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Abstract: Decoding DNA symbols using next-generation
sequencers was a major breakthrough in genomic
research. Despite the many advantages of next-genera-
tion sequencers, e.g., the high-throughput sequencing
rate and relatively low cost of sequencing, the assembly of
the reads produced by these sequencers still remains a
major challenge. In this review, we address the basic
framework of next-generation genome sequence assem-
blers, which comprises four basic stages: preprocessing
filtering, a graph construction process, a graph simplifi-
cation process, and postprocessing filtering. Here we
discuss them as a framework of four stages for data
analysis and processing and survey variety of techniques,
algorithms, and software tools used during each stage.
We also discuss the challenges that face current
assemblers in the next-generation environment to deter-
mine the current state-of-the-art. We recommend a
layered architecture approach for constructing a general
assembler that can handle the sequences generated by
different sequencing platforms.

Introduction

The field of biological research has changed rapidly since the

advent of massively parallel sequencing technologies, collectively

known as next-generation sequencing (NGS). These sequencers

produce high-throughput reads of short lengths at a moderate cost

[1,2] and are accelerating biological research in many areas such

as genomics, transcriptomics, metagenomics, proteogenomics,

gene expression analysis, noncoding RNA discovery, SNP

detection, and the identification of protein binding sites [3–5].

The genome assembly problem arises because it is impossible to

sequence a whole genome directly in one read using current

sequencing technologies. The shotgun sequencing method breaks

a whole genome into random reads and sequences each read

independently. The process of reconstructing a whole genome by

joining these reads together up to the chromosomal level is known

as genome assembly. For almost 30 years, the Sanger method was

the leading technology in genome sequencing. This method

generates low-throughput long reads (800–1000 bp) with high

costs [1,6]. Since the emergence of next-generation sequencing

technology, sequencers can produce vast volumes of data (up to

gigabases) during a single run with low costs. However, most of the

produced data is distorted by high frequencies of sequencing errors

and genomic repeats. Thus, building a genome assembler for a

next-generation environment is the most challenging problem

facing this technology due to the limitations of the available

computational resources for overcoming these issues. The first step

toward overcoming the assembly challenge of NGS is to develop a

clear framework that organizes the process of building an

assembler as a pipeline with interleaved stages. The NGS assembly

process comprises four stages: preprocessing filtering, a graph

construction process, a graph simplification process, and post-

processing filtering [7–35]. A series of communication messages

are transferred between these stages and each stage works on its

respective inputs to produce the outputs that reflect its function.

These stages are found in most working assemblers (see below) in

the next-generation environment but some assemblers delay

preprocessing filtering until the later stages. In this review, we

discuss the complete framework and address the most basic

challenges in each stage. Furthermore, we survey a wide range of

software tools, which represent all of the different stages in the

assembly process while also representing most of the paradigms

available during each stage. Most of the tools reviewed are freely

available online as open-source projects for users and developers.

Next-Generation Sequencing Technologies

The revolution in DNA sequencing technology started with the

introduction of second-generation sequencers. These platforms

(including 454 from Roche; GA, MiSeq, and HiSeq from

Illumina; SOLiD and Ion Torrent from Life Technologies; RS

system from Pacific Bioscience; and Heliscope from Helicos

Biosciences) have common attributes such as parallel sequencing

processes that increase the amount of data produced in a single

run (high-throughput data) [5,36]. They also generate short reads

(typically 75 bp for SOLiD [37], 100 to 150 bp for Illumina [38],

,200 bp for Ion Torrent [38], and 400 to 600 bp for 454 [38])

and long reads of up to 20 kb (with Pacific Bioscience) but with

higher error rates [1,16,24]. Thus, each platform also has a

common error model for the data they generate, such as indels for

454, Ion Torrent, and Pacific Bioscience platforms and substitu-

tions for SOLiD and Illumina [6,39]. Each platform generally

produces two types of data: 1) the short-read sequences and 2) the

quality score values for each base in the read. The quality values
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are used to assess the sequence quality, trim reads, and remove

low-quality bases. Several next-generation platforms can pro-

duce paired-end reads, which are libraries that contain the

sequences corresponding to both ends of the read. Each paired-

end has a separation distance, which is estimated using a library

preparation protocol during the sequencing process. This

separation distance is known as the insert size or clone length.

These paired-end reads are used to combine contigs in the later

stages of the genome assembly process and they are employed as

a measure for testing the quality of the assembled genome.

Next-generation sequence reads are typically available online at

the Sequence Read Archive (SRA) [40], while the assembled

reads are available at the Assembly Archive [41] and the

descriptions of assembled contigs and scaffolds are available in

AGP files [42].

Genome Assembly Pipeline

Treating the genome assembly problem as a jigsaw puzzle

provides useful insights into the different challenges encountered

during assembly. The first challenge is to place each read (piece) in

the correct position in the puzzle, which will affect the quality of

puzzle solving because the only available information for

determining the correct position of a read (piece) comes from its

neighbors. The second challenge is the increased number of reads

(pieces) in the puzzle, which will increase the complexity of

determining the correct position. The third challenge is the

ambiguity that results from positioning similar reads (pieces),

which share similar suitable locations in the puzzle. Finally, some

reads (pieces) have unique features and they serve as unique

indicators to their locations in the puzzle [27].

Next-generation genome assembly begins with a set of short

reads, which may contain errors depending on the experimental

sequencing procedures. These reads are joined together to form

longer contiguous reads known as contigs by a computer program

known as an assembler. These contigs are joined together to form

longer contigs known as scaffolds (see Figure 1) [22].

There are two approaches for genome assembly: the compar-

ative approach and the de novo approach. During comparative

assembly, also known as reference-based assembly, a reference

genome from the same organism or a closely related species is used

as a map to guide the assembly process by aligning the fragments

being assembled. This approach is used in resequencing applica-

tions, for example [43]. During de novo assembly, no map or

guidance is available for assembling the genome, so this approach

represents assembly in the strict sense. Therefore, de novo assembly

is used to reconstruct genomes that are not similar to previously

sequenced genomes [20].

To build an assembler, we must know the inputs of the

assembler, which are generally two files that contain the sequence

reads being assembled and their quality scores (or one file that

contains both). Next-generation sequencing technologies have

high-throughput short reads so dealing with them is a highly

memory-intensive task. To simplify the assembly process and also

save time and memory costs, most assemblers format their input

data using graph data structures. However, different assemblers

differ with respect to their initial graph construction, configura-

tion, traversing, and simplification processes [44].

In the present review, genome assembly is discussed as a single

coherent framework that combines the four basic stages of next-

generation genome assembly: preprocessing filtering, a graph

construction process, a graph simplification process, and post-

processing filtering. Preprocessing filtering is responsible for

detecting and correcting erroneous reads before the assembly

begins. The graph construction process is responsible for creating

a graph model, which is used to organize short-read sequences into

a compact form and to create longer reads during assembly. The

graph simplification process is used to simplify the graph by

reducing the number of graph nodes and edges, and removing

erroneous ones. Postprocessing filtering builds contigs, detects

misassembled ones, and extends them into scaffolds. In this stage,

the paired-end reads are incorporated into filter contigs by

creating a contig connectivity graph or using a previously

constructed one (in the second stage) based on the updated

Figure 1. Schematic representation of the four stages of the next-generation genome assembly process. Note: G0 is a simplified version
of graph G with N nodes and E edges.
doi:10.1371/journal.pcbi.1003345.g001
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information. The new graph or the previous graph must be filtered

one step further after incorporating paired-end constraints that

detect misassembled contigs and unresolved repeats, which is

indicated by the arrows between the three lower stages in Figure 1.

The current assemblers used in the next-generation environ-

ment have some or all of these basic stages. Furthermore, stand-

alone preprocessing filters (error correction tools [45–51]) and

postprocessing filters (scaffolders [52–57]) are available, while

some assemblers have their own preprocessing and postprocessing

modules. Some assemblers delay the error correction step until the

graph simplification stage because some errors are not visible until

the graph has been started, e.g., to distinguish polymorphisms

from sequencing errors. Furthermore, performing parallel error

correction operations during the graph construction process for a

whole set of reads will reduce the overall computational time

[14,35]. Some assemblers rely on correcting the errors early,

which may simplify the graph construction process and reduce the

graph size. Some errors are also not detected during the graph

simplification step so detecting them early helps to remove them

from the read sets before the graph creation stage. During

postprocessing filtering, some assemblers use stand-alone scaf-

folders to assemble the contigs one step further into scaffolds

whereas other have their own scaffolding modules that produce

scaffolds from contigs directly. In many traditional assembly

pipelines, error correction or graph simplification phases are

absent. The long reads of the first-generation sequencers,

compared with most of the next-generation sequencers, contribute

positively to the absence of these phases. With long reads,

assemblers can detect long overlaps, which limits the influence of

sequencing errors even if the overlap sequences are inexact. In

addition, using a set of assembly parameters for validating the

overlaps among long reads in the global alignment process is

sufficient to detect these sequencing errors or simply ignore them.

If those errors are ignored, the computation of contigs consensus

sequences promises their detection, by mapping reads back to

contigs. Moreover, these isolated errors do not affect the topology

of the created assembly graph [43,58].

Preprocessing Filtering

The goal of the preprocessing filter is to correct or eliminate

erroneous reads before starting the assembly process. These errors

are caused by the sequencing platforms and, therefore, they vary

among platforms. The different errors targeted by preprocessing

filters include substitutions (mismatch), indels (insertion/deletion),

and ambiguous bases (i.e., N). Detecting and correcting these

errors early will facilitate the assembly process and prevent

misassembled contigs in the later stages. Error correction

algorithms vary from simple trimming processes using base quality

scores to complex error correction approaches based on the

frequency of erroneous reads in the set being assembled [39]. All

error correction algorithms are based on the same general concept

that reads with errors are infrequent and random so they can be

detected by counting the reads in the assembly pool. Low-

frequency reads are candidates for error correction algorithms and

are aligned to high-frequency reads that share substrings.

However, this idea is affected by the challenges of high-frequency

genomic repeats and nonuniform sampling of the genome, which

lead to ambiguous results derived from multiple equal correction

choices. There are four basic approaches to error correction: the

K-spectrum approach, Suffix Tree/Array approach, Multiple

Sequence Alignment approach, and Hybrid approach (see

Figure 2. Different approaches for error corrections. (A) K-spectrum approach: a set of substrings of fixed length k are extracted from the read
and ready to filter. (B) Suffix tree/array approach: a set of substrings of different lengths of k (suffixes) are extracted from the read, represented in the
suffix tree, and ready to filter. (C) Multiple sequence alignment approach: reads are aligned to each other to define consensus bases and correct
erroneous ones.
doi:10.1371/journal.pcbi.1003345.g002
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Figure 2) [45–51]. These error correction approaches and their

implemented tools (see Table 1) are discussed in detail in the

following sections.

K-Spectrum Approach
K-spectrum–based filters extract the set of all k-mers (substring

of length k) from the reads, which is known as the k-spectrum (see

Figure 2A) [47,48,51]. The k-mers with small differences

(hamming distances) among them are probably from the same

genomic position so they are candidates for correcting errors

depending on their frequencies. K-spectrum–based filtering starts

by extracting all of the k-mers from the set of reads being

assembled. A weight value is assigned to each k-mer depending on

several factors, such as its frequency and the quality scores of the

bases in the k-mers. Subsequently, the k-mers are sorted according

to their weights and a suitable threshold (cutoff point) is

determined that separates trusted and untrusted k-mers. The

reads that contain untrusted k-mers are treated as candidates for

the error correction filter. The filter tries to convert untrusted k-

mers into trusted ones using a minimum number of editing

operations. The conversion process is repeated until there are no

more untrusted k-mers. Thus, all of the retained reads contain

trusted (error-free) k-mers.

The general k-spectrum–based approach has been implemented

in many stand-alone software packages for error corrections such

as Quake [47], Reptile [51], and Hammer [48] but with

differences in their implementations. Also, the same approach

has been implemented as a built-in component for error correction

in short-read assemblers such as Euler-SR [8–10,26,27], ALL-

PATHS-LG [7,18,59], SOAPdenovo [17], SGA [30], Readjoiner

[13], and Fermi [60]. Table 1 and Table 2 list several technical

and practical features of stand-alone and built-in error correction

tools, respectively.

Suffix Tree/Array Approach
Suffix tree/array–based filters generalize the k-mer idea by

using different values of k, which represent different suffixes

(substrings) in the reads [45,50]. Rather than storing/retrieving

fixed k-mers with their frequencies in a hash table, suffix tree/

array–based filters store/retrieve variable-size k-mers with their

frequencies in a suffix tree/array. The suffix array is also more

space-efficient than the suffix tree. The suffix tree/array filter starts

by extracting all suffixes from the reads and computing their

frequencies. The suffixes and their frequencies are organized in a

tree/array data structure (see Figure 2B). Next, the tree/array is

traversed to search for erroneous nodes (suffixes) with frequencies

less than the specified threshold. The filter tries to find the most

similar nodes in the neighbors, which serve as candidate solutions

for correction. If there are no candidate solutions for correction,

the reads corresponding to erroneous nodes are removed from the

read set.

The suffix tree/array approach has been implemented in many

stand-alone software packages for error corrections such as

SHREC [50] and HiTEC [45] (see Table 1).

Multiple Sequence Alignment (MSA) Approach
The idea behind this approach is using sequence alignment to

detect and correct erroneous reads by aligning them with a

reference genome or each other, as explained below (see Figure 2C)

[46,49]. Reads that share substrings (k-mers) are likely to be

similar, while those that have high-frequency k-mers are likely to

be correct and are used as candidate solutions to correct reads with

low-frequency k-mers. The consensus (correct) bases are deter-

mined by aligning erroneous reads with the trusted ones, thereby

correcting the errors.

The MSA approach has been implemented in many stand-

alone software packages for error corrections such as Coral [49]

and ECHO [46] (see Table 1). Also, the same approach has been

implemented as a built-in component for error correction in short-

read assemblers such as CABOG [21] (see Table 2).

Hybrid Approach
The idea behind this approach is combining the complementary

attributes of next-generation sequencing techniques to detect and

correct erroneous reads [11,61]. These attributes include the long

reads from the 454 platform and the high indel error rates

compared with Illumina reads. These longer reads can be used to

detect overlaps during de novo assembly. The Illumina reads are

shorter but they have high coverage and can be used to detect and

correct erroneous reads [6]. Early hybrid techniques were based

on combining the reads from first- and second-generation

sequencers such as Sanger with 454, or Illumina reads [11]. The

continuous improvement of NGS technologies had increased the

read lengths and the hybrid techniques among them have been

developed such as PBcR [16], which is a hybrid error correction

method for erroneous reads from PacBio RS that uses high-quality

short reads produced by the same sequencer or other sequencers,

such as 454 or Illumina reads (see Table 1). PBcR aligns short

reads against the longer ones and searches for a maximum

matching between them to create a consensus sequence. This

method has been integrated with Celera [23] to assemble different

prokaryotic and eukaryotic genomes. Hybrid-SHREC [62] deals

with different error models produced by the next-generation

sequencers, e.g., substitution for Illumina and SOLiD and indels

for 454 (see Table 1). It relies on aligning these reads together for

correcting various models of errors using the suffix array

approach.

Recently, Yang et al. [39] evaluated various stand-alone error

correction methods, representing different approaches, and

reported that most of them targeted the substitution errors due

to the abundant usage of Illumina sequencing reads (see Table 1);

among them Reptile, HiTEC, and ECHO produce the best

results. While Coral and Hybrid-SHREC are the only tools

targeting indels errors with better results produced from Coral,

they still need improvements in their substitution error correction

results compared with others.

Another interesting evaluation study [63] shows that some

assemblers, such as ABySS, SOAPdenovo, Velvet, and CA-

BOG, produce improved results using a separate program for

error correction while others, such as SGA, are most effective

with their built-in modules for error correction. Further, the

study mentioned that the built-in error correction module in

ALLPATHS-LG produce more accurate reads than the stand-

alone tool Quake.

It should be noted that there are many challenges facing the

current error correction modules such as user-independent

parameter selection, distinguishing sequencing errors from poly-

morphisms, dealing with different data sets with different attributes

(read length, error rates and error models, genomic coverage),

using of paired-end reads to overcome genomic repeats, and

improving the performance of error correction algorithms (the

time and memory costs) toward the increasing throughput of the

next-generation sequencers [39]. Furthermore, the field of error

correction still needs deeper assessment of various stand-alone

error correction tools against built-in error correction modules in

different assemblers.

PLOS Computational Biology | www.ploscompbiol.org 5 December 2013 | Volume 9 | Issue 12 | e1003345



Graph Construction Process

In this stage, the reads are partially corrected and filtered, which

makes them suitable for the assembly process. The goal of the

assembly process is to combine these partially corrected reads to

form longer contiguous reads, which are technically referred to as

contigs. The combined reads are those sharing nucleotides at their

ends, i.e., merged reads share an overlap region. Most NGS

assemblers format their input short reads as graph data structures

but they differ in their initial graph construction, configuration,

traversing, and simplification processes. The graph is an abstract

data structure, which describes the similarity relations within a set

of reads. Mathematically, a graph is represented as a set of vertices

(nodes) and edges. In the assembly graph, the nodes represent

Table 2. Next-generation genome assemblers: Architecture.

Assemblers
Preprocessing
Filtering

Graph
Construction
Process

Graph Simplification
Process Postprocessing Filtering Ref.

Newbler
GS de novo
assembler

N/A Overlap-based -Merging consecutive
nodes

-Building contigs [19]

Edena N/A Overlap-based -Removing dead ends
-Removing transitive
edges
-Dealing with bubbles

-Building contigs [14]

Celera
CABOG
wgs-assembler

-Remove and correct
erroneous reads

Overlap-based -Merging consecutive
nodes
-Removing dead ends

-Building contigs
-Detecting misassembled contigs
-Merging contigs and fill gaps
-Removing transitive edges
-Detecting repeated contigs
-Building scaffolds

[21,23]

Shorty N/A Overlap-based N/A -Building contigs
-Detecting misassembled contigs
-Merging contigs and fill gaps
-Building scaffolds

[15]

Forge -Remove erroneous
reads

Overlap-based N/A -Building contigs
-Building scaffolds

[11]

SGA -Remove and correct
erroneous reads

Overlap-based -Removing dead ends
-Dealing with bubbles

-Building contigs
-Building scaffolds

[30]

Readjoiner -Remove and correct
erroneous reads

Overlap-based -Removing dead ends
-Dealing with bubbles

-Building contigs [13]

Fermi -Correct erroneous reads Overlap-based -Dealing with bubbles -Building contigs [60]

Euler-SR -Remove and correct
erroneous reads

K-mer–based -Merging consecutive
nodes
-Removing dead ends
-Dealing with bubbles
-Removing tangles

-Building contigs
-Building scaffolds

[10]

ALLPATHS-LG -Remove and correct
erroneous reads

K-mer–based -Removing dead ends
-Dealing with bubbles

-Building contigs
-Building scaffolds

[7,18,59]

Velvet -Remove erroneous
reads

K-mer–based -Merging consecutive
nodes
-Removing dead ends
-Dealing with bubbles

-Building contigs
-Merging contigs and fill gaps
-Detecting and resolving repeated contigs
-Building scaffolds

[35]

ABySS N/A K-mer–based -Removing dead ends
-Dealing with bubbles

-Building contigs
-Merging contigs

[31]

SOAPdenovo -Correct erroneous
reads

K-mer–based -Merging consecutive
nodes
-Removing dead ends
-Dealing with bubbles
-Removing tangles

-Building contigs
-Merging contigs and fill gaps
-Removing transitive edges
-Detecting repeated contigs
-Building scaffolds

[17]

SparseAssembler N/A Sparse k-mer–based -Removing dead ends
-Dealing with bubbles

-Building contigs [34]

SSAKE N/A Greedy-based N/A -Building contigs [33]

SHARCGS -Remove erroneous
reads

Greedy-based N/A -Building contigs [12]

Vcake N/A Greedy-based N/A -Building contigs [74]

QSRA N/A Greedy-based N/A -Building contigs [75]

Taipan N/A Hybrid-based -Removing transitive
edges

-Building contigs [29]

doi:10.1371/journal.pcbi.1003345.t002
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strings or substrings of reads, while the edges represent the suffix-to-

prefix overlaps between reads [64,65]. There are many approaches

to graph construction, which can be classified as overlap-based

construction, k-mer–based construction, greedy-based construction,

and hybrid-based construction. These approaches are also known as

overlap graphs, de Bruijn graphs, greedy graphs, and hybrid graphs,

respectively. We will discuss the different approaches to graph

construction in the following sections.

A. Overlap-Based Construction
A classical overlap-based approach for de novo assembly consists

of three stages: overlap, layout, and consensus (i.e., OLC) [66].

Assemblers following this paradigm start by detecting the overlaps

among the set of unassembled reads. Then, the overlap

information is organized into a graph where nodes correspond

to reads and edges encode the (suffix-to-prefix) overlaps among

them. The goal of the layout step is to find a shortest Hamiltonian

path that visits each node in the graph exactly once and hence this

path represents a solution to the assembly problem. Finally, the

overlaps between the reads (nodes) are combined in the consensus

step (see Figure 3).

Another alternative representation of a classical overlap graph is

a string graph, which is a simplified version constructed from only

irreducible (nontransitive) edges [67]. When the transitive edges

are reduced, the Hamiltonian path does not represent the solution

to the assembly problem. Since there are no assemblers to try to

find the optimal path in the assembly graph using a whole set of

reads, the solution to the assembly problem is theoretically NP-

hard [65].

The minimum overlap length plays a key role in the success of

an assembly algorithm. Since the small values will increase the

branching nodes in the graph by increasing the frequency of false

overlaps, the large values will increase the dead ends by increasing

the frequency of nonoverlapped reads [14].

This paradigm is widely used with long reads that have sufficient

characters to detect overlaps such as those produced by Sanger

and 454 technologies and previously raised concerns about the

quadratic complexity of the overlap computation phase [11,27].

With the advent of a string indexing data structure called FM-

index, which can efficiently find overlaps faster than quadratic

time, the performance of overlap-based assemblers (e.g., SGA [30]

and Readjoiner [13]) has been improved for short-read sequence

assembly [68].

This paradigm is implemented in several short-read assemblers

such as Newbler [19], CABOG [21], Shorty [15], Forge [11],

Edena [14], SGA [30], Fermi [60], and Readjoiner [13]. Table 2,

Table 3, and Table 4 list several technical and practical features of

these tools.

Figure 3. Overlap-based approach for graph construction. (A) Overlap graph where nodes are reads and edges are overlaps between them.
(B) Example of a Hamiltonian path that visits each node (dotted circles) exactly once in the graph (note: starting node is chosen randomly). (C)
Assembled reads corresponding to nodes that are traversed on the Hamiltonian path.
doi:10.1371/journal.pcbi.1003345.g003
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B. K-Spectrum–Based Construction
Assemblers following this paradigm start by extracting the set of

all k-mers in the reads, which represents their k-spectrum. Each

node represents a k-mer in the graph and each edge represents a

k–1 overlap between the nodes. Ideally, when the traversal count

of each edge is known, the Eulerian path that visits each edge in

the graph exactly once corresponds to the entire chromosome (see

Figure 4). Pevzner et al. proposed a slightly different representation

of a de Bruijn graph where edges are corresponding to k-mers and

nodes are corresponding to k-1 suffixes or prefixes of those k-mers

[27]. While de Bruijn graphs can be constructed in a linear time

algorithm, it is traversed in a polynomial time to find the optimal

path on the graph [69].

This approach still needs improvements when assembling a

genome with high-coverage and high-error profiles that increase the

number of repeated and distinct k-mers respectively in the graph.

Moreover, splitting reads into k-mers leads to the loss of information

of k-mers contexts while it also increases the need for efficient storage

and processing algorithms [34]. Finally, this graph is very sensitive to

the k parameter [70]. The selection of the k-mer length should be

sufficiently large to prevent false overlaps due to shared k-mers, but it

should also be small enough to consider the true overlaps of shared k-

mers. The k parameter should be selected according to the coverage

of the reads and the average error profiles.

To overcome the need for the large hardware resources

required to handle a graph of k-mers, various studies reformulate

the representation of the de Bruijn graphs to ensure efficient

storage in memory. Melsted et al. presented an approach for

efficient memory usage based on the detection of a set of unique k-

mers and storing them in a probabilistic data structure known as a

Bloom filter [71]. Ye et al. introduced the idea of a sparse k-mer:

rather than storing all k-mers in the memory, which is the case in

de Bruijn graphs, a sparse subset of them is sufficient [34]. Conway

et al. reformulated a de Bruijn graph as a bit map and represented

each edge in the de Bruijn graph using one bit, which was set or

cleared according to the existence of an edge [72]. While this

representation has large memory requirements with large k values,

a recent succinct representation of the de Bruijn graph that is

independent from the k values has been proposed by Bowe et al.

[73]. This representation is based on indexing and compressing

graph nodes/edges using an extension of the Burrows-Wheeler

transform.

This paradigm is implemented in several short-read assemblers

such as Euler-SR [8–10,26,27], ALLPATHS-LG [7,18,59], Velvet

Table 3. Next-generation genome assemblers: Technical comparison.

Assemblers Operating System
Programming
Language

Single PC/
Cluster

Open-
Source Website

Newbler* (V2.8)
GS de novo assembler

Linux (32–64) bits
CentOS or RedHat

C++ Single N http://454.com/contact-us/software-request.asp

Edena (V3.121122) Linux (32–64) bits
Windows

C++ Single Y http://www.genomic.ch/edena

Celera* (V7.0)
CABOG
wgs-assembler

Linux/Unix (64) bits
Mac OS X, Darwin, FreeBSD

C++/C/Perl Single/Cluster Y http://wgs-assembler.sourceforge.net/

Shorty (V2.0) Windows, Linux,
Mac OS X**

C++ Single Y http://www.cs.sunysb.edu/,skiena/shorty

Forge* Windows, Linux, Mac C++ Single/Cluster Y N/A

SGA* Linux, Mac OS X C++ Single/Cluster Y https://github.com/jts/sga

Readjoiner* (V1.2) Linux (32–64), Mac OS X,
Cygwin, POSIX-compatible

C Single/Cluster Y http://www.zbh.uni-hamburg.de/readjoiner

Fermi Linux C Single Y https://github.com/lh3/fermi

Euler-SR Linux (32–64) bits** C++/Perl** Single** N/A** N/A

ALLPATHS-LG* Linux (64) bits C++ Single Y http://www.broadinstitute.org/software/allpaths-lg/
blog

Velvet* (V1.2.08) Linux (32–64), Mac OS X, Cygwin
Sparc/Solaris

C Single Y http://www.ebi.ac.uk/,zerbino/velvet

ABySS (V1.3.4) For all platforms C++ Single/Cluster Y http://www.bcgsc.ca/platform/bioinfo/software/abyss

SOAPdenovo (V1.05) Linux (32–64), Mac** C/C++** Single Y http://soap.genomics.org.cn/soapdenovo.html

SparseAssembler* Linux (64) bits C/C++ Single Y http://sites.google.com/site/sparseassembler/

SSAKE (V3.8) For all platforms Perl Single Y http://www.bcgsc.ca/bioinfo/software/ssake

SHARCGS* Linux/Unix (32–64) Perl Single Y http://sharcgs.molgen.mpg.de/

Vcake* Windows (32–64) bits
Linux/Unix (32–64) bits

Perl/C Single Y http://sourceforge.net/projects/vcake/

QSRA (V1.0) Linux/Unix (32–64) C++ Single Y http://mocklerlab.org/tools/2

Taipan* Linux C Single Y http://taipan.sourceforge.net

*Personal communications with authors.
**Users’ experiences and communities’ websites.
doi:10.1371/journal.pcbi.1003345.t003

PLOS Computational Biology | www.ploscompbiol.org 8 December 2013 | Volume 9 | Issue 12 | e1003345



[35], ABySS [31], SOAPdenovo [17], and SparseAssembler [34]

(see Table 2, Table 3, Table 4).

C. Greedy-Based Construction
Greedy-based assemblers always make the choice with the

greatest immediate contribution in solving sequence assembly

problem. They follow the same basic operation: given any graph

node, the assembler chooses the next visitor on its tour that

maximizes the overlap length with the current node (see Figure 5).

By using a set of heuristic techniques, greedy assemblers can detect

false overlaps and high-scoring ones that are resulted from

repetitive sequences. This approach is not widely used, since

greedy assemblers do not consider any global information about

read relationships and their paired-end links.

Greedy-based assemblers are suitable for small-size genomes.

Using greedy approach for graph traversal may cause the

algorithm to become stuck in local maxima, which produces a

suboptimal solution for the assembly problem. The local maxima

will increase the gaps between contigs in the assembly finishing

process. A prefix tree is used to represent a greedy graph implicitly

in some assemblers [33].

This paradigm is implemented in several short-read assemblers

such as SSAKE [33], SHARCGS [12], VCAKE [74], and QSRA

[75] (see Table 2, Table 3, Table 4).

Table 4. Next-generation genome assemblers: Practical comparison.

Assemblers Sequencing Platform Input File Format Output File Format
Genome/
Transcriptome

Prokaryotic/
Eukaryotic

Single/
Paired-End
Reads

Newbler*

GS de novo
assembler

Any platform .sff, .fasta, .qual .fna, .qual, .txt, .sff, .tsv,
.ace

Genome[T] Prokaryotic S/P

Edena Illumina/Solexa .fasta** .fasta**, .cov, .info Genome Prokaryotic S/P

Celera*

CABOG
wgs-assembler

Sanger, Illumina/Solexa,
454, Ion Torrent, Pacific
Biosciences

.fasta

.fastq

.frg, .sff

.asm

.fasta .posmap, .qc
Genome Eukaryotic/

Prokaryotic
S/P

Shorty SOLiD
Illumina/Solexa, Helicos

.fasta .fasta Genome Prokaryotic S/P

Forge* Hybrid of Sanger, 454, and
Illumina/Solexa

.fasta, .fastq, .qual .fasta, .txt Genome Eukaryotic/
Prokaryotic

S/P

SGA* Illumina/Solexa .fastq .fasta Genome Eukaryotic/
Prokaryotic

S/P

Readjoiner* Illumina/Solexa*** .fasta, .fastq .fasta, .dot, .sga Genome Eukaryotic/
Prokaryotic

S/P

Fermi Illumina/Solexa .fastq .fastq-like format Genome Eukaryotic/
Prokaryotic

S/P

Euler-SR 454
Illumina/Solexa

.sff**, .fastq, .eland .fasta** Genome Eukaryotic/
Prokaryotic

S/P

ALLPATHS-LG* Illumina/Solexa,
Pacific Biosciences

.fastb, .qualb, .pairs .fasta, .efasta Genome Prokaryotic/
Eukaryotic

S/P

Velvet* 454, Illumina/Solexa, SOLiD .fasta, .fastq, .fasta.gz, fastq.gz,
.sam, .bam, .eland, .gerald

.fasta, .afg, .txt Genome Prokaryotic/
Eukaryotic

S/P

ABySS Illumina/Solexa
454
SOLiD

.fastqm, .fasta, .qseq, .export,

.sam, .bam
.fasta, .hist, .dot, .adj
.dist, .path,
coverage.hist

Genome
[T]

Eukaryotic/
Prokaryotic

S/P

SOAPdenovo Illumina/Solexa .fastq, .fasta .contig
.scafSeq

Genome
[T]

Eukaryotic/
Prokaryotic

S/P

SparseAssembler* Illumina/Solexa .fasta, .fastq .fasta Genome Eukaryotic/
Prokaryotic

S

SSAKE Illumina/Solexa .fasta, raw .fasta[S] Genome Eukaryotic/
Prokaryotic

S/P

SHARCGS* Illumina/Solexa .fasta, raw .fasta Genome Eukaryotic/
Prokaryotic

S

Vcake* Illumina/Solexa .fasta, raw .fasta Genome Prokaryotic S

QSRA Illumina/Solexa .fasta, .raw .fasta[S] Genome Eukaryotic/
Prokaryotic

S

Taipan* Illumina/Solexa .raw .fasta Genome Prokaryotic S

*Personal communications with authors.
**Users’ experiences and communities’ websites.
***Available for other sequencing platforms if the datasets are filtered.
[T]Transcriptome assembly version is available.
[S]Speculated, based on sequencing platforms.
doi:10.1371/journal.pcbi.1003345.t004
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D. Hybrid-Based Construction
This approach has different perspectives, such as a hybrid

between two different models of graph constructions that aims to

increase the assembler’s performance by exploiting the advantages

of both models. A hybrid between OLC and greedy graph is

implemented in Taipan [29] where nodes are the reads and edges

represent the overlaps, and the graph is traversed to find a greedy

path rather than a Hamiltonian path, as in the OLC approach

[29,44]. Greedy overlap–based assemblers use a greedy algorithm,

which does not generally produce an optimal solution, but they

achieve acceptable assembly quality as OLC assemblers using a

moderate amount of hardware resources. Another perspective is

combining different quality of reads from different sequencers in

the process called hybrid assembly [28,76]. Wang et al. proposed a

pipeline for assembling reads from 454, SOLiD, and Illumina

separately and combining their resulting contigs to build scaffolds

and close gaps between them [32]. Cerdeira et al. proposed

another pipeline for combining the contigs produced by different

assemblers (i.e., Edena and Velvet) from different graph construc-

tion models such as OLC and de Bruijn to increase the assembly

quality [77]. Moreover, the perspective of the hybrid approach

between de novo and comparative assembly has been proposed for

producing an efficient draft of assembled genomes [78].

Graph Simplification Process

The graphs of high-throughput short reads contain huge

numbers of nodes, edges, paths, and subgraphs. To overcome

memory limitations and reduce computation time, the graph is

simplified after the graph creation process [22]. Erroneous reads

that are not recognized by the preprocessing filter form erroneous

structures, which also complicate the graph and assembly process.

These erroneous structures must be removed or simplified to

prevent misassembled contigs and scaffolds.

The graph simplification process begins by merging two

consecutive nodes into one node, if the first node has one outgoing

edge and the second node has one incoming edge (see Figure 6A).

This simplification step corresponds to the concatenation of two

character strings and it is similar to the approach taken by some

overlap-based assemblers during graph construction [67].

Another simplification step involves the removal of the transitive

edges [67] caused by oversampling of the sequencing technology.

Given that there are two paths Vi?VJ?Vk and Vi?Vk, the path

Vi?Vk is transitive because it passes through VJ and it represents

the same sequence as the first path, whereas the path Vi?Vk need

not be represented in the graph because the path Vi?VJ?Vk

already exists in the graph. This is an important step in the graph

simplification process, which reduces the graph complexity by a

factor of the oversampling rate c calculated as c~ NL
G

, where N is

the number of reads, G is the size of the genome being sequenced,

and L is the length of reads [14,29]. In the string graph, removing

transitive edges is the step toward graph construction [13,30,60].

This simplification step is only applicable to the overlap-based

graphs while the de Bruijn graph is naturally transitive-reduced.

Dead ends or spurs (tips) are different names for the same

erroneous structures. The short dead-end paths are caused by low-

depth coverage in the reads or the edges leading to the reads that

contain sequencing errors and a mixture of correct and incorrect

k-mers in the graph. To simplify this structure, some assemblers

(e.g., Edena [14], ABySS [31], and CABOG [21]) test each

branching node for all possible path extensions up to a specified

minimum depth. If the path depth is less than a certain threshold,

Figure 4. K-spectrum–based approach for graph construction. (A) de Bruijn graph where the nodes are k-mers and edges are k–1 overlaps
between them. (B) Example of an Eulerian path that visits each edge (dotted arrows) exactly once in the graph (note: numbers represent the order of
visiting edges). (C) Assembled reads corresponding to the edges that are traversed on the Eulerian path.
doi:10.1371/journal.pcbi.1003345.g004
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the nodes on the path are removed from the graph (see Figure 6B)

[7,8,14,17,21,35]. Other assemblers (e.g., SOAPdenovo [17],

Velvet [35], and SGA [30]) remove the dead ends only if they

are shorter than 2k and they have a lower coverage than other

paths connected to a common destination node [17,35,79]. The

value of k is sensitive to the removal of dead ends. Selecting a high

value of k breaks the contigs in many places. Furthermore, it is

difficult to determine the causes of dead-end branches, such as

errors or a lack of k-mer coverage. If dead ends are caused by a

lack of coverage, the process of removing them may lead to the

removal of correct k-mers, which shortens the contigs.

Bubbles or bulges are caused by nonexact repetitions in

genomic sequences or biological variations, such as SNPs (i.e.,

single base substitution). On the graph, their structure is a

redundant path, which diverges and then converges. Fixing a

bubble involves removing the nodes that comprise the less-covered

side, which simplifies the redundant paths into a single one. The

process of fixing bubbles begins by detecting the divergence points

in the graph. For each point, all paths from it are detected by

tracing the graph forward until a convergence point is reached.

Finally, these paths are filtered according to their own k-mer

coverage, quality scores, etc., or aligned with each other to

determine their shared consensus bases. The paths with low

coverage are removed from the graph and recorded in the log files

for later use when extending contigs to scaffolds (see Figure 6C)

[17,35,59]. While ABySS restricts the size of the bubble to n nodes

(k#n#2k), SOAPdenovo [17] and Velvet [35] use a modified

version of Dijkstra’s algorithm to detect it. In addition, rather than

reducing the bubble with redundant paths into a single simple

path, some assemblers preserve the heterozygotes encoded in the

bubble by using constrained paired-end libraries (e.g., ALL-

PATHS-LG [59]) or keeping the best two paths that are covered

by the most sequencing reads (e.g., Fermi [60]).

X-cuts or tangles are formed in the regions of repeats, which

allow more than one possible reconstruction of the target genome.

The simplification of repeats is affected by their length because the

length of any repeat can be between k and the read length. Tiny

repeats with equal incoming and outgoing edges N, which are

shorter than the read length, are resolved by removing the

repeated nodes and splitting the connections into N parallel paths

(see Figure 6D). The path partitioning is guided by mapping reads

back to the edges (read threading) or mapping paired-end reads

(mate threading). Euler-SR [10] and SOAPdenovo [17] resolve

simple tangles using read threading technique. However, long

repeats that exceed or equal the read length complicate the graph

and produce multiple exponential paths between the nodes.

Tracing all of these paths for finding the correct arrangement of

reads is computationally expensive under the standard hardware

resources. Based on the paired-end constraints, there is only one

path that satisfies them between any nodes so the repeat may be

resolved [8–10,17]. Euler-SR [10] and ALLPATHS-LG [59]

resolve more complex tangled repeats using mate threading

Figure 5. Greedy-based approach for graph construction. (A) Example of a greedy path (dotted arrows) that visits the nodes in the order of
maximum overlap length (note: starting node is chosen randomly; at each node the greedy algorithm will choose the next visitor based on the
maximum overlap length between this node and its connected neighbors). (B) Assembled reads corresponding to nodes that are traversed on the
greedy path.
doi:10.1371/journal.pcbi.1003345.g005
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Figure 6. Different graph simplification operations. (A) Consecutive nodes are merged. (B) Dead end (dotted circle) is removed. (C) Bubble
(dotted circle) is simplified where low-coverage path of the two paths that caused it was removed. (D) X-cut is simplified by splitting the connections
into two parallel paths.
doi:10.1371/journal.pcbi.1003345.g006
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technique, while Velvet integrates the Pebble and Rock Band

algorithms to solve them using insert length distributions and

mixing long and short reads, respectively [79].

Other graph simplification approaches targeted nonrecogniz-

able erroneous structures such as erosion of erroneous edges

formed by chimeric sequences [10,35], deletion of sequences not

covered by paired-end reads [59], and keeping only the edges that

maximize the overlap length with other reads in the graph [14].

Postprocessing Filtering

After finishing the graph simplification process, the graph is

traversed to build longer reads known as contigs. Contigs are

connected to form super-contigs or scaffolds. The process of

building scaffolds is not easy. The graph is filtered and simplified

to create correct contigs, which must be filtered and simplified

before building the scaffolds [9]. The goals of postprocessing

filtering are building contigs, filtering them, detecting misassem-

bled ones, and correcting them to form scaffolds. Paired-end reads

are used as a guide map to order and orient contigs during the

scaffolding process. Appropriate contigs are joined together to

form scaffolds depending on the positions of the paired-ends in the

contigs, their orientation, and expected insert size. If two pairs are

present in the same contig, their location and the distance between

them must be matched using the information available in the

paired-end libraries. If two pairs occur many times in contigs, the

information about their orientation and insert size can be used to

filter the choice of appropriate contigs to join them together.

Paired-end data is also useful for detecting chimeric contigs where

two or more regions from different genomic locations are

misassembled into one contig. The frequency of paired-end links

is also used as a filter criterion for removing misassembled contigs

[52–55,57,80]. Contigs containing repeats can violate paired-end

constraints and lead to misassembled scaffolds. Detecting these

contigs early by tracing high-coverage regions that may reflect

repeats in the contigs and removing them from the assembly set

can prevent scaffolds from being misassembled.

The goal of any scaffolding algorithm is to minimize the

inconsistency between the assembled contigs and paired-end

constraints based on majority voting from a large number of

paired-end reads. Achieving this goal is NP-hard but there are

useful heuristics for overcoming these challenges [21,23,42,79,81].

There are two approaches to building scaffolds. The first approach

uses the graph built during the graph construction process (e.g., a

de Bruijn graph) and integrates paired-end constraints to detect

scaffold paths on the same graph [82]. Some assemblers align the

paired-ends to contigs to detect those that can join together to

form scaffolds [10]. Other assemblers use heuristic approaches to

incorporate paired-end constraints into a de Bruijn graph

[7,35,79,83]. The second approach constructs a contig connectiv-

ity graph (also known as a scaffolding graph) (see Figure 7) where

the nodes represent contigs and the edges encode paired-end

constraints. This graph needs simplification and reduction because

it contains cycles (redundant contigs), as well as transitive,

associative, and erroneous edges (misassembled contigs)

[15,17,30]. The scaffolding graph is usually traversed using a

greedy approach, which visits the contigs in order to maximize the

supporting paired-end constraints [80] or contig lengths [52].

If the gaps between the contigs are not filled with other contigs,

they are filled with N characters that denote unknown bases

between them and the total number of N can be estimated easily

using paired-end constraints [53]. Some assemblers include

scaffolding modules (e.g., Euler-SR, ALLPATHS-LG, Velvet,

SGA, SOAPdenovo, and Shorty) (see Table 2) while others are

stand-alone scaffolders such as Bambus [43,56], SSPACE [52],

SOPRA [53], MIP scaffolder [57], Opera [55], and SCARPA [54]

(see Table 5).

There are many challenges currently facing the stand-alone

scaffolders such as using of different paired-end libraries with

different insert sizes, dealing with different erroneous structures in

the contig connectivity graph, which are resulted from sequencing

errors in paired-end libraries, misassembled contigs and chimeric

reads, resolving complex repeat structures, targeting metagenomic

sequences, and utilizing efficient algorithms to solve the inconsis-

tency among paired-end links. Further, similar to the error

correction tools, there is a lack in the evaluation studies, which can

assess different stand-alone scaffolders and compare them against

built-in scaffolding modules using different paired-end libraries.

Evaluating the Performance of Assemblers

Different assessment methods are used to evaluate the

performance of existing assemblers from two perspectives. The

first perspective is usability, which includes numerous issues such

as hardware and software requirements, ease of installation and

execution, user-friendly interfaces, and the speed of responsiveness

to user commands [44,84–86].

The runtime of an assembler and its memory usage are the most

important issues for the usability measure. Depending on the

available computational resources, current assemblers used in

next-generation environments are classified into two categories. In

the first category, the assemblers run on a single machine with very

large memory requirements, e.g., to assemble human and

mammalian genomes [17,59]. In the other category, assemblers

are run on tightly coupled cluster machines [31]. The high-

throughput nature of next-generation sequencing technology due

to short-read sequences and their quality scores imposes a major

constraint on the system memory available. To ensure efficient

memory savings, most assemblers formulate the assembly problem

as a set of graph nodes and they rely on efficient data structures to

accommodate these nodes. The different graph models were

discussed earlier in the graph construction sections, particularly

their advantages and disadvantages with respect to computational

resources and several studies that reformulated their representa-

tions to ensure efficient storage in memory. However, no memory-

efficient solution is available for NGS assemblers and there is a

need for new tools and algorithms in this area.

The second perspective is assembly quality, which mainly

assesses the contiguity, consistency, and accuracy of the assembled

genomes using different approaches. Several studies have

measured the contiguity of assembled contigs and scaffolds using

different statistical metrics to calculate their length distributions

[87–94]. These metrics include the Nx score; the number of

assembled contigs/scaffolds (a low number is usually preferred

because it reflects greater connectivity); the maximum, minimum,

and average lengths of the resulting contigs/scaffolds; the total

short read lengths; and the sum of contigs/scaffolds. N50 (see

Figure 8) is the most common statistical metric. A larger Nx score

is usually better but it might not reflect the assembly quality

because incorrect joints in the assembled contigs will increase the

score [94].

Consistency measures aim to check the consistency between

assembled genomes and the constraints imposed by paired-end

libraries [95], read coverage [96], optical maps [97], or haplotype

sequences [90]. They aim to assess the quality of the assembled

genome by comparing it with a similar completed genome [89,90]

or by comparing its genetic data with independent genomic

components from the same organism, such as mRNA or cloned
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genes, which are available in the public databases [87,98]. If

sequences are not available from the same organisms, the

conserved sequences of related organisms may be used to

determine the accuracy of the assembly and to detect conserved

sequences in the newly assembled genome [87]. If a reference

genome is available, the accuracy of the assembled genomes can

be assessed by aligning the draft genome assemblies and reference

genomes using different genomic alignment tools [14,35,44,99].

The alignment process is useful for detecting different factors in

the assembled genomes and it is used by some assessment metrics

such as the percentage of reference coverage [17,44]; the accuracy

of contigs/scaffolds and their long-range contiguity [59]; the

patterns of insertions, deletions, and substitutions [100]; and core

and innovative genes [98].

Some evaluation studies have used a combination of previous

methods to assess draft genome assemblies. Assemblathon [101]

used previous metrics and defined its own new ones such as NG50,

which is computed using the average lengths of haplotypes instead

of the contig lengths used by N50; CPNG50/SPNG50, which is the

average lengths of contigs/scaffolds that are consistent with

haplotype sequences; and CC50, which is an indication of the

correct contiguity between two points in assembled genomes.

GAGE [63] used the E-size metric, which is the expected length of

contig/scaffold that contains a randomly selected base from a

reference genome. GAGE also reported that the evaluation

process was affected by the quality of the datasets being assembled

and the assembler/genome selected. Moreover, the statistical

methods did not reflect the quality of the assembly process in terms

of their accuracy and contiguity.

In addition to the previously discussed factors that affect the

quality of the genome being assembled, other studies have used the

sequencing coverage, the average length of reads, and the rate of

sequencing errors in assessments [102]. They also used the scoring

scheme to rate the different operations that reflect the accuracy of

the assembled genome, such as insertions, redundancy, reordering,

inversions, and relocations. There is usually a tradeoff between

contiguity and accuracy, where maximizing one of them will

impair another measure. Recently, a new metric, based on

aligning paired-end reads to an assembled genome, had been

proposed to generate Feature-Response Curves (FRC) to over-

come this tradeoff [103,104].

The choice of assembly algorithm and the complexity of the

dataset being assembled will also affect the performance of an

assembler. Different assemblers handle the errors and inconsis-

tencies in datasets differently. These inconsistencies are caused by

the variation between haploid and diploid genomes, and they

depend on the frequency of heterozygosity. Thus, selecting the

appropriate assembly algorithm and setting its parameter, such as

k-mer size and minimum overlapping length, affects the quality of

the genome assembly [25,44,105].

Zhang et al. [44] stated that de Bruijn graph–based assemblers

are more suitable for large data sets, of which SOAPdenovo

Figure 7. Building scaffolds using contig connectivity graph. (A) Paired-end reads are aligned to contigs and their orientations are
determined. (B) The library insert size (dotted line) is determined between two pairs and compared with the one saved previously. (C) Contig
connectivity graph is constructed and filtered according to paired-end constraints.
doi:10.1371/journal.pcbi.1003345.g007
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produces good assemblies for very short reads while ALLPATHS-

LG is recommended for longer reads of 100 bp. In addition,

greedy-based and OLC assemblers perform well for small data sets

with very short reads and longer reads, respectively, under limited

computational resources. Further, hybrid-based assembler Taipan

delivers better results in terms of the assembly speed with the

existence of sufficient memory. While SOAPdenovo has compli-

cated configuration files, greedy-based assemblers and hybrid-

based ones are superior in terms of easy software installation.

The recent version of Assemblathon competitions [106]

reported some practical considerations for de novo assembly, which

are that the assembly results must be taken several times using

different assemblers with different parameter settings to determine

their confidence, considering different metrics during assessment

process, choosing the suitable assembler based on your interested

metric (e.g., continuity, accuracy, coverage), evaluating the

heterozygosity levels before starting your assembly run, and finally

the contiguity metrics such as N50/NG50 or the assembly size may

not be considered in the evaluation process, if you are targeting the

genetic components in the assembled genomes.

Tables 1–5 offer a summary for different technical and practical

issues such as the sequencing platforms, different input/output file

formats, operating systems, programming languages, and open-

source availability, which can help users and developers when

choosing assemblers, error correction filters, or scaffolders.

A Layered Architecture Approach for Building a
General Assembler

After reviewing the four stages of the assembly process and a

large number of NGS preprocessing filters, assemblers, and

scaffolders, we identified the challenges of building a genome

assembler from two perspectives: the user and the developer. For

users, most current assemblers have command line interfaces that

lack interactivity and user-friendly interface components. Further-

more, it is difficult to: write their commands correctly without

syntax/semantic errors, prepare their input files in a format

suitable for the assembler being used, or to adapt different

parameter settings for different experiments because these are

problematic tasks for nonexpert users. Moreover, users need

assessment tools so they can assess the assembler’s output and

present their results in different formats with added statistical

information, which are all issues related to the speed, accuracy,

and efficiency of resource usage [44,86]. Developers are struggling

to increase the quality of assembled genomes and the usability of

their assemblers with the computational resources available. They

also need to address future improvements in sequencing technol-

ogy and their new features, which means they have to develop

innovative assembly strategies continuously, as well as efficient

data structures [24,84].

Based on these two perspectives, we suggest a layered

architecture approach to building a general assembler (see

Figure 9). A general assembler should be able to work with the

wide range of NGS data generated by different NGS platforms

and perform the four stages of NGS data processing. This

architecture contains two basic layers, i.e., a presentation layer and

an assembly layer, which contains different modules.

The presentation layer is responsible for taking the user inputs

through a set of user interface components. It is also responsible

for converting platform-specific files to a unified file format such as

a fastq/fasta-like format, or a tool-defined format. This can be

achieved by including an input module that deals with the data

generated from each platform independently and exporting it in aT
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Figure 8. N50 calculation method. (A) Set of contigs with their length. (B) Contigs are sorted in descending order. (C) Lengths of all contigs are
added (20+15+10+5+2 = 52 kb) and divided by 2 (52/2 = 26 kb). (D) Lengths are added again until the sum exceeds 26 kb, and hence exceeds 50% of
the total length of all contigs: 20+15 = 35 kb$26; then, N50 is the last added contig, which is 15 kb.
doi:10.1371/journal.pcbi.1003345.g008

Figure 9. The proposed layered architecture for building a general assembler (dotted circle). This architecture has two basic layers:
presentation and assembly layers. The presentation layer accepts the data from the user and outputs the assembly results through a set of user
interface components. It is also responsible for converting platform-specific files to a unified file format for the underlying processing layers. The
assembly layer contains three basic services: preprocessing filtering, assembly, and postprocessing filtering, which are provided through the four
stages of the data processing layer. These services are supported through a set of communicated interfaces corresponding to each sequencing
platform.
doi:10.1371/journal.pcbi.1003345.g009
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unified format that can be processed in the subsequent layers in

the same way, a feature that is already present in some tools [9].

The assembly layer covers the four stages of data processing,

which we have discussed throughout our review, i.e., preprocess-

ing filtering, graph construction, graph simplification, and

postprocessing filtering. Many services are provided in this layer,

e.g., preprocessing to correct error reads only, an assembly service

to assemble reads and produce contigs, and postprocessing to build

scaffolds. The implementation of these services relies on available

approaches such as k-mers, overlap, sparse k-mers, and new ones.

Each platform has different characteristics that affect the

implementation of each service, such as the read length, error

rate, error model, and sequencing depth (coverage), so a set of

specified interfaces for each platform should be available and each

service can implement multiple interfaces. These interfaces can

also be used to deal with different types of sequences such as

transcriptomes and metagenomes. Furthermore, it should be

possible to exploit the complementary attributes of different

sequencing platforms if necessary to integrate them into a hybrid

assembly.

The modularity design [107] of the proposed general assembler

makes it possible to use the existing implementations of the

available services such as Bloom filter, FM-index, sparse k-mers, or

defines new ones without affecting other modules in a flexible

manner. In addition, it can be easily integrated with other models

such as Trackster [108], via a set of communication messages

through the presentation layer, to benefit from its visualization and

analysis capabilities for assessing the values of different assembly

parameters (e.g., overlap length, k-mer size), according to different

characteristics of the employed data sets. Further, the general

assembler can benefit from SAM/BAM [109,110] file formats,

which describe short-read sequence alignments in a text/binary

format respectively. These formats are used with SAMtools to

increase its usability across different built-in utilities for indexing,

sorting, merging, etc. Moreover, the general assembler can utilize

the standard format for genome assembly, fastg [111], which

encodes different assembly graph notations such as nodes, edges,

and paths and provides useful insights about different cleaning

operations, different allelic variations, and assembly uncertainty.

By supporting fastg through the unified file format layer, the

general assembler can work directly on the graph structure

produced from different assembly runs and perform hybrid

assembly in an efficient manner. Since the target of this model is

organizing the assembly process as a set of communicated layers

with their supported services, the details of implementing the

general assembler are left to the developers.

Conclusions

Building an assembler for the next-generation environment

presents many difficult challenges, such as the high-throughput

nature of sequencers, short-read lengths, sequencing errors, and

genomic repeats, which complicate the genome assembly task and

increase the need for hardware resources. Furthermore, the

settings of the assembly parameters differ according to the

sequencing platform, error model, sequence reads, available

resources, user definition, etc. Current assemblers still lack

interactive user interfaces, easy setup requirements, and indepen-

dence from the operating system, which are challenges for normal

users with limited informatics backgrounds. Developers are

struggling to develop innovative assembly strategies and efficient

data structures to overcome the limitations of computational

resources and the different types of NGS data generated by

different sequencing platforms. In this review, we discussed next-

generation genome assembly as a single coherent framework that

comprises four basic stages: preprocessing filtering, a graph

construction process, a graph simplification process, and post-

processing filtering. This approach to the assembly framework

helps assembler designers to identify the basic challenges in each

stage and to define their positions depending on their designs. This

model can readily be extended to accommodate additional layers

with new modules to handle metagenomic or transcriptomic

sequences, or compressing some of its layers in a flexible manner

can contract it. Furthermore, this four-stage framework can be

used as the basis for building a general assembler for the NGS

reads generated using different NGS platforms. The solution to the

genome assembly problem begins by clearly identifying how these

stages communicate with each other to deliver the final assembled

genome. Therefore, building an assembler as a set of layers with

clearly defined inputs, outputs, and communication messages will

facilitate the development of innovative, interactive, and indepen-

dent assemblers for the next-generation environment.
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