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Abstract

Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an

invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology,

evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence infor-

mation in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure

and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short

and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the

chromosomes. Short sequencing reads predicted a genome size of 114–120 Mb; therefore, it is likely that the current assembly

containsalmost theentiregenome,althoughthisestimateofgenomesizewassmaller thanpreviousestimates.Remappingof theHi-

C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome

assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these

two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of

Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.
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Introduction

The genome of the ascidian, Ciona intestinalis, was decoded

in 2002 as the seventh animal genome (Dehal et al. 2002).

Recently, it was shown that there are two cryptic species of

C. intestinalis, types A and B (Caputi et al. 2007; Nydam and

Harrison 2007, 2010, 2011a, 2011b; Sato et al. 2012, 2014;

Roux et al. 2013; Bouchemousse et al. 2016). A taxonomic

study (Brunetti et al. 2015) proposed renaming C. intestinalis

type A as Ciona robusta and C. intestinalis type B as C. intes-

tinalis. This newly proposed nomenclature is sometimes con-

fusing, especially in studies using genomic information,

because the animal from which the genome was decoded

(Dehal et al. 2002) was originally identified as C. intestinalis.

To avoid such confusion, many reports have included two

names to identify the species, such as C. intestinalis type A

(C. robusta) (e.g., Yoshida et al. 2017; Satoh et al. 2018; Cao
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et al. 2019; Kourakis et al. 2019; Matsubara et al. 2019;

Mizutani et al. 2019; Oonuma and Kusakabe 2019). For the

sake of clarity, the genome that was further explored in this

study was from C. intestinalis type A (C. robusta).

Ascidians are tunicates, the closest relatives to vertebrates

(Delsuc et al. 2006; Putnam et al. 2008). The ascidian tadpole-

like larva, which comprises only 2,600 cells, shares the basic

body plan of vertebrates. The larval tail contains a central no-

tochord flanked laterally by muscle, dorsally by nerve cord, and

ventrally by endodermal cells (Satoh 2003; Lemaire 2011). The

genome sequence has been utilized as a key resource to ana-

lyze developmental mechanisms underlying such a simple body

plan, especially genome-wide gene regulatory networks, epi-

genetic regulatory mechanisms, and gene expression profiles at

single-cell resolution (Imai et al. 2004, 2006; Suzuki et al. 2007;

Horie et al. 2018; Cao et al. 2019; Madgwick et al. 2019).

Thus, the genome sequence, in combination with more than

a century of experimental animal studies (Conklin 1905a,

1905b), has made Ciona an ideal model system for studies of

developmental mechanisms (Satoh 2013), and the origin and

evolution of chordates and vertebrates (Satoh 2016). For ex-

ample, recent studies have shown that ascidian embryos de-

velop cells similar to placodal cells and neural crest cells in

vertebrate embryos (Manni et al. 2004; Mazet et al. 2005;

Jeffery et al. 2008; Tresser et al. 2010; Abitua et al. 2012,

2015; Wagner and Levine 2012; Ikeda et al. 2013; Stolfi

et al. 2015; Waki et al. 2015; Horie et al. 2018).

Chromosomal-level genome sequence data for C. intesti-

nalis type A (C. robusta) became available after a major up-

date in 2008 (Satou, Mineta, et al. 2008). This version, called

the KH assembly (Kyoto-Hoya; “Hoya” is a Japanese word for

ascidians), includes 68% of the sequence information in 14

pairs of chromosomes. Recent technological advances en-

abled us to analyze higher-order structure of the genome,

and motivated us to improve the quality of the Ciona genome

assembly.

Comparisons of invertebrate genomes have shown that

orthologous sequences on an ancestral chromosome tend

to be retained in its descendant chromosome of extant

taxa, but the order of orthologous sequences is generally

not conserved (Clark et al. 2007; Hillier et al. 2007; Hill

et al. 2008). On the other hand, in vertebrate genomes, inter-

chromosomal rearrangements are more common (Waterston

et al. 2002; Kasahara et al. 2007). To analyze at higher reso-

lution how chromosomes have changed during evolution,

chromosomal-level genome sequences will undoubtedly be

helpful.

In the present study, we provide a new assembly, called the

HT (Hoya T-strain)-version. This assembly contains 95% of the

genome sequences in the chromosomes; thus, it provides a

valuable genomic resource for chordate studies. Comparison

of this assembly with the genome of Ciona savignyi, which is a

different species in the same genus, allowed us to identify

many chromosomal inversions between the two species.

Materials and Methods

Biological Materials

In the present study, we used C. intestinalis type A (C. robusta).

To confirm that the animal we used was C. intestinalis type A,

we used genomic sequences of five loci, Fgf4/5/6 (this gene

annotation was likely incorrect, because the sequences found

in the public database were all mapped to a region within an

intron of the Fgf receptor gene; chromosome 4: 7,098,700–

7,099,456), Foxa.a (fkh; chromosome 11: 7,730,157–

7,731,071), Jade (chromosome 2: 4,786,572–4,787,267),

Patched (chromosome 5: 4,938,586–4,939,428), and

Vesicular acetylcholine transporter (vAChTP; chromosome 1:

5,619,869–5,620,532), because these loci have been reported

to be diverged between these two types (Nydam and Harrison

2011a). Sequences retrieved from NCBI were aligned using

the Clustal Omega program (Sievers et al. 2011), and align-

ments were manually adjusted. After removing gaps, align-

ments were used to construct molecular phylogenetic trees by

the maximum likelihood method with the PhyML program

(Guindon and Gascuel 2003). Trees were tested with 100

bootstrap pseudoreplicates. All molecular phylogenetic trees

for these five loci indicated that the animal we used was

C. intestinalis type A (C. robusta) (supplementary fig. S1,

Supplementary Material online).

Genome Sequencing

For PacBio RSII sequencing, we used sperm obtained from an

animal in the eighth generation of self-fertilization, as de-

scribed previously (Satou et al. 2015). To prepare a library,

an SMRTbell Template Prep Kit 1.0 (Pacific Biosciences) was

used. The library was sequenced using a PacBio RSII sequencer

employing P6-C4 chemistry (Pacific Biosciences) with 360-min

movie lengths. Contig assembly was performed with the

MECAT assembler pipeline (Xiao et al. 2017). Each program

was run with the following parameters: for mecat2pw, “-j 0”;

for mecat2cns, “-i 0”; for extract_sequences, “40�
160000000”; for mecat2canu, “genomesize¼ 160000000.”

For polishing contig sequences obtained with the MECAT

assembler, Pilon was utilized (Walker et al. 2014). Illumina

sequencing reads (paired 101 base reads, 16.6 Gb in total;

SRA accession number DRR018354) for a 11th generation

animal (Satou et al. 2015) were mapped with bowtie2

(Langmead et al. 2019).

Hi-C

Hi-C (in situ Hi-C) experiments were performed as previously

described (Rao et al. 2014) with some modifications.

Approximately 1,000 tailbud embryos were collected by cen-

trifugation at 500 � g for 3 min, and cross-linked with 1%

formaldehyde in PBS for 10 min at room temperature. Cross-

linking was quenched by adding 2.5 M glycine (125 mM final)

and incubating for 5 min at room temperature, followed by
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15 min on ice. Cells were pelleted at 500�g for 5 min.

Supernatant was removed and stored at �80 �C.

Cells were thawed on ice, washed with PBS, resuspended

in 250ll of ice-cold Hi-C lysis buffer (10 mM Tris–HCl pH 8.0,

10 mM NaCl, 0.2% Igepal CA-630) with 50ll of protease

inhibitors (Sigma, P8340), and incubated on ice for 20 min.

The lysate was centrifuged at 2,500 � g for 5 min, washed

with ice-cold Hi-C lysis buffer, resuspended in 50ll of 0.5%

SDS, and incubated for 10 min at 62 �C. Then, 145ll of water

and 25ll of 10% Triton X-100 were added. After incubation

for 15 min at 37 �C, 25ll of NEBuffer2 and 100 U of MboI

were added, and chromatin was digested overnight at 37 �C

with rotation. MboI was inactivated by incubating at 62 �C for

20 min. DNA ends were labeled with biotin by adding 50ll of

fill-in master mix (0.3 mM biotin-14-dATP, 0.3 mM dCTP,

0.3 mM dGTP, 0.3 mM dTTP, 40 units of DNA Polymerase I

Large Klenow Fragment), and incubated at 37 �C for 1.5 h

with rotation. Proximal ligation was performed by adding

900ll of ligation master mix [669ll of water, 120ll of

10� NEB T4 DNA ligase buffer, 100ll of 10% Triton X-

100, 6ll of 10 mg/ml BSA, and 5ll of 400 U/ll T4 DNA ligase

(NEB)], and incubated at room temperature for 4 h. Proteins

were degraded by adding 50ll of 20 mg/ml proteinase K,

120ll of 10% SDS, and incubated at 55 �C for 2 h. Cross-

linking was reversed by adding 130ll of 5 M NaCl and incu-

bated at 68 �C overnight.

Biotinylated DNA was collected by ethanol precipitation,

and resuspended in 130ll of Tris buffer (10 mM Tris–HCl,

pH 8.0). DNA was sheared using Covaris S220 with following

parameters; Peak Incident Power: 140, Duty Factor: 10, Cycle

per Burst: 200, time: 80 s. Sheared DNA was size-selected to

100–500 bp and purified using AMPure XP beads (Bechman

Coulter). DNA was eluted in 100ll of Tris buffer.

A 150ll of 10 mg/ml Dynabeads MyOne Streptavidine T1

beads (Life technologies) were washed with 400ll of 1�
Tween washing buffer (1� TWB: 5 mM Tris–HCl pH 7.5,

0.5mM EDTA, 1 M NaCl, 0.05% Tween 20), and resuspended

in 300ll of 2� binding buffer (2� BB: 10 mM Tris–HCl pH

7.5, 1mM EDTA, 2M NaCl). The beads were added to the

sheared DNA sample, and incubated at room temperature for

15 min with rotation. Biotinylated beads with bound DNA

were collected with a magnet and supernatant was discarded.

The beads were washed twice by adding 600ll of 1� TWB,

transferred to a new tube, incubated at 55 �C for 2min on a

Thermomixer. The supernatant was discarded using a magnet.

Then, beads were washed with 100ll of Tris buffer, trans-

ferred to a new tube, and resuspended in 50ll of Tris buffer.

A-tailing and Illumina adapter ligation were performed us-

ing the KAPA Hyper Prep Kit (Kapa Biosystems KK8500).

Adapter-ligated DNA was washed twice more by adding

600ll of 1� TWB, transferred to a new tube, and incubated

at 55 �C for 2 min on a Thermomixer. The supernatant was

discarded using a magnet to retain the beads. Beads were

washed with 100ll of Tris buffer, transferred to a new tube,

and resuspended in 50ll of Tris buffer. Libraries were ampli-

fied directly from the beads with 9–14 cycles of PCR, using

KAPA HiFi HotStart ReadyMix (KAPA Biosystems), and DNA

was purified using AMPure XP beads. Paired-end sequencing

of Hi-C libraries was performed using the Illumina HiSeq 1500

platform. Sequenced reads were mapped, filtered, and nor-

malized using Juicer (version 1.5) (Durand et al. 2016). Hi-C

data were analyzed with the 3D de novo assembly (3D-DNA)

pipeline (Dudchenko et al. 2017) to obtain candidates for

novel linkages and misassembly locations in the former KH

version assembly.

To validate these candidates, we used Illumina paired se-

quencing data obtained in a previous study (Satou et al. 2015)

(SRA accession number DRR018353 and DRR018354) (sup-

plementary fig. S2, Supplementary Material online), and BAC

end sequence data (Dehal et al. 2002; Kobayashi et al. 2002).

We inspected Hi-C data using the Hi-C data browser (Durand

et al. 2016) to obtain scaffolds, which are tentatively called

KH/Hi-C linked scaffolds.

Chromosome Assembly

Contigs obtained from sequencing data were aligned with

the KH/Hi-C linked scaffolds using Nucmer (Kurtz et al.

2004). For possible heterozygous regions on chromosomes

7 and 8, only longer contigs were kept for the following as-

sembly processes. Contigs were compared with KH/Hi-C

linked scaffolds using BLASTN (Altschul et al. 1990) with the

options “-task megablast -perc_identity 95.” The top hits

with 1-kb or longer alignments were used as inputs for

Chromosomer to link the contigs (Tamazian et al. 2016).

Finally, nucleotide sequences of both ends of BAC clones

used for fluorescence in situ hybridization (Shoguchi et al.

2006) were mapped with BLAT (Kent 2002). On the basis

of mapping data, six contigs were included in the final chro-

mosomal sequences. We inserted 1,000 “N”s between con-

tigs, and as a result, 40,000 “N”s are included in the final

assembly. Note that the assembly included two additional

“N”s, which are bases we failed to determine.

Genome Size Estimation

For genome size estimation, we caught animals in Ushimado,

Okayama Prefecture, Japan. From two animals, we obtained

a sufficient number of sequencing reads (�4 Gb). All possible

21-mers were counted using Jellyfish (Marcais and Kingsford

2011), and genome sizes for each individual were estimated

with Genomescope (Vurture et al. 2017).

Gene Prediction

For predicting genes/transcripts, we used Augustus (Stanke

et al. 2008) with cDNA sequences available in the DDBJ/

EMBL/Genbank database and the KH version of the gene

model set as hints. Predicted models were inspected on the

Satou et al. GBE
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FIG. 1.—Assembly of the genome of an inbred strain. (A) The assembly strategy. See supplementary figure S2, Supplementary Material online for details.

(B) Hi-C data mapping on the KH-version of chromosomes and scaffolds for identification of candidates for misassemblies and linkages. (C) A candidate for

an artifactitious inversion site in chromosome 1 of the KH-version of the assembly. Note a clear disconnection at the point indicated by arrows. The Hi-C data

demonstrate the proximity between the initial �200 kb region and the region around 750 kb, suggesting that the initial �750kb region is inverted. (D) A

candidate for a possible linkage between chromosome 1 and scaffold KhL24. Chromosomes 7 (E) and 8 (F) are probably partly heterozygous in the animal

used for PacBio RSII sequencing. Arrows indicate contigs used for genome assembly. These sequences were aligned with Nucmer and visualized with

Mummer Plot (Kurtz et al. 2004). Forward alignments are shown in red and reverse alignments are shown in blue.
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Artemis browser (Carver et al. 2012), and manually curated

on the basis of mapped cDNA-based data (full cDNA

sequences and expression sequencing tags). Transcript

names consist of five fields delimited by dots (e.g.,

KY.Chr1.1.v1.nonSL1-1). The first field represents the gene/

transcript model version; therefore, all models have the same

tag (KY stands for Kyoto). The second field represents the

chromosome (or unassembled contig) name. The third name-

field represents the serial number for gene loci on individual

chromosomes. Gene models are defined with these first

three fields (KY.Chr1.1). The fourth field specifies alternative

transcript variants by numbers preceded by the letter “v.”

The fifth field includes information for the 50- and 30-ends of

the models, and consists of two subfields delimited with

hyphens. The first subfield refers to the evidence identifying

the 50-end: SL means trans-splice acceptor site defined ex-

perimentally, nonSL means non-trans-spliced mRNA 50-end

determined experimentally, and ND means 50-end predicted

computationally (not determined by experimental evidence).

The number concatenated to the 50-end code identifies indi-

vidual alternative 50-ends within each locus. The second sub-

field refers to the 30-end and consists of numbers identifying

individual alternative 30-ends within each locus.

Experimental Validation of the Inversion in Chromosome 4

We used genomic DNAs obtained from seven wild-caught

animals. These DNAs were isolated in our previous study, in

which we called these specimens wt1 to wt7 (Satou et al.

2015). To examine this inversion, we performed PCR. The

experimental design is shown in figure 2D. Primer sequences

are as follows: For, 50-ACGTAGGAGATCCAAATCAAAGCC

ATCATA-30; Rev, 50-ACCCACAGTAACCTATGATAAACGAC

TACTT-30; Test, 50- CTATCACACAAGAGATATGCACAA

AGCATA-30. PCR was performed with Primestar Gxl enzyme

according to manufacturer instructions (Takara Bio).

A Comparison of Gene Model Sets Between Two Ciona
Species

Ciona savignyi protein sequences were obtained from the

Ensembl database (Zerbino et al. 2018). Genomic positions

of genes encoding these proteins were also deduced from the

same database, and these genes were ordered within each

reftig. Ciona savignyi proteins were used as queries for BLAST

searches against proteins derived from KY gene models.

Because we compared 11,616 proteins, hits with E-values

<4.3e�6 (0.05/11616; Bonferroni correction for multiple test-

ing) were regarded as significant. For conservative compari-

sons, we used only hits in which the alignment exceeded 40%

of query and subject protein lengths. Species-specific tandem

duplications may affect subsequent analyses; therefore, we

used only the highest scoring match if two or more C. savignyi

proteins were mapped to a single KY model. Reftigs that

contained 10 or more genes with putative orthologs among

the KY gene models and had orthologs preferentially in 1 of

the 14 chromosomes (Fishers exact tests with the Bonferroni

correction <5%/122) were chosen to make a dot plot.

Results

A Strategy for Constructing a New Assembly

To construct a new version of genome assembly, we

employed the strategy shown in figure 1A (see also supple-

mentary fig. S2, Supplementary Material online). First, we

rebuilt scaffolds using contigs from the former KH assembly

and Hi-C data, and the resulting scaffolds were further cu-

rated with Illumina sequencing reads. Second, independently

of the first step, we assembled long-read sequencing data

from a PacBio sequencer. Third, we combined these two types

of data with fluorescent in situ hybridization (FISH) data from

BAC clones (Shoguchi et al. 2004, 2006) to obtain a final

assembly called the HT assembly.

Step 1: Constructing Reference Scaffolds from Scaffolds of
the Previous Version Using Hi-C Data

We performed an Hi-C analysis using tailbud embryos to de-

termine distances between nucleotide positions within chro-

mosomes. The KH version assembly contains a total of

115,226,814 bases, 68% of which are mapped to the 14

chromosomes. Mapping of the Hi-C data suggested many

possibly misassembled sites and potential linkages (fig. 1B–

D). We first inferred positions of unassembled scaffolds and

misassembled positions within the chromosomes using the

3D-DNA pipeline (Dudchenko et al. 2017). These candidates

were individually validated as follows.

We mapped Illumina sequencing data obtained from a

previous study (Satou et al. 2015) (supplementary fig. S2B,

Supplementary Material online) to examine whether these

candidate positions were supported by paired-end sequences.

Similarly, we mapped sequence data of both insert ends of

BAC clones, which were derived from Sanger sequencing

(Dehal et al. 2002; Kobayashi et al. 2002). For each of the

candidates supported by any of these sequencing data, we

inspected Hi-C data using the Hi-C data browser (Durand

et al. 2016). As a result, we obtained a new set of 14 chro-

mosomal sequences containing 95,495,880 bases. This set of

chromosomal sequences was used as references for the new

assembly (see below). Hereafter, these reference scaffolds are

tentatively called KH/Hi-C linked scaffolds.

Step 2: Primary Assembly Using Long Reads

Ciona is a hermaphroditic animal, and self-fertilization can be

induced in the laboratory. Taking advantage of this, we cre-

ated an inbred line (T-line) by repeated self-fertilization (Satou

et al. 2015). Genomic DNA from sperm obtained from a

specimen in the eighth generation was used. The

Satou et al. GBE
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heterozygosity rate in natural populations is expected to be

1.1–1.2% (Dehal et al. 2002; Satou et al. 2012). Under the

assumption of neutrality, the heterozygosity rate for the

eighth generation inbred animals was expected to be

0.0043–0.0047% [1.1–1.2% � (1/2)8], and we considered

this rate sufficiently low. Using this specimen, we obtained

644,697 sequence reads from a PacBio RSII sequencer, which

yielded 7,946,426,251 bases (supplementary fig. S2B,

Supplementary Material online). Using the MECAT assembler

(Xiao et al. 2017), we reconstructed 126,262,676 bases into

153 contigs (N50¼ 3,746,906; L50¼ 12). These sequences

were further polished with Pilon (Walker et al. 2014) and

Illumina sequencing data from a specimen in the 11th gener-

ation (supplementary fig. S2B, Supplementary Material on-

line), which corrected 31,314 sites.

Step 3: Scaffolding the New Contigs

Next, we compared the new contigs mentioned above with

the KH/Hi-C linked scaffolds using Nucmer (Kurtz et al. 2004)

ch
ro

m
os

om
e 

4 
(H

T)

chromosome 4 
(KH/Hi-C linked scaffolds)

1 Mb

0 1 2 3 4 5 6 7 (Mb)

0
1

2
3

4
5

6
7

C

B

A

E

D

F8
b

w
t1

w
t3

w
t2

w
t4

w
t5

w
t6

w
t7

wild caught 
specimens

Fo
r &

Te
st

R
ev

 &
 T

es
t

KH (old) version

HT (new) version

For RevTest

Test

Unassembled
contigs

1 14
chromosomes

Unassembled
contigs

1
14

ch
ro

m
os

om
es B

FIG. 2.—An inversion in chromosome 4. (A) Hi-C data mapping on the new HT-version of the assembly. Mapping data show an overall high level of

consistency, except for a small region in chromosome 4 (shown by B). (B) Hi-C mapping data for chromosome 4 of the HT version of the assembly. Note that

the assembly is based on genomic DNA derived from the T-inbred line, and that Hi-C data were obtained from embryos derived from wild-caught animals. A

possible inversion is indicated with an arrow. (C) The Nucmer alignment (Kurtz et al. 2004) of chromosome 4 of the HT version assembly with the

corresponding region of KH/Hi-C linked scaffolds. A PCR experiment to confirm the inversion. (D) Three primers were designed, and their locations and

orientations are shown by large arrows. Small arrows indicate genes, and the same genes are linked with broken lines. Note that the region indicated by the

black line in HT does not have a corresponding region in the KH version. (E) Two sets of primers were used to examine which set gave specific amplification.

PCR products were analyzed by agarose gel electrophoresis. The set of For and Test gave specific amplification for F8b, whereas the set of Rev and Test gave

specific amplification for the seven wild-caught animals.
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(supplementary fig. S3, Supplementary Material online).

This alignment revealed duplicated regions in chromosomes

7 and 8 (fig. 1E and F). These contigs probably represent

haplotypes, because the duplicated region in chromosome

7 overlapped the region that is retained as heterozygous

even in the 11th generation (Satou et al. 2015). This region

contains a self-incompatibility locus with a highly variable re-

gion among individuals to prevent fertilization between eggs

and sperm with the same locus type (Harada et al. 2008). We

chose more contiguous contigs for these regions for the fol-

lowing assembly processes (fig. 1E and F). These contigs and

contigs that aligned to other chromosomes (47 contigs in

total) were assembled into 14 chromosomes in reference to

the KH/Hi-C linked scaffolds, using Chromosomer (Tamazian

et al. 2016). Nevertheless, 60 contigs remained unassembled

into chromosomes.

Finally, we mapped sequences of both insert ends of 270

BAC clones that were used for previous FISH assays (Shoguchi

et al. 2004, 2006). Sequences of 18 BAC clones were mapped

onto seven unassembled contigs with BLAT (Kent 2002), and

the FISH results indicated that these contigs were located at

chromosomal ends. As a result, we included these seven con-

tigs in chromosomal sequences, and the number of

unassembled contigs was reduced to 53. Linkages that

were determined on the basis of the KH/Hi-C linked scaffolds

and FISH are listed in supplementary table S1, Supplementary

Material online.

The final assembly included 122,951,598 bases (table 1).

Among them, 117,489,544 bases (95.6%) were included in

the chromosomal sequences. The N50 was 8,327,059 bases

and the L50 was 6. We called this the HT assembly, a great

improvement compared with the KH assembly, as evident

from their statistics (table 1).

Gene Models

We utilized Augustus (Stanke et al. 2008) to build a new set of

gene models, using cDNA sequences and the KH gene models

as hints. The resulting models were manually curated with

Artemis (Carver et al. 2012). We identified transcription start

sites (TSSs) and trans-splicing accepter sites for the 50-spliced

leaders (SL sites) using the data obtained through various

high-throughput methods (Satou et al. 2006; Matsumoto

et al. 2010; Yokomori et al. 2016). Using these data, 50-

ends of models were extended or shortened. Our previous

study showed that there are no intergenic regions in any
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FIG. 3.—Possible inversions between chromosomes of two Ciona species. Genes of the two Ciona species are shown as black lines in the upper (HT

chromosomes) and lower rows (C. savignyi reftigs) along genomic regions indicated above and below the rows. Colinear genomic blocks are shown with

colored arrows, and 50-ends of putative orthologous genes are linked by lines of the same color. Putative inversions are indicated with black arrows. Single

inversions can explain the gene arrangements in (A) and (C). Two inversions can explain the gene arrangement in (D). (B) A dot plot represents the rank order

position of orthologous gene pairs in chromosome 10 in the HT-assembly and reftig 37 of C. savignyi. The region shown in a higher-magnification view

includes genes shown in (A).
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operon, and that polycistronic transcripts derived from oper-

ons are resolved by trans-splicing (Satou et al. 2006).

Therefore, we curated every intergenic region within operons

and checked whether upstream genes ended with “AG,”

which worked as a trans-splicing acceptor site for down-

stream genes.

The resultant model set [KY (KYoto) model set] contains

14,072 genes with 18,701 splicing variants in total. When

multiple 50-ends (TSSs and/or SL acceptor sites) or 30-ends

were indicated by experiments for a single splicing variant,

multiple transcript models were constructed. As a result,

61,667 transcript models were constructed; among them,

22,239 transcript models start with TSSs, and 31,757 tran-

script models start with SL sites. Among these

transcript variants, 14% were not included in the KH

models. Similarly, 9% were not included in the Refseq model

set (O’Leary et al. 2016) (supplementary fig. S4,

Supplementary Material online).

Validation of the Assembly

We again mapped sequences of both insert ends of the BAC

clones described above onto the final assembly. Among the 270

BAC clones, one or both ends of 257 clones were confidently

mapped (BLAT score�150; single hits) (supplementary table S2,

Supplementary Material online). Most of these clones (254 of

257) were mapped onto the expected chromosomes in the

expected order. Only three clones showed inconsistent results.

More specifically, one end of a clone (GECi31_c16) was

mapped onto chromosome 8, which was supported by FISH

results, but the other end of this clone was mapped onto chro-

mosome 10, which was not supported by FISH result. Similarly,

one end sequence for each of two clones (GECi38_g14 and

GECi47_f07) was mapped near one end of chromosome 8, and

the other end was mapped to unassembled contigs. We were

not able to determine whether these three clones indicate actual

misassemblies or whether they artificially contained two geno-

mic fragments. Nevertheless, as mentioned above, a vast ma-

jority of the clones were mapped onto the expected

chromosomes. Therefore, it is unlikely that the new assembly

contains any large misassemblies.

Next, Hi-C data were mapped onto the new version of the

genome (fig. 2A). The overall contiguity of chromosomes was

much improved (compare fig. 2A with fig. 1B). We found no

obvious inconsistency except for one position in chromosome

4 (fig. 2B), where the inbred strain indeed had an inversion

(see below). In other words, except for this region, the Hi-C

data indicated that the overall structure of the assembly suc-

cessfully reproduces the chromosomal structures.

To evaluate nucleotide level errors, we compared the assem-

bled sequence with the KH version of the genome sequence.

To do this, we split the KH genome sequences into 222,119

fragments, each of which was 500 bases in length. These were

used as query sequences for the BLAT program (Kent 2002).

Among them, 178,398 fragments were mapped uniquely onto

the new assembly, and 88,559,623 bases were aligned in total.

This alignment contained 974,264 mismatches, corresponding

to 1.1% (¼974,264/88,559,623) in excellent agreement with

the heterozygosity rate of natural populations of this animal

(1.1–1.2%). Therefore, it is likely that the new assembly does

not contain significant errors at the nucleotide level.

Finally, we evaluated the genome and gene models using

BUSCO, a tool for assessing completeness of genome assem-

blies and gene models with single-copy orthologs (Simao et al.

2015). For this purpose, we used the metazoan gene model

set distributed with BUSCO. Among the “metazoan” genes,

95.3% were found in the genome. This score was slightly

improved when compared with the score of the previous

KH assembly (94.2% found) (table 2). Similarly, BUSCO

gave a slightly better score for the KY gene model set than

for the former KH version set (table 2). This observation sug-

gests that the HT assembly mainly improved genomic regions

that do not encode protein-coding genes.

For an independent validation, we mapped 318 genes for

transcription factors and signaling ligand molecules (supple-

mentary fig. S5, Supplementary Material online). These genes

constitute a set of the most extensively annotated genes, in-

cluding all family members encoding bHLH, bZip, Ets, Fox,

HMG-box, homeodomain, and nuclear receptor transcription

factors, and all family members encoding Fgf, Ephrin, Tgfb/

Bmp, Wnt, hedgehog, and Notch ligands (Hino et al. 2003;

Wada et al. 2003; Yagi et al. 2003; Yamada et al. 2003; Satou,

Imai, et al. 2003; Satou, Sasakura, et al. 2003; Satou and Satoh

2005; Satou, Wada, et al. 2008). It also includes genes that

encoded well-known transcription factors such as Zic, Prdm1,

and Snai. Among these genes, only one (Fgf4/5/6) was in-

cluded in an unassembled contig. This indicates that most pro-

tein coding genes are included in chromosomal sequences.

The KH version of the assembly predicted that several tran-

scription factor genes, important for fate specification in em-

bryos, are multicopy genes. However, precise genomic

structures and copy numbers of Foxd, Tbx6-r.b, and Zic-r.b

(formerly ZicL) were uncertain in the KH version, due to a large

Table 1

Basic Statistics of the Present and Previous Assemblies

HT Assembly

(Present)

KH Assembly

(Previous)

Total nucleotide length (bp) 122,951,598 112,162,187

Total nucleotide length including

“N” length (bp)

122,991,600 115,226,814

Number of chromosomes 14 14

Number of contigs/scaffolds that

are not included in chromosomes

53 1,258

N50 (bp) 8,327,059 5,152,901

L50 6 9

N90 (bp) 4,872,821 40,806

L90 13 196
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sequence gap near the Foxd locus, and because the Tbx6-r.b

and Zic-r.b loci are located near scaffold ends. In the present

HT assembly, two copies of Foxd were encoded on chromo-

some 8 as neighbors, and three copies of Tbx6-r.b were

encoded within a 12-kb region of chromosome 11 (Tbx6b–

d in supplementary fig. S5, Supplementary Material online).

These copy numbers are the same as those predicted in the

KH version. However, the current HT assembly revealed that

another Tbx6-related gene, Tbx6-r.a, was encoded in the vi-

cinity of the Tbx6-r.b copies (supplementary fig. S5,

Supplementary Material online). The Tbx6-r.a locus was lo-

cated �120 kb from the three copies of Tbx6-r.b, and seven

genes are predicted in the intervening region. Although five

copies of Zic-r.b were predicted previously (Yamada et al.

2003), the current HT assembly contained six copies of Zic-

r.b in an 18-kb region of chromosome 6 (Zic-r.b–g in supple-

mentary fig. S5, Supplementary Material online). Similarly,

two copies of Prdm1-related gene, which encodes an impor-

tant transcriptional repressor in early embryos, have been

identified (Ikeda et al. 2013; Ikeda and Satou 2017). The cur-

rent HT assembly contains another copy of Prdm1-related

gene near the two copies previously identified on chromo-

some 12 (Prdm1-r.a–c in supplementary fig. S5,

Supplementary Material online). There are four copies of

type-A ephrin genes, which are thought to have been multi-

plied in the lineage leading to extant ascidians (Satou,

Sasakura, et al. 2003). In the HT assembly, two additional

type-A ephrin genes were identified in this gene cluster on

chromosome 3 (Efna.a–f in supplementary fig. S5,

Supplementary Material online). Thus, the current HT assem-

bly contains fewer gaps and is continuous. As a result, the

number and position of tandemly repeated copies can be

determined unambiguously, showing that this long version

of the genome more faithfully reproduces the genomic

structure.

Telomeres, Ribosomal RNA Genes, and Trans-Spliced
Leader Donor RNA Genes

We found repetitive sequences at either or both ends of 10

chromosomes (table 3). Because the typical repeat sequence,

CCCCTAA, was highly similar to telomeric repeats found in

many organisms (CCCTAA) (Podlevsky et al. 2007), it is highly

likely that these repeats constitute telomeres of these chro-

mosomes. We found this repeat at both ends of chromo-

somes 3, 9, and 14, indicating that these chromosomes are

almost completely assembled (supplementary table S3,

Supplementary Material online). We also found this repeat

at either end of chromosomes 4, 5, 6, 7, 10, 12, and 13.

However, we did not find telomeric repeats at either end of

chromosomes 1, 2, 8, and 11, although we found the repeats

in three unassembled contigs.

The short arms of chromosomes 4, 5, and 6 contain 18S/

28S ribosomal RNA genes (Shoguchi et al. 2005). These genes

were not included in chromosomal sequences of the current

assembly. Instead, they were found in 19 unassembled con-

tigs (table 3). Probably because of their highly repetitive na-

ture, these contigs were not successfully assembled.

Previous studies estimated that more than half of Ciona

mRNA species have an SL at their 50-ends (Vandenberghe

et al. 2001; Satou et al. 2006; Matsumoto et al. 2010). This

SL is added by trans-splicing, and its donor RNA is encoded by

a multi-copy SL gene (Yeats et al. 2010). FISH analysis showed

that these copies are located as a cluster in the short arm of

chromosome 8 (Yeats et al. 2010). Indeed, we found 32

genes with high similarity to the previously identified SL

gene in a 300-kb region near one end of chromosome 8.

Two unassembled contigs contained two additional clusters,

each of which contained 16 SL genes within a region of

�90 kb (table 3). Although it is likely that these contigs en-

code sequences of the short arm of chromosome 8, we were

not able to determine their precise locations, order, and

orientations.

Re-estimation of the Genome Size

The genome size of C. intestinalis (types unidentified) has

been estimated between 140 and 190 Mb per haploid

(Atkin and Ohno 1967; Laird 1971; Simmen et al. 1998).

However, as described above, our assembly (�123 Mb) con-

tained almost the entire genome sequence, including highly

repetitive segments. These observations suggested that the

genome size had been overestimated. To test this hypothesis,

we first re-estimated the genome size of the inbred strain. We

adopted a method using k-mer profiles, implemented in

GenomeScope (Vurture et al. 2017). We used two sets of

Illumina sequencing reads obtained from two individuals of

the 11th generation (F11a and F11b in supplementary fig.

S2B, Supplementary Material online). According to

GenomeScope, genome sizes of the two siblings were esti-

mated at 116 and 114 Mb, respectively. To confirm that the

inbred strain has the same genome size as individuals from

natural populations, we prepared two specimens from a dif-

ferent geographic location than the source of the inbred line.

The genome sizes of these specimens were estimated at 119

Table 2

Evaluation of Present and Previous Versions of the Assemblies and the

Gene Model Sets Using BUSCO

Found Missing

Complete Fragmented

Genome

HT assembly (new) 94.6% 0.7% 4.7%

KH assembly (old) 93.0% 1.2% 5.8%

Gene models

KY models (new) 95.6% 1.3% 3.1%

KH models (old) 95.0% 1.7% 3.3%
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and 120 Mb. Therefore, it is likely that the actual genome size

in natural populations is smaller than previously estimated.

This means that the current assembly covers the vast majority

of the genome of C. intestinalis type A (C. robusta).

A 600-kb Inversion in the Inbred Strain

As mentioned above, Hi-C data mapping indicated an inver-

sion in chromosome 4 (fig. 2A and B). This inversion was

confirmed by aligning the new version and the KH/Hi-C-

linked scaffold version of chromosome 4 (fig. 2C). These

data consistently indicated that a region of�600 kb between

nucleotide positions 1.9 and 2.5 M of chromosome 4 is

inverted. Because the Hi-C data were obtained from tailbud

embryos derived from eggs and sperm of wild-caught ani-

mals, it is possible that only the inbred animals have this large

inversion. To test this possibility, we designed three PCR pri-

mers (fig. 2D), which were designated For, Test, and Rev.

Because we did not retain DNA used for the genomic se-

quencing, we used a different animal of this inbred line

(F8b in supplementary fig. S2B, Supplementary Material on-

line). For comparison, we also used seven wild-caught ani-

mals. From the inbred line, we obtained a band with the set

of primers For and Test, but not with the set of primers Rev

and Test (fig. 2E). On the other hand, from wild-caught ani-

mals, we obtained a band with the set of primers Rev and

Test, but not with the primers For and Test (fig. 2E). Therefore,

this inversion occurred in the inbred line.

A Comparison of Chromosomal Structures Between Two
Ciona Species

Next, we compared these new chromosomes of C. intestinalis

type A (C. robusta) with scaffolds of a species in the same genus,

C. savignyi. Although a previous study performed a similar com-

parison and showed extensive intrachromosomal rearrangements

between these two species (Hill et al. 2008), we expected that we

could obtain much better resolution using the present assembly.

For this purpose, we first mapped C. savignyi gene models pre-

dicted on scaffold sequences called reftigs (Small et al. 2007;

Zerbino et al. 2018) to the KY gene model set.

We found that 122 reftigs contained 10 or more genes

with putative orthologs among the KY gene models. Genes

encoded by each of 106 reftigs (of the above 122) were found

preferentially in one of the 14 HT-chromosomes (Fisher’s

exact tests with Bonferroni correction <4.1e�4¼ 0.05/

122). Rank order positions of orthologous gene pairs in the

14 HT-chromosomes and the 106 reftigs of C. savignyi are

shown in supplementary figure S6, Supplementary Material

online. As previously shown (Hill et al. 2008), gene rearrange-

ments were extensive within chromosomes, but not between

pairs of the 14 chromosomes.

We noticed small inversions in our new mapping data. In

chromosome 10, a region containing six orthologous gene

pairs was clearly inverted between the two species (fig. 3A

and B). Figure 3C shows a similar instance, in which a region

that contained five orthologous gene pairs was inverted.

Additional examples are shown in supplementary figure S7,

Supplementary Material online. We also found a gene ar-

rangement that can be explained by two serial inversions

(fig. 3D), although one translocation could also explain the

phenomenon. These examples indicate that inversions have

occurred frequently and have contributed to intrachromoso-

mal gene rearrangements in Ciona species.

Discussion

The Genome of C. intestinalis Type A (C. robusta) Is Smaller
than Previously Estimated

We found telomeres on both ends of chromosomes of 3, 9,

and 14. This indicates that these chromosomes are assembled

almost completely from one end to the other. Their lengths

were 11.2, 8.32, and 6.29 Mb, respectively, smaller than our

previous estimates using cytogenetic data (13.0, 10.7, and

7.92 Mb, respectively) (Shoguchi et al. 2006). Therefore, the

lengths of these chromosomes in the present assembly are

78–86% (mean¼ 81%) of the previously estimated sizes.

Because this previous estimate was based on an assumption

that the genome size was 162 Mb (Simmen et al. 1998),

�132 Mb (162 Mb� 81%) is a rough estimate for the actual

genome size of C. intestinalis type A (C. robusta).

Independently of the genome assembly, we used Illumina

sequencing reads to estimate the genome size. Data from

two siblings of the inbred strain and two wild-caught speci-

mens gave estimates of 114–120 Mb per haploid. These val-

ues are close to the aforementioned estimate and to the total

length of the current assembly (123 Mb).

In this way, our present data indicate that the actual ge-

nome size of C. intestinalis type A (C. robusta) is smaller than

previous estimates (Atkin and Ohno 1967; Laird 1971;

Table 3

List of Chromosomes and Unassembled Contigs that Contain Telomeres, 18S/28S RNA Genes, and SL RNAs Genes

Chromosomes/Unassembled Contigs

Chromosomes with telomeres in both ends Chromosomes 3, 9, 14

Chromosomes with telomeres in either end Chromosomes 4, 5, 6, 7, 10, 12, 13

Contigs containing 18S/28S RNA genes UAContigs 2, 6, 7, 13, 17, 22, 28, 31, 32, 33, 34, 36, 38, 39, 41, 47, 49, 51, 53

Chromosomes/contigs containing SL RNA gene clusters Chromosome 8, UAContigs 11, 12
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Simmen et al. 1998). However, because short arms of chro-

mosomes 4, 5, and 6, which encode 18S/28S rDNA genes,

show size polymorphisms (Shoguchi et al. 2005, 2006), the

actual genome size may vary among individuals. Sequencing

of genomes of seven larvacean species indicates that trans-

posable elements contribute to interspecies variation in ge-

nome size (Naville et al. 2019). It is possible that repetitive

sequences similarly contribute to intraspecies variation in ge-

nome size in ascidians. It is also possible that these earlier

studies used animals different from C. intestinalis type A

(C. robusta), and that the genome size of these animals is

indeed larger than that of C. intestinalis type A (C. robusta).

Quality of the Assembly

In the present assembly version, over 95% of nucleotides are

included in chromosomal sequences, which are accessible

through the DDBJ/EMBL/Genbank database and also through

the Ghost database (Satou et al. 2005) (http://ghost.zool.

kyoto-u.ac.jp/default_ht.html; last accessed October 24,

2019). In addition, 13,801 (98%) of 14,072 predicted genes

are included in the chromosomes. Consistently, among 318

genes that encode transcription factors or signaling ligands,

317 are included in the chromosomes. Thus, most protein

coding genes are included in chromosomal sequences of

the current assembly. Unassembled contigs, in which the

remaining 2% of genes are encoded, may not have been

assembled into chromosomes due to technical problems, al-

though we cannot rule out the possibility that some of these

contigs constitute minichromosomes. Meanwhile, many

genes encoding 18S/28S ribosomal RNAs and SL RNAs were

found in unassembled contigs. rRNA genes are encoded in

the short arms of chromosomes 4, 5, and 6, the total length

of which is estimated at over 13 Mb (Shoguchi et al. 2006).

The genome contains �670 copies of the genes for SL RNAs,

most of which are encoded in the short arm of chromosome

8 (Yeats et al. 2010). Even with the long sequencing reads

obtained with a PacBio RSII sequencer, such long repetitive

sequences were difficult to reconstruct.

In the present study, we constructed the assembly using

PacBio RSII sequencing, Illumina sequencing, Hi-C, and FISH

data. Such a combinatorial method worked efficiently, be-

cause long contigs obtained from long sequencing reads

were greatly improved with Hi-C and FISH data. Specifically,

the N50 value increased from 3.7 to 8.3 Mb. In the present

study, Hi-C data were used to build reference scaffolds from

an earlier version of the assembly, but not directly for con-

necting contigs. The resulting scaffolds were helpful for

screening partially heterozygous regions. This method will

be applicable for improving genome assemblies of other

organisms.

Ciona has one of the simplest and most compact chordate

genomes, which makes it a useful model system for analyzing

higher-order genome structure. This genome may enable

us to analyze global genomic regulatory landscapes more

easily.

Copy numbers of multicopy genes that perform essential

functions in embryonic development have been determined

in the inbred strain. In the previous version of the genome

assembly, many multicopy genes were located near sequenc-

ing gaps and scaffold ends, which prevented determination of

exact copy numbers. We show here that copy numbers of the

Zic-r.b, Efna, and Prdm1-r genes differ from those predicted in

the previous version, although we do not know why these key

genes are multicopy genes.

An Inversion in the Inbred Line and Inversions between
Two Ciona Species

We found a large inversion in the genome of the inbred line.

Because we did not retain the DNA of the F0 animal, we are

unable to determine whether the F0 animal had this inversion

or whether it occurred during inbreeding. In the former sce-

nario, this inversion may have occurred in a natural popula-

tion. Although we cannot completely rule out this possibility,

the latter scenario seems more likely because seven wild-

caught individuals did not contain this inversion. If the latter

scenario is the case, it may suggest that inversions occur fre-

quently. Although such inversions may become fixed by ge-

netic drift in natural populations if they are neutral, they will

be fixed much more frequently in inbred lines established by

self-crossing.

A previous study suggested that extensive intrachromoso-

mal rearrangements have occurred after the split of the two

Ciona species (Hill et al. 2008). This observation is best

explained by the occurrence of frequent inversions, but not

by frequent translocations, because inversions are intrachro-

mosomal events, but translocations can occur both within

and between chromosomes. We found several inversions in

the genomes of the two Ciona species. This provides evidence

for the contribution of inversions to gene rearrangements in

Ciona chromosomes.

Chromosomal inversions have been implicated in specia-

tion and local adaptation (Kirkpatrick 2010; Wellenreuther

and Bernatchez 2018). In Ciona species, inversions may

have contributed similarly to speciation and environmental

adaptation. Inversions may also have shuffled genes within

chromosomes both during and after speciation in the genus

Ciona.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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