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Studies on Parkinson’s disease (PD) are becoming very popular on multidisciplinary platforms. *e development of predictable
telemonitored early detection models has become closely related to many different research areas. *e aim of this article is to
develop a visual performance test that can examine the effects of Parkinson’s disease on the visual cortex, which can be a subtitle
scoring test in UPDRS. However, instead of showing random images and asking for discrepancies between them, it is expected that
the questions to be asked to patients should be provable in the existing cortex models, should be deduced between the images, and
produce a reference threshold value to compare with the practical results. In a developed test, horizontal and vertical motion blur
orientation was applied to natural image samples, and then neural outputs were produced by representing three (original-
horizontal-vertical) image groups with the Layer 4 (L4) cortex model. *is image representation is then compared with a filtering
model which is very similar to thalamus’ functionality. *us, the linear problem-solving performance of the L4 cortex model is
also addressed in the study. According to the obtained classification results, the L4 model produces high-performance success
rates compared to the thalamic model, which shows the adaptation power of the visual cortex on the image pattern differences. In
future studies, developed motion-based visual tests are planned to be applied to PD patient groups/controls, and their per-
formances with mathematical threshold values will be examined.

1. Introduction

Parkinson’s disease (PD) is a problem of progressive neural
degeneration. As a result of the death of dopaminergic
neurons, a great deal of negative effects occurs in some
regions of the brain. PD affects different cortex areas at the
same time, causing different symptoms to occur in patients.
Disturbances in the cortex, especially where motor functions
are regulated, affect the daily lives of patients in a negative
way. Studies in the literature are mostly based on the effects
of PD onmotor cortex [1]. However, in recent years, with the
development of technology and the dissemination of liter-
ature studies on the brain into multidisciplinary fields, the
effects of PD in the previously known theoretically known
but not yet studied cortical areas have begun to be examined
(sensation [2, 3], perception [4], sleep [5, 6], and emotional
functioning [7]).

One of these studies is the effect of PD on the visual
cortex. Studies in the literature have reported that PD

patients have problems in spatial perception [8, 9], spatial
contrast sensitivity [10, 11], color discrimination [12, 13],
and visuospatial problem solving [14] in daily life. However,
there is no objective visual test to examine the patients’ visual
cortex health. With the development of visual tests, the
visual cortex diagnostic stage will be completed. *is is very
important for the early detection and monitoring of disease
processes.

A scoring that will be developed with a vision-based test
as in UPDRS is the primary goal of this study. Furthermore,
this test can be used not only for PD but also for other
neurological disorders that have not yet been detected on
visual acuity. For this purpose, in order to reach the gold
standard, the test must be both meaningful on the human
side and matched with the mathematical models of some
substructures of the generally accepted visual cortex in the
literature.

*e threshold values or score values determined in
theory will be used in questioning and problem
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diversification in the optimizations of the tests and will also
form the basis for the determination of this distribution of
controls and PD patients, which is the next step in the future
studies. In this study, the theoretical foundations of
these developed tests are laid out and the performance of the
Layer 4 (L4) mathematical model in the primary visual
cortex (V1) on the developed visual test problem is
presented.

*is paper is organized as follows: in Section 2, human
visual processing and models are described. Sections 3 and 4
summarize the mathematical background of thalamic and
cortical image representations. Section 5 describes the
dataset. Section 6 gives brief information of the motion blur
orientation method. Section 7 presents the experimental
results. We present the conclusions and discussions in
Sections 8 and 9.

2. Human Visual Processing and Models

*e human vision system processes many different retinal
images and adapts to the similarities and differences between
these images. In addition, adaptive neurons in the visual
cortex learn that object by extracting many different features
from image patterns. *e studies that model this physio-
logical learning process constitute a significant part of to-
day’s computational neuroscience studies.

V1 is the most commonly studied structure among the
other visual fields and is located at the back of the occipital
lobe. It is also the cortical field of vision in which the filtered
information known as the lateral geniculate nucleus (LGN)
is first processed. V1 is especially specialized on static and
moving objects, and produces quite powerful outputs to be
used in pattern recognition.

*e V1 field learns a number of nonlinear interactions
using inputs from sublayers and thalamus itself. *e inputs
used here are also in continuous interaction with the inputs
to the top layers. *e output is produced as a result of this
interaction. *e V1 area is composed of 6 different layers
(labelled 1–6), and each layer is functionally different from
each other. Layer 4 (L4) is the first layer of the visual cortex.
According to the hypothesis, some problem linearization
processes are applied in this layer. L4 converts incoming
inputs into a new form and forwards them to Layer 2/3 (L2/
3) in the same cortex area for further processing. *e output
of the L2/3 layer is sent to the L4 layers in the upper areas
(V2), where the processing is performed at a higher level
[15, 16].

Although the function of L4 is not fully understood,
there are different suggestions in this regard in the liter-
ature; redundancy reduction [17]; input-output in-
formation maximization [18, 19]; the preservation of the
spatial relationship between inputs [20]; effective distrib-
uted coding [21–23]; and problem linearization [24]. *e
performance of the L4 models developed for these purposes
is measured by comparing the invasive measurements with
the electrophysiological methods. However, due to the
complex nature of the method and the cost of the method,
the capacity measurement of the model becomes very
difficult.

In the proposed study, the visual test performances of the
Somers thalamus model [25] which based on filtering the
images through thalamus and the Favorov L4 model [24]
were compared. In this respect, machine learning-based
classification problems have been developed which will be
able to measure visual cortex layer models and produce
outputs according to different weight optimization values of
models in this context.

3. Thalamic Image Representation

LGN-like neurons were modelled using the retinal/LGN
model [25] in order to generate realistic visual afferent
inputs to L4 from LGN cells in the thalamus. *e LGN layer
consists of 91 ON-center and 91 OFF-center receptive fields
intersected on the top. *e RF profile is derived by calcu-
lating two-dimensional Gaussian differences between
“central” and “surround” (1), and the ON-center and OFF-
center activities of the corresponding neuron are calculated
by multiplying this profile by the gray scaled pixel value ((2)
and (3)):
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where σcenter � 0.833 and σsurr � 3σcenter (this yields the
center width of 4 pixels and the RF diameter to ∼ 16 pixels.)
are common space constants; Dxy is the distance between a
pixel location (x, y) in the image and the RF center; LGNON
and LGNOFF are activity of ON-center and OFF-center LGN
neuron, respectively; and finally, PIxy is the grayscale pixel
density at the (x, y) image location (0≤ PIxy ≤ 1). ON- and
OFF-center LGN neurons are placed on top of the window
in a hexagonal form. On this window, 182 (91 ON-Center, 91
OFF-Center) LGN neuron outputs of the window are
generated by passing a filter (similar to the high-pass filter)
along the window. An example of thalamic output is shown
in Figure 1.

4. Cortical Layer 4 Image Representation

In the physiological structure, the filtered outputs from the
thalamus are the inputs of L4 (Figure 2). Similarly, the
mathematical model of the same structure is defined by a
RBF-like feedback neuron model in [24]. *e number of L4
function neuron outputs can be adjusted as desired. How-
ever, a total of 182 neurons have been selected in order to be
comparable to the thalamus representation and to provide
no advantage over the number of neurons:
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where Fi and Fk are the outputs of ith and kth L4 neurons; τ
is a time constant (τ � 4ms); wij is the weight of the jth RBF
center; LGNj is the activity of jth LGN cells; θ is the
threshold value of the distance between the center of RBF
and the excitation vector; λ is the scaling factor of lateral
connections; and uik is the correlation coefficient between
the output of ith and kth neurons of L4.

5. Natural Images

Natural images are complex image clusters (e.g., mountain,
landscape, forest, tree, house, meadow, etc.) which consist of

many different pictures and contain patterns that are con-
stantly experienced in daily life. In such models, the purpose
of choosing natural images instead of artificial images is that
the natural images and the inputs of human visual system are
statistically similar. *e visual inputs to the thalamus
originate from grayscale images (a set of five 500 × 335 pixel
images) containing natural patterns. *e images were not
preprocessed in any way (Figure 3).

6. Motion Blur Orientation

Motion blur is the apparent striking of rapidly moving
objects in a still image or a sequence of images (movie,
animation, etc.). As the motion continues on the object, the
examination of the objects seen from the outside or the
objects in the outside world while moving causes the ap-
pearance of such motion traces [26]. From biological point
of view, all the images he/she sees when in a live motion are
affected by motion trajectory, making it difficult to detect the
surrounding details. It is also a commonly used method in
image processing methods for debluring process. *e ver-
tical (b) and horizontal (c) motion blur effects are applied on
a sample image (a) as shown in Figure 4.

In visual cortex, vertically and horizontally adapted
neurons can easily distinguish vertical (b) and horizontal (c)
movements from the reference image. Especially with the
increase of the motion blur size, the vertical or horizontal
lines become more apparent, making it easier to determine
in which direction the movement is. However, in the case of
neurodegenerative diseases (Parkinson’s disease, dementia,
diabetic neuropathy, Alzheimer’s, etc.) affecting the visual
cortex, the direction in which the motion is applied cannot
be perceived by patients, especially at very low motion blur
size values (1–3 pixels).

From this hypothesis, the motion blur effect can be
presented to the patients and controls by applying different
directions and values to the natural image windows. It may
also be possible to make inferences between individuals
(patient vs control) according to test performances. However,

(a) (b)

Figure 1: An example of thalamic representation: input image of cornea (a) and neural output image of thalamus (b).

Figure 2: LGN patterns of all adapted 182 L4 cells in the trained
network. *e red color density indicates the power of the ON-
center LGN activity, and the blue color intensity indicates the OFF-
center LGN activity.
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it is necessary to first apply this to the mathematically
modelled cortical models [24, 25] and then to compare them
with the above mentioned groups. In this context, random
window groups are selected from natural images, and then
horizontal and vertical motion blur effects are applied to these
windows with different pixel values. In this case, the per-
formance of the linear SVM classifier [27] is measured by
creating a problem of two classes (0: horizontal motion, 1:
vertical motion).

7. Experimental Results

Based on the above information, a total of 4000 25 × 25 pixel
sized windows were selected randomly from the natural
images. Two different classes were created by creating
horizontal motion and vertical motion classes of these se-
lected images. Subsequently, the dataset was divided into
two groups and assigned to the linear SVM classifier as
training and test sets. *e process is iterated 10 times, and
average classifier performance ratios are calculated for every
motion blur size values. In this case, the linear SVM is
expected to classify the problem of vertical motion or
horizontal motion on the incoming images. In addition, the
performance of the classifier against the movements of
different pixel values is also investigated in this study be-
cause the effect of the motion blur amount is also unknown.

When Figures 4 and 5 are examined, it is seen that some
patterns are preserved according to vertical and horizontal

movement. If there is a vertical pattern in the image, such
patterns become more apparent without being influenced by
a vertical motion, but the horizontal patterns disappear
according to the size of the motion blur. In the same way, a
horizontal movement will cause horizontal patterns to be-
come more apparent, resulting in the disappearance of
vertical patterns.

According to the obtained results, L4 representation has a
performance of 78.38% in the vertical-horizontal motion blur
distinction of 8 pixels selected as the reference value. How-
ever, the same value is 50% for the thalamic representation
(Figure 6). It is observed that while the thalamic represen-
tation randomly classifies class labels, the L4 model classifies
them according to a specific rule. *e L4 model can classify
the problem linearly according to the change values of the
motion blur effect, while the thalamic representation cannot
solve this problem with the linear classification methods, but
another space transformation is needed.

When randomly selected images that were classified
correctly and incorrectly were examined for L4 representa-
tion, it was seen that the samples with little or no horizontal
and vertical patterns were incorrectly classified (Figure 7) and
but pattern-rich samples were correctly classified (Figure 8).

8. Discussion

In this study, a motion blur orientation-based visual test
setup for Parkinson’s disease has been proposed. By selecting

(a) (b)

(c) (d)

Figure 3: Four different image samples selected from a set of natural images used in the study.
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(a) (b)

(c)

Figure 4: Motion blur orientation for a sample image. (a) Original image; (b) vertical motion; (c) horizontal motion.

(a) (b)

Figure 5: Continued.
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random images, horizontal and vertical motion blur clas-
sification dataset has been build. *is dataset is represented
in mathematical models of L4 which is the first layer of visual
cortex and thalamus which is the first chemoelectrical input
filter of visual information. *en, these representations were
given as inputs to the linear SVM classifier and were ex-
pected to solve the horizontal and vertical classification
problem. Finally, L4 threshold values have been determined
according to the linearly problem solution performance.

Neurons adapting to different patterns in the L4 model
respond strongly to patterns similar to themselves. Images with
horizontal and vertical patterns seem to be able to solvemotion
blur problemsmuchmore easily by adaptive L4 neurons which
produce stronger outputs.*e changes between the patterns in
the increasing pixel movements can be solved linearly by Layer
4, whereas the thalamic structure requires a nonlinear trans-
formation. *e theory that Layer 4 transforms the images and
projects a linearly solvable space is also proven with the test.

(c)

Figure 5: Motion blur applied on a natural image window (a), with vertical motion settings (b) and horizontal motion settings (c) (motion
blur size: 5 pixels).
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(a) (b) (c)

Figure 7: Misclassified randomly selected natural image windows:
(a) original image window; (b) vertical motion blur; (c) horizontal
motion blur.

(a) (b) (c)

Figure 8: Correctly classified randomly selected natural image
windows: (a) original image window; (b) vertical motion blur;
(c) horizontal motion blur.
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Favorov’s work provides confirmatory results for the role
of the pluripotential function linearization in cortical
computation of L4. It has been shown that L4 has effective
function linearization capabilities in the study, and it is
shown that the upper layers can more easily compute
complex functions such as classification and clustering
problems with our tests.

When the L4 model is thought to be a physiology-based
model, it is obvious that individuals with any neurode-
generative problem in the visual cortex will have difficulty in
solving such problems. Classification performance of the
ratio %80 can be regarded as a threshold value obtained by
SVM classifier, so that if the purposed study is applied to the
individuals, their scores are not to be expected higher than
the threshold. With the provided test, healthy controls and
patients with PD or other neurological disorders can be
determined by examining their test scores.

9. Conclusion

PD is the second most common neurodegenerative disorder,
and the mechanisms of neuronal degeneration visual cortex
in PD are poorly known and there is no efficient visual test
with physiological background. Our purposed cortex-based
models and visual performance tests will help to discover
this area.

In future studies, visual tests will be applied to the in-
dividuals to research for the answers of these two questions
and aiming to compare the performances of powerful
machine learning methods against the actual visual sensory
scores. *e same problem will be applied to both PD and
control groups after the relevant ethical approvals are taken
and scores will be deduced. *us, inferences, such as spatial
vision sensitivities of the disease and adaptation to color
changes, can be determined by a noninvasive test.

Data Availability
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request.
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