activities, such as agricultural

or industrial practices (Fierer and Ladau 2012). Here, we

studied microbial distribution across a landscape, which

represents the scale of human activities, to better identify

and rank environmental versus land management drivers.

The landscape studied was mainly characterized by

alkaline silty soils and a mosaic of different types of land

management constituted by forest (18% of the area) and

agricultural plots with contrasting agricultural practices

(82% of the area). The soil characteristics were spatially

structured in patches ranging from 600 m to 800 m,

which matched the variations in pedological patterns

(data not shown) and the distribution of land manage-

ment categories (Fig. 1). Indeed, lower pH and higher

organic carbon, nitrogen contents and C:N ratio were

recorded under forest as classically observed (Arrouays

et al. 2001). Soil characteristics also matched with land-

scape geomorphology and especially with the “Sans fond”

river. Regarding land management, the forest plots were

located along the two rivers whereas the agricultural plots

distribution did not match with either landscape geomor-

phology or pedological patterns.

The amount of soil DNA recovered from the 278 soils

under study was within the range classically obtained in

soil environments with various soil protocols (Plassart

et al. 2012). The great range of variations recorded across

the landscape was similar to that observed on the French

territory scale (Dequiedt et al. 2011), thus supporting the

considerable variability of microbial biomass at both local

and global scales. Geostatistical predictions of DNA recov-

ery provided the first map of microbial biomass at this

scale. As indicated by the variogram model parameters, the

heterogeneous distribution of microbial biomass showed

significant spatial organization into patches of several hun-

dreds of meters (about 521 m in radius, Fig. 2). A similar

heterogeneous and spatially structured distribution was

observed at both smaller and larger scales with patches

ranging from several millimeters at the soil microscale

(Nunan et al. 2003), several tens of meters at the plot scale
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(Berner et al. 2011; several hundreds of kilometers at the

territory scale (Dequiedt et al. 2011), to several thousands

of kilometers at the earth scale (Serna-Chavez et al. 2013).

Visual comparison of maps of microbial biomass and

environmental characteristics suggested that microbial

abundance was influenced by both land management and

soil characteristics. Microbial biomass hot spots matched

with forest plots, and cold spots with croplands, which

also corresponded to the distributions of soil organic car-

bon contents and C:N ratio. Variance partitioning of

microbial biomass revealed that soil characteristics were

the main drivers, as previously reported on a larger scale

(Dequiedt et al. 2011; Serna-Chavez et al. 2013). More

precisely, organic carbon content and C:N ratio were the

primary drivers influencing microbial biomass with a

positive and negative effects, respectively. This is consis-

tent with several reports that organic carbon availability

and soil organic matter recalcitrance to degradation by

microbes are related to the abundance of microorganisms

(Leckie et al. 2004; de Boer et al. 2005). However, a weak

influence of clay content was also recorded, which is not

consistent with environmental filters hierarchy observed

on a broader scale (Dequiedt et al. 2011). This difference

might partly be explained by the smaller variation in soil

texture measured on our landscape scale, as compared to

the French territory scale (Coefficient Variation

[CV] = 16.5% vs. 43.6%; respectively) and contrary to

the variations in quantity and quality of organic carbon

(CV = 72.1% vs. 80.0%, and 37.1% vs. 15.0%, respec-

tively, Ranjard et al. 2013).

Analysis of the marginal effect of land management cate-

gories revealed a negative impact of croplands on microbial

biomass but not of forests (Table 2). This could be due to

the high organic matter content of soil under forest man-

agement as compared to the low organic carbon content

observed in soils under conventional crops (Arrouays et al.

2001). Comparison of the types of agricultural manage-

ments revealed differences only between perennial and non

perennial crops, thus, confirming the stimulation of micro-

bial abundance under permanent and diversified plant

cover (Lienhard et al. 2014). However, no difference in the

effects of tillage regime were observed, which contrasts with

recurrent reports of a significant loss of microbial biomass

with increased soil disturbance (Govaerts et al. 2007; Lien-

hard et al. 2014). This discrepancy could result from the

covariation of tillage regimes with certain soil characteris-

tics in our landscape (e.g., soil organic carbon and texture),

which might have increased the amount of variance

explained by interaction between land management and

soil characteristics, and hampered our evaluation of the

impact of particular agricultural practices.

Characterization of bacterial diversity by pyrosequenc-

ing of 16S rDNA from soil DNA revealed significant spa-

tial variations in bacterial richness, evenness, and

Shannon index across the landscape which were in agree-

ment with other studies covering variations in physico-

chemical and land management characteristics at similar

or broader spatial scales (Nacke et al. 2011; Shange et al.

2012). Geostatistical interpolation showed spatial patterns

characterized by patches of 807 m (richness), 521 m

(evenness), and 758 m (Shannon index). The maps of

bacterial richness and microbial biomass did not match,

confirming that microbial abundance and diversity can be

influenced by different drivers (Fierer and Jackson 2006;

Dequiedt et al. 2009, 2011). These different patterns

might be partially related to the contribution of fungi,

protozoa, and other eukaryotes to the DNA pool, which

may be under the dependence of drivers different from

those of bacterial biomass. Hot spots of richness seemed

to occur in the vicinity of the “Sans fond” river, suggest-

ing a strong influence of landscape geomorphology but

also of soil characteristics since the soils all along this

river were alkaline with high soil organic carbon and sand

contents. Spatial distributions of bacterial evenness and

Shannon index were fairly similar to richness but smaller

patches were also apparent, suggesting an impact of other

environmental filters. Variance partitioning confirmed the

different determinisms of richness and evenness, with

richness being mainly influenced by soil characteristics

and evenness by land management. This is congruent

with recent studies evidencing the major effect of soil

characteristics on bacterial richness (Lauber et al. 2009;

Kuramae et al. 2012; Rodrigues et al. 2013). Our results

support that soil characteristics influence the number of

species by modulating soil habitat heterogeneity whereas

land management mostly influences bacterial population

equilibrium by modulating environmental perturbation.

Focusing more precisely on soil characteristics, our

study emphasized the overriding effect of pH as a stimu-

lating factor of bacterial community diversity (richness,

evenness, and therefore Shannon index) at various spatial

scales (Fierer and Jackson 2006; Green and Bohannan

2006; Rousk et al. 2010). Clay content also appeared to

be a significant driver of bacterial richness, evenness, and

Shannon index variation but had a deleterious effect.

Thus, fine textured soil harbored a large microbial bio-

mass, due to its more extensive microhabitats leading to a

high carrying capacity, but only a small number of bacte-

rial species, due partly to the reduced heterogeneity lead-

ing to a lesser diversity of microbial habitats at the soil

microscale (Carson et al. 2010; Chau et al. 2011). In

addition, the reduced evenness might result from the

increase of competitive exclusion between populations

due to the high homogeneity of soil microhabitats. This

observation might be also partly explained by the high

level of protection provided by fine texture soil for the
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bacterial community against environmental perturbations

(Chenu et al. 2001; Constancias et al. 2013), leading to a

decreased population equilibrium through a diminution

of selection process between populations (Giller et al.

1998; Bressan et al. 2008).

Independently of other environmental variables, land

management accounted for a small proportion (3.7%) of

the explained variance for bacterial richness, in agreement

with previous reports that bacterial richness is generally

poorly impacted by land use (Enwall et al. 2010; Kuramae

et al. 2012). Interestingly, bacterial richness was lower in

forest soils (mean of 1191 OTUs) than in crop soils (mean

of 1297 OTUs), whereas microbial biomass was strongly

stimulated under forest (159 lg DNA.g�1 soil for forest

soils vs. 47 lg DNA.g�1 soil for crop soils). A similar and

more significant trend was observed in the positive effect of

crop soils on evenness and Shannon index (0.73 vs. 0.78 for

forest and crop soils evenness, respectively; 5.16 vs. 5.58 for

forest and crop soils Shannon index, respectively). These

diversity parameters were positively related, in crop soils,

to the gradient of increased soil disturbance by tillage. This

stimulatory effect of tillage on soil bacterial diversity may

be related to the degree of perturbation induced by this

agricultural practice (Acosta-Mart�ınez et al. 2010; Lienhard

et al. 2014). According to the “hump back” model between

biodiversity and the intensity of environmental perturba-

tion, which suggests that the greatest biodiversity is

obtained with moderate environmental perturbation due

to a diminution in competitive niche exclusion and selec-

tion mechanisms occurring between populations (Giller

et al. 1998), our results emphasize that crop soils under

conventional tillage and mechanical hoeing would corre-

spond to these conditions (Lienhard et al. 2014).

Spatial descriptors, illustrating neighborhood relation-

ships between samples, systematically accounted for the

smallest significant contribution to microbial biomass and

diversity distributions at coarse (800–1280 m), medium

(630–800 m), and fine scales (440–630 m). In agreement

with Hanson et al. (2012), the influence of spatial descrip-

tors might be partly related to variations in unmeasured

soil characteristics at the medium scale, whereas it might

result from landscape configuration at the coarse and fine

scales. The coarse scale represents the global distribution of

forest vs. crop patches, and the fine scale represents the dis-

tribution of individual agricultural plots subjected to par-

ticular practices. These results suggest that landscape

configuration would be an additional driver of soil micro-

bial biomass and bacterial diversity distribution. This

hypothesis is in agreement with Ranjard et al. (2013), who

demonstrated the influence of territory heterogeneity and

configuration in shaping bacterial diversity turnover. In

addition, our analysis revealed a systematically negative

effect of spatial descriptors on bacterial diversity, which

suggests that landscape configuration might partially affect

bacterial diversity by limiting bacterial dispersal. This result

supports the hypothesis that the selection and dispersal

limitation of microbial populations are not exclusive as

suggested by Hanson and Fuhrman (2012).

Altogether, our study provides the first map of micro-

bial biomass and bacterial diversity across an agricultural

landscape, and demonstrated the heterogeneous but spa-

tially structured distribution of the microbial community

at this scale, mainly driven by proximal filters such as soil

characteristics and agricultural practices. Our results

therefore confirm that the landscape is an appropriate

scale for robust evaluation of the influence of agricultural

land management on soil microorganisms. This spatial

scale is also shown to be relevant for modifying and

improving human activities in the context of a sustainable

use of soil resources. Further analyses are now required to

measure and link soil microbial activities with microbial

diversity and to identify and better define the bacterial

groups and their ecological attributes at this scale.

Acknowledgments

This work, through the involvement of technical facilities

of the GenoSol platform of the infrastructure ANAEE

France, received a grant from the French state through

the National Agency for Research under the program

“Investments for the Future” (reference ANR-11-INBS-

0001), as well as a grant from the Regional Council of

Burgundy. We thank the farmers of F�enay for providing

information about agricultural practices and for allowing

soil sampling in their fields. Thanks are also extended to

Diana Warwick for her comments to the manuscript.

Conflict of interest

None declared.

References

Acosta-Mart�ınez, V., S. E. Dowd, C. W. Bell, R. Lascano, J. D.

Booker, T. M. Zobeck, et al. 2010. Microbial community

composition as affected by dryland cropping systems and

tillage in a semiarid sandy soil. Diversity 2:910–931.
Arrouays, D., W. Deslais, and V. Badeau. 2001. The carbon

content of topsoil and its geographical distribution in

France. Soil Use Manage. 17:7–11.

Balzer, S., K. Malde, and I. Jonassen. 2011. Systematic

exploration of error sources in pyrosequencing flowgram

data. Bioinformatics 27:i304–i309.
Bellier, E., P. Monestiez, J. P. Durbec, and J. N. Candau. 2007.

Identifying spatial relationships at multiple scales: principal

ª 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. 515

F. Constancias et al. Landscape Distribution of Soil Microbial Communities



coordinates of neighbour matrices (PCNM) and

geostatistical approaches. Ecography 30:385–399.

Berner, D., S. Marhan, D. Keil, C. Poll, A. Sch€utzenmeister, H.

P. Piepho, et al. 2011. Land-use intensity modifies spatial

distribution and function of soil microorganisms in

grasslands. Pedobiologia 54:341–351.
Bissett, A., A. E. Richardson, G. Baker, S. Wakelin, and P. H.

Thrall. 2010. Life history determines biogeographical

patterns of soil bacterial communities over multiple spatial

scales. Mol. Ecol. 19:4315–4327.
Boer, W. D., L. B. Folman, R. C. Summerbell, and L. Boddy.

2005. Living in a fungal world: impact of fungi on soil

bacterial niche development. FEMS Microbiol. Rev. 29:795–

811.

Bressan, M., C. Mougel, S. Dequiedt, P. A. Maron, P.

Lemanceau, and L. Ranjard. 2008. Response of soil bacterial

community structure to successive perturbations of different

types and intensities. Environ. Microbiol. 10:2184–2187.
Brocard, D., P. Legendre, C. Avois-Jacquet, and H. Tuomisto.

2004. Dissecting the spatial structure of ecological data at

multiple scales. Ecology 85:1826–1832.

Carson, J. K., V. Gonzalez-Qui~nones, D. V. Murphy, C. Hinz,

J. A. Shaw, and D. B. Gleeson. 2010. Low pore connectivity

increases bacterial diversity in soil. Appl. Environ.

Microbiol. 76:3936–3942.

Chau, J. F., A. C. Bagtzoglou, and M. R. Willig. 2011. The

effect of soil texture on richness and diversity of bacterial

communities. Environ. Forensics 12:333–341.
Chenu, C., J. Hassink, and J. Bloem. 2001. Short-term changes

in the spatial distribution of microorganisms in soil

aggregates as affected by glucose addition. Biol. Fertil. Soils

34:349–356.
Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris,

et al. 2009. The Ribosomal Database Project: improved

alignments and new tools for rRNA analysis. Nucleic Acids

Res. 37:141–145.
Constancias, F., N. C. Pr�evost-Bour�e, S. Terrat, S. Aussems, V.

Nowak, J. P. Guillemin, et al. 2013. Microscale evidence for

a high decrease of soil bacterial density and diversity by

cropping. Agron. Sustain. Dev. 34:1–10.

Dequiedt, S., J. Thioulouse, C. Jolivet, N. P. A. Saby, M. Lelievre,

P. A. Maron, et al. 2009. Biogeographical patterns of soil

bacterial communities. Environ. Microbiol. Rep. 1:251–255.
Dequiedt, S., N. P. A. Saby, M. Lelievre, C. Jolivet, J.

Thioulouse, B. Toutain, et al. 2011. Biogeographical patterns

of soil molecular microbial biomass as influenced by soil

characteristics and management. Global Ecol. Biogeogr.

20:641–652.

Dray, S., P. Legendre, and P. R. Peres-Neto. 2006. Spatial

modelling: a comprehensive framework for principal

coordinate analysis of neighbour matrices (PCNM). Ecol.

Model. 196:483–493.

Drenovsky, R. E., K. K. L. Steenwerth, L. E. Jackson, and K.

M. Scow. 2010. Land use and climatic factors structure

regional patterns in soil microbial communities. Global

Ecol. Biogeogr. 19:27–39.

Enwall, K., I. N. Throb€ack, M. Stenberg, M. S€oderstr€om, and

S. Hallin. 2010. Soil resources influence spatial patterns of

denitrifying communities at scales compatible with land

management. Appl. Environ. Microbiol. 76:2243–2250.
Ettema, C., and D. Wardle. 2002. Spatial soil ecology. Trends

Ecol. Evol. 17:177–183.
Fierer, N., and R. B. Jackson. 2006. The diversity and

biogeography of soil bacterial communities. Proc. Natl

Acad. Sci. USA 103:626–631.

Fierer, N., and J. Ladau. 2012. Predicting microbial

distributions in space and time. Nat. Methods 9:549–551.

Gardi, C., L. Montanarella, D. Arrouays, A. Bispo, P.

Lemanceau, C. Jolivet, et al. 2009. Soil biodiversity

monitoring in Europe: ongoing activities and challenges.

Eur. J. Soil Sci. 60:807–819.

Giller, K. E., E. Witter, and S. P. Mcgrath. 1998. Toxicity of

heavy metals to microorganisms and microbial processes in

agricultural soils: a review. Soil Biol. Biochem. 30:1389–
1414.

Govaerts, B., M. Mezzalama, Y. Unno, K. D. Sayre, M. Luna-

Guido, K. Vanherck, et al. 2007. Influence of tillage, residue

management, and crop rotation on soil microbial biomass

and catabolic diversity. Appl. Soil Ecol. 37:18–30.

Green, J. L., and B. J. M. Bohannan. 2006. Spatial scaling of

microbial biodiversity. Trends Ecol. Evol. 21:501–507.

Griffiths, R., B. Thomson, P. James, T. Bell, M. Bailey, and S.

Andrew. 2011. The bacterial biogeography of British soils.

Environ. Microbiol. 13:1642–1654.
Haegeman, B., J. Hamelin, and J. Moriarty. 2013. Robust

estimation of microbial diversity in theory and in practice.

ISME J. 7:1092–1101.

Hanson, C., J. Fuhrman, M. C. Horner-Devine, and J. B. H.

Martiny. 2012. Beyond biogeographic patterns: processes

shaping the microbial landscape. Nat. Rev. Microbiol.

10:497–506.

IUSS Working Group WRB. 2006. World reference base for

soil resources 2006. World Soil Resources Reports No. 103.

FAO, Rome.

Juang, K. W., D. Y. Lee, and T. R. Ellsworth. 2001. Using

rank-order geostatistics for spatial interpolation of highly

skewed data in a heavy-metal contaminated site. J. Environ.

Qual. 30:894–903.

Kuramae, E. E., E. Yergeau, L. C. Wong, A. S. Pijl, J. A. Veen,

and G. A. Kowalchuk. 2012. Soil characteristics more

strongly influence soil bacterial communities than land-use

type. FEMS Microbiol. Ecol. 79:12–24.

Lark, R. M. 2002. Modelling complex soil properties as

contaminated regionalized variables. Geoderma 106:173–190.

Lauber, C. L., M. Hamady, R. Knight, and N. Fierer. 2009.

Pyrosequencing-based assessment of soil pH as a predictor

of soil bacterial community structure at the continental

scale. Appl. Environ. Microbiol. 75:5111–5120.

516 ª 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

Landscape Distribution of Soil Microbial Communities F. Constancias et al.
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