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High-throughput sequencing technology has enabled population-based studies of the

role of the human microbiome in disease etiology and exposure response. Microbiome

data are summarized as counts or composition of the bacterial taxa at different taxonomic

levels. An important problem is to identify the bacterial taxa that are associated with

a response. One method is to test the association of specific taxon with phenotypes

in a linear mixed effect model, which incorporates phylogenetic information among

bacterial communities. Another type of approaches consider all taxa in a joint model

and achieves selection via penalization method, which ignores phylogenetic information.

In this paper, we consider regression analysis by treating bacterial taxa at different level as

multiple random effects. For each taxon, a kernel matrix is calculated based on distance

measures in the phylogenetic tree and acts as one variance component in the joint

model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and

selection operator) penalty on variance components. Our method integrates biological

information into the variable selection problem and greatly improves selection accuracies.

Simulation studies demonstrate the superiority of our methods versus existing methods,

for example, group-lasso. Finally, we apply our method to a longitudinal microbiome

study of Human Immunodeficiency Virus (HIV) infected patients. We implement our

method using the high performance computing language Julia. Software and detailed

documentation are freely available at https://github.com/JingZhai63/VCselection.

Keywords: Human Immunodeficiency Virus (HIV), lasso, longitudinal study, lung microbiome, MM-algorithm,

variance component models, variable selection

1. INTRODUCTION

The advent of high-throughput sequencing technologies has produced extensive microbial
community data, which reveals the impact of human microbes on health and various
diseases (Mardis, 2008; Haas et al., 2011; Hodkinson and Grice, 2015; Kuleshov et al., 2016; Wang
and Jia, 2016). Microbial community data collected from oral, skin, and gastrointestinal tract
samples have received early attention (Eckburg et al., 2005; Gill et al., 2006; Turnbaugh et al., 2009;
Dewhirst et al., 2010; Grice and Segre, 2011). Studies of the respiratory tract microbiome did not
start until the discovery of microbiome in the lungs of both healthy (Erb-Downward et al., 2011;
Morris et al., 2013; Twigg III et al., 2013) and diseased populations (Zemanick et al., 2011; Lozupone
et al., 2013) using culture-independent techniques. A pulmonary microbiome dataset was sampled
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longitudinally from 30 HIV-infected individuals after starting
highly active antiretroviral therapy (HAART). The objective is
to study how the pulmonary microbiome impacts lung function
of advanced HIV patients after HAART (Garcia et al., 2013;
Lozupone et al., 2013; Twigg III et al., 2016).

After microbiome sequences have been acquired, they are
usually clustered into Operational Taxonomic Units (OTUs):
groups of sequences that correspond to taxonomic clusters or
monophyletic groups (Caporaso et al., 2010). The abundance
of an OTU is defined as the number of sequences in that
OTU. The microbial community is then described by a list of
OTUs, their abundances, and a phylogenetic tree. Regression
methods have been a powerful tool to identify clusters of OTUs
that are associated with or predictive of host phenotypes (Zhao
et al., 2015; Wang and Zhao, 2016; Wang et al., 2017).
Microbiome data presents several challenges. First microbiome
abundances are sparse and the number of OTUs is usually
much bigger than sample size. In our longitudinal data set,
there are 2,964 OTUs and only two of them have abundance
greater than 5%. When OTUs are included as predictors
for clinical phenotypes in a regression model, regularizations
are often used to overcome ill-conditioning. For example,
Lin et al. (2014) proposed a linear log-contrast model with
ℓ1 regularization. Another possible strategy to overcome the
sparsity of microbial data is to cluster multiple OTUs into
their higher phylogenetic levels, e.g., genus, order, and phylum.
Shi et al. (2016) extended Lin et al.’s (2014) model to allow
selecting taxa at different higher taxonomic ranks. However, both
methods overlook the distance information in the phylogenetic
tree. A network-constrained sparse regression is proposed to
achieve better prediction performance through a Laplacian
regularization (Chen et al., 2012b, 2015b). Another popular
approach for sparse linear regression is the group-wise selection
scheme, group-lasso, which selects an entire group for inclusion
or exclusion (Yuan and Lin, 2006; Garcia et al., 2013; Simon
et al., 2013; Yang and Zou, 2015). Therefore, group-lasso is a
natural tool for incorporating group information defined by
the phylogenetic tree, but still misses fine level information. To
encourage hierarchically close species to have similar effects on
the phenotype, Wang and Zhao (2016) and Wang et al. (2017)
both used tree topology information and fused variables that stay
closer in a tree. However, this assumption may be violated. For
example, the bacteriaClostridia, some species in this class convert
dietary fiber into anti-inflammatory short-chain fatty acids, while
others cause severe colitis. We, therefore, need a method that
can incorporate biologically meaningful cluster information,
phylogenetic distance, or tree information, can encourage sparse
feature selection, and can handle possible adverse effect within
clusters.

By modeling microbiome cluster effects as random effects,
Zhai et al. (2017b) proposed a variance component model

y = Xβ + Zb+

L
∑

l

hl + ε

b ∼ N (0, σ 2
d In), hl ∼ N (0, σ 2

glK l), ε ∼ N (0, σ 2
e In), (1)

where y, X, and ε are the vertically stacked vectors/matrices
of yi, Xi, and εi. The yi is an ni × 1 vector of ni repeated
measures of the quantitative phenotype for an individual i. Xi is
the ni × p covariates. The εi is an ni × 1 vector of the random
error. Zi = (1, . . . , 1)′ is an ni × 1 design matrix linking the
vector of random effects bi to yi. Z is a block diagonal matrix
with Zi on its diagonal. β is a p × 1 vector of fixed effects. The
b = (bi) is the subject-specific random effects. L is the total
number of microbiome taxonomic clusters,N is the total number
of individuals and

∑N
i= 1 ni is the total number of observations.

In model (Equation 1), hl is the random effects generated by
microbiome taxa l with covariance σ 2

gl
K l. K l is a positive-definite

kernel matrix derived from a distance matrix that is calculated
based on the OTU abundances of taxa in the phylogenetic tree.
Two common distance matrices are UniFrac Distance (Lozupone
and Knight, 2005) and Bray-Curtis dissimilarity (Bray and Curtis,
1957). Therefore,

Var(y) = σ 2
dZ
′Z +

L
∑

l=1

σ 2
gl
K l + σ 2

e In, (2)

where σ 2
gl
and σ 2

d
are the phenotypic variance from microbiome

clusters and between subject variance from repeated
measurements. σ 2

e is the within-subject variance that cannot be
explained by either microbiome or repeated measurements. To
identify associated microbiome taxa at different phylogeny levels
is to select non-zero variance components at different phylogeny
levels.

In this article, we adopt a penalized likelihood approach
by regularizing variance components based on linear mixed
effect models: variance component lasso selection (VC-lasso).
We incorporate the phylogenetic tree information by using
kernel matrices. We reduce the dimensionality of large and
very sparse OTU abundances within a cluster by translating
them into a random effect. Furthermore, our method can
be applied to a longitudinal design, where an unpenalized
variance component that captures the correlation of repeated
measurements is included. Our Majorization-Minimization
(MM) algorithm for variance component selection guarantees
estimation and selection computational efficiency (Hunter and
Lange, 2004; Hunter and Li, 2005; Zhou et al., 2011, 2015; Lange,
2016). Many statistical methods have been proposed related to
the selection of random effects. Ibrahim et al. (2011) considered
jointly selecting fixed and random effect in mixed effect model
using the maximum likelihood with the smoothly clipped
absolute deviation (SCAD) and adaptive lasso penalization. Fan
and Li (2012) proposed a group variable selection strategy to
select and estimate important random effects. Hui et al. (2017)
extended this strategy to generalized linear mixed model by
combining the penalized quasi-likelihood (PQL) estimation with
sparsity-inducing penalties on the fixed and random coefficients.
However, none of these methods can be easily extended to
microbiome data and none of them use variance component
regularization.

The rest of this paper is organized as follows. We introduce
the variance component lasso selection method in section 2.
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Section 3 conducts comparative simulation studies. Section 4
presents simulation and real data analysis results. We conclude
with a discussion in section 5.

2. METHODS

2.1. Lasso Penalized Log-Likelihood
We consider model (Equation 2) with model parameters β and
σ 2 = (σ 2

1 , . . . , σ
2
m). The log-likelihood of our model is:

L(β , σ 2; y,X) = −
1

2
ln det(V)−

1

2
(Y − Xβ)′V−1(Y − Xβ),

(3)

where

V =

m
∑

i= 1

σ 2
i V i.

For the selection of non-zero variance components among a
large number of variance components, we estimate the regression
parameter β and σ 2 by minimizing the lasso penalized log-
likelihood function

pl(β , σ 2; y,X, λ) = −L(β , σ 2)+ λ

m
∑

i= 1

ciσi, (4)

subject to nonnegativity constraint σi ≥ 0. The first part
−L(β , σ 2) of the penalized function (Equation 4) is the negative
log-likelihood defined in Equation (3). The second part is
the lasso penalty to enforce shrinkage of high-dimensional
components. We do not penalize fixed effects β . λ is the
tuning parameter controlling model complexity; ci ∈ {0, 1}
allows differential shrinkage of specific variance components.
For example, when modeling longitudinal phenotypes with
random intercept model, the corresponding variance component
is unpenalized and always stays in the model. ci can be chosen
using different weighting schemes based on prior knowledge such
as functional annotations.

2.2. Minimization of Penalized Likelihood
via MM Algorithm
Minimizing the penalized negative log-likelihood is challenging
due to non-convexity. Based on the Majorization-Minimization
(MM) algorithm (Lange et al., 2000; Hunter and Lange, 2004),
Zhou et al. (2015) proposed a strategy for maximizing the log-
likelihood Equation (3) by alternate updating β and variance
components σ 2. We follow the same strategy to solve the lasso
penalized likelihood estimation problem (Algorithm 1).

Given σ 2(t), updating β is a general least squares problemwith
solution

β(t+1) =
(

X′V−(t)X
)−1

X′V−(t)y, (5)

where V−(t) represents the tth-step update of V−1. Given β(t),
updating the variance components σ 2 invokes the MM principle.
To minimize the objective function pl(θ), where θ = (β , σ 2),

Algorithm 1: MM algorithm for minimizing lasso
penalized likelihood (Equation 4).

Data: y, X, V1, . . . ,Vm, λ

Result: β̂ , σ̂ 2 such that pl(β , σ 2) = −L(β , σ 2) +
λ

∑m
i= 1 ciσi is minimized.

1 Initialize σ
(0)
i > 0. i = 1, . . . , m repeat

2 V(t) ←
∑m

i= 1 σ
2(t)
i V i;

3 β(t)← argminβ (y − Xβ)′V−(t)(y − Xβ);

σ
(t+1)
i ← σ

(t)
i by finding polynomial roots of

P(·) = 0, i = 1, . . . ,m

P
(

σ
(t+1)
i

)

= σ
4(t+1)
i tr

(

V−(t)V i

)

+ λσ
3(t+1)
i

− σ
4(t)
i

(

y− Xβ(t)
)′
V−(t)V iV

−(t)
(

y − Xβ(t)
)

until4 objective function pl converges;

the majorization step operates by creating a surrogate function
g(θ |θ (t)) that satisfies two conditions

dominance condition : pl(θ) ≤ g(θ |θ (t)) for all θ

tangent condition: pl(θ (t)) = g(θ (t)|θ (t)).

The second M of the MM principle minimizes the surrogate
function to produce the next iterate θ (t+1). Then we have

pl(θ (t+1)) ≤ g(θ (t+1)|θ (t)) ≤ g(θ (t)|θ (t)) = pl(θ (t)).

Therefore, when the surrogate function is minimized, the
objective function f (θ) is driven downhill. We combine two
followingmajorizations to construct the surrogate function. First,
with all V i being positive semidefinite, Zhou et al. (2015) show
that

V(t)V−1V(t) =

( m
∑

i= 1

σ
2(t)
i V i

)( m
∑

i= 1

σ 2
i V i

)−1( m
∑

i= 1

σ
2(t)
i V i

)

�

m
∑

i= 1

σ
2(t)
i

∑

j σ
2(t)
j

(

∑

j σ
2(t)
j

σ
2(t)
i

σ
2(t)
i V i

)

(

∑

j σ
2(t)
j

σ
2(t)
i

σ 2
i V i

)−1(
∑

j σ
2(t)
j

σ
2(t)
i

σ
2(t)
i V i

)

=

m
∑

i= 1

σ
4(t)
i

σ 2
i

V iV
−1
i V i =

m
∑

i= 1

σ
4(t)
i

σ 2
i

V i,

leading to the first majorization

(y − Xβ)′V−1(y− Xβ)

� (y − Xβ)′V−(t)
( m

∑

i= 1

σ
4(t)
i

σ 2
i

V i

)

V−(t)(y− Xβ). (6)
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It separates the variance components σ 2
1 , . . . , σ

2
m in the quadratic

term of the log-likelihood function (Equation 4). By the
supporting hyperplane inequality, the second majorization is

ln detV ≤ ln detV(t) + tr
[

V−(t)
(

V − V(t)
)]

, (7)

which separates σ 2
1 , . . . , σ

2
m in the log-determinant term of

Equation (4). The overall majorization g(σ 2|σ 2(t)) of pl(β , σ 2) is
obtained by combining Equations (6) and (7)

g
(

σ 2|σ 2(t)) =
1

2
tr

(

V−(t)V
)

+
1

2

(

y− Xβ(t)
)′
V−(t) (8)

( m
∑

i= 1

σ
4(t)
i

σ 2
i

V i

)

V−(t)
(

y − Xβ(t)
)

+ λ

m
∑

i= 1

σi + s(t)

=

m
∑

i= 1

[

σ 2
i

2
tr

(

V−(t)V i

)

+
σ
4(t)
i

2σ 2
i

(

y− Xβ(t)
)′

V−(t)V iV
−(t)

(

y − Xβ(t)
)

+ λσi

]

+ s(t),

where s(t) is an irrelevant constant term.
We minimize the surrogate function (Equation 8) by setting

the derivative of g(σ 2|σ 2(t)) to zero. The update σ
(t+1)
i for

variance component σ
(t)
i is chosen among the positive roots of

the polynomial

P

(

σ
(t+1)
i

)

= σ
4(t+1)
i tr

(

V−(t)V i

)

+ λσ
3(t+1)
i

− σ
4(t)
i

(

y − Xβ(t)
)′
V−(t)V iV

−(t)
(

y − Xβ(t)
)

or 0, whichever yields the largest objective value. The alternating
updates repeat until

| pl
(

β(t+1), σ 2(t+1)
)

− pl
(

β(t), σ 2(t)
)

|< tol ∗ (| pl
(

β(t), σ 2(t)
)

| + 1),

where tol is the pre-specified tolerance. The default tolerance
is 10−4.

2.3. Tuning Parameter Selection
The tuning parameter λ in the penalized likelihood estimation
is chosen by a 5-fold cross-validation procedure based on
g-Measure =

√

sensitivity ∗ specificity. g-Measure is an
indicator of the model selection accuracy. g-Measure = 1
indicates the best accuracy and g-Measure = 0 the worst (Zhai
et al., 2017a). It can counteract the imbalance between the
number of of irrelevant and relevant clusters. Therefore, we
present g-Measure instead of sensitivity (true positive rate) and
specificity (true negative rate) alone (Supplementary Material
section 3). Akaike Information Criterion (AIC) (Akaike, 1998)
and Schwarzs Bayesian Information Criterion (BIC) (Schwarz
et al., 1978) are used in the real data analysis. Performance
comparisons between cross-validation andAIC/BIC are provided
in the Supplementary Material section 4.

2.4. Software Implementation
We implement our method using the high performance
computing language Julia. UniFrac distance
matrices are computed using our Julia package
PhylogeneticDistance.

TABLE 1 | Simulation parameter configurations.

Non-zero variance

components

Cluster/kernel Design σ2
g
† Method

Scenario 1: Selection under different sample sizes

n = 20, 50, 100;

simulated count data

l = 1, 2,

3, 4, 5

genus;

KW

longitudinal;

cross-sectional

1, 5,

25, 100

VC-lasso

group-lasso

Scenario 2: Selection under different number of non-zero variance components

n = 50; simulated

count data

(i) l = 20, 30;

(ii) l = 1, 2,

3, 4, 5;

(iii) l = 1, 2,

3, . . . , 15;

genus;

KW

longitudinal;

cross-sectional

1, 5,

25, 100

VC-lasso

group-lasso

Scenario 3: Selection under different UniFrac distance kernels

n = 50; simulated

count data

l = 1, 2,

3, 4, 5

genus;

KW , KUW ,

KVAW , K0,

K0.5

longitudinal;

cross-sectional

1, 5,

25, 100

VC-lasso

group-lasso

Scenario 4: Selection under fixed effect model

n = 50; simulated

count data

l = 20, 30;

l = 1, 2,

3, 4, 5;

l = 1, 2,

3, . . . , 15;

genus;

KW

cross-sectional 1, 5,

25, 100

VC-lasso

group-lasso

Throughout simulations, σ 2
e = 1, β1 = β2 = 0.1. We use σ 2

d = 0.6 and 3 repeated measurements in the longitudinal design. We use σ 2
d = 0 for the cross-sectional design. Group-lasso

is performed only in the cross-sectional design.
†
The non-zero variance components are assumed to have equal effect strength in each simulation setting.
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3. SIMULATION

In this section, we conduct simulation studies to evaluate the
variable selection and prediction performance of VC-lasso and
compare the results with the conventional method group-lasso
as implemented in the gglasso package (Yang and Zou,
2015). Phenotypes are simulated based on one real pulmonary
microbiome dataset and one simulated longitudinal microbiome
dataset. We first describe real and simulated microbiome
abundance data, phylogenetic tree, and then detail our four
phenotype simulation schemes (Table 1).

The real pulmonary microbiome data has been discussed in
Twigg III et al. (2016). Thirty individuals were recruited. During
up to three-years follow-up, lung functions and microbiome
composition were measured 2–4 times for each individual.
The longitudinal microbiome taxonomic data is summarized as
2,964 OTUs with a phylogenetic tree (Twigg III et al., 2016).
Longitudinal microbiome abundance data is generated by a Zero-
Inflated Beta Random Effect model using R package ZIBR in
SupplementaryMaterial section 2 (Chen and Li, 2016). For cross-
sectional design, we generate taxonomic data using a Dirichlet-
Multinomial (DM) model (Chen et al., 2012a). Simulation
parameters, such as proportion of each OTU and the overall
dispersion, are estimated from our real pulmonary microbiome
abundance data.

Given simulated microbiome count data and taxonomic
information, we classify 2,353 of 2,964 OTUs to 30 genera (taxa
clusters) and the remaining 611 of 2,964 OTUs are grouped
into the 31st cluster named other (Table 2). As described in
Supplementary Material section 1, UniFrac distance matrices (D)
of the 31 clusters are computed and converted to kernel matrices
as

K = −
1

2
(I −

11′

n
)D2(I −

11′

n
) (9)

followed by a positive definiteness correction (Chen and Li, 2013;
Zhao et al., 2015). All of the microbiome kernel matrices K are
scaled to have unit Frobenius norm.

Phenotypes are simulated based on the following scenarios.

3.1. Scenario 1: Selection Under Different
Sample Size
Longitudinal and cross-sectional responses are generated by

y ∼ N (X1β1 + X2β2, σ 2
dZZ

′ +

L
∑

l=1

σ 2
glK l + σ 2

e I), (10)

where σ 2
gl

> 0 for l = 1, . . . , 5 and σ 2
gl
= 0 otherwise.

The total number of variance components for microbiome
clusters is L = 31. The true model has five non-zero variance
components including Anaerococcus, Atopobium, Actinomyces,
Campylobacter, and Capnocytophaga. We compare the selection
performance at three sample sizes: n = 20, 50, 100. For cross-
sectional design, responses are simulated by setting σ 2

d
= 0.

TABLE 2 | List of 31 Genera.

Genus Phylum No of OTU Mean Reads

1 Actinomyces Actinobacteria 150 230.59

2 Anaerococcus Firmicutes 17 2.90

3 Atopobium Actinobacteria 22 40.83

4 Campylobacter Proteobacteria 31 51.05

5 Capnocytophaga Bacteroidetes 31 70.81

6 Catonella Firmicutes 22 40.09

7 Corynebacterium Actinobacteria 47 12.22

8 Flavobacterium Bacteroidetes 25 5.08

9 Fusobacterium Fusobacteria 55 174.29

10 Gemella Firmicutes 17 72.11

11 Lactobacillus Firmicutes 33 141.10

12 Leptotrichia Fusobacteria 15 12.40

13 Megasphaera Firmicutes 14 36.99

14 Methylobacterium Proteobacteria 11 2.88

15 Neisseria Proteobacteria 18 109.61

16 OD1_genera_incertae_sedis OD1 75 0.92

17 Parvimonas Firmicutes 20 76.46

18 Peptoniphilus Firmicutes 11 1.16

19 Porphyromonas Bacteroidetes 42 134.41

20 Prevotella Bacteroidetes 304 833.35

21 Rothia Actinobacteria 16 49.83

22 Selenomonas Firmicutes 50 16.16

23 Sneathia Fusobacteria 12 37.09

24 Sphingomonas Proteobacteria 14 0.61

25 SR1_genera_incertae_sedis SR1 17 5.95

26 Streptococcus Firmicutes 66 1,107.81

27 TM7_genera_incertae_sedis TM7 61 40.54

28 Treponema Spirochaetes 60 51.62

29 Unclassified Unclassified† 1,068 258.65

30 Veillonella Firmicutes 29 370.85

31 Others Others 611 1,009.88

Summary of phylum information, the number of OTUs, and the average abundance

(across sample and time points) within each genus from the pulmonary microbiome

dataset are shown.
†
The genus unclassified may belong to phylum unclassified or other 12 phyla.

3.2. Scenario 2: Selection Under Different
Numbers of Non-zero Variance
Components
The sample size is fixed at n = 50 in this scenario. Responses are
generated bymodel (Equation 10) with different numbers of non-
zero variance components. In Supplementary Material section 5,
VC-lasso is evaluated when the number of variance components
in the model is large.

(1) 2 non-zero variance components: σ 2
g20

> 0, σ 2
g30

> 0, and

σ 2
gl
= 0 otherwise. Two associated genera are prevolleta and

veillonella.
(2) 5 non-zero variance components: σ 2

gl
> 0 for l =

1, 2, . . . , 5 and σ 2
gl
= 0 otherwise. Associated clusters are

Anaerococcus, Atopobium, Actinomyces, Campylobacter, and
Capnocytophaga.
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FIGURE 1 | Scenario 1: Estimated g-Measure of both VC-lasso and group-lasso under different sample sizes for models with 5 non-zero variance components in a

cross-sectional design. Three sample sizes, n = 20, 50, 100, are compared and σ2
d
= 0.

FIGURE 2 | Scenario 1: Estimated g-Measure of VC-lasso under different sample sizes for models with 5 non-zero variance components in a longitudinal design.

Three sample sizes, n = 20, 50, 100, are compared and σ2
d
= 0.6.

(3) 15 non-zero variance components: σ 2
gl

> 0 for l = 1, 2, . . . ,

15 and σ 2
gl
= 0 otherwise. Associated clusters, including

Actinomyces, Anaerococcus, . . ., and Neisseria are listed in
Table 2.

3.3. Scenario 3: Selection Under Different
UniFrac Distance Kernels
The sample size is fixed at n = 50 with 5 non-zero
variance components. We compare the selection performance
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FIGURE 3 | Scenario 2: Estimated g-Measure of both VC-lasso and group-lasso under different number of non-zero variance components in a cross-sectional

design. The number of non-zero variance components (VCs) are set to 2 (A), 5 (B), 15 (C), sample size is n = 50, and σ2
d
= 0.

FIGURE 4 | Scenario 2: Estimated g-Measure of VC-lasso under different number of non-zero variance components in a longitudinal design. Three different numbers

of non-zero variance components (VCs), 2, 5, 15, are shown, sample size is set to n = 50 and σ2
d
= 0.6.
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using kernels defined by 5 different distance measures: variance
adjusted weighted UniFrac distance (KVAW) Chang et al., 2011),
generalized UniFrac distance (K0, K0.5) (Chen et al., 2012a),
unweighted UniFrac distance (KUW) (Lozupone and Knight,
2005), and weighted UniFrac distance (KW) (Lozupone et al.,
2007).

3.4. Scenario 4: Selection Under Fixed
Effect Model
We again use the sample size n = 50 and vary the number of
clusters containing signal. Responses are simulated by a fixed
effect model

y ∼ N (X1β1 + X2β2 + G∗1γ1 + G∗2γ2 + . . .

+ G∗uγu, σ 2
e I), (11)

where G∗1 , G∗2 , . . . ,G
∗
u are OTU count matrices of different

clusters scaled by their sample maximum. u is the total number of

clusters with effects that ranges from 2 to 15. Fixed effect vector
γ l for cluster l are generated from γ l ∼ N (0, σ 2

gl
I) and are fixed

for each simulation replicate.
We applied VC-lasso to scenarios 1-3 using both longitudinal

and cross-sectional designs. Scenario 4 is performed using a
cross-sectional design only. We compare our approach with
group-lasso (R package gglasso) in all 4 scenarios for cross-
sectional design because the gglasso package cannot handle
longitudinal data.

We set the within-individual variance σ 2
e = 1 throughout

simulations. The between individual variance of random
intercept is set to σ 2

d
= 0.6 for longitudinal design and σ 2

d
= 0

otherwise (Twigg III et al., 2016). The effect strength is set to
σ 2
g = 1, 5, 25, 100 (Chen et al., 2015a). We set the non-zero

variance components to have the same effect strength under each
setting, therefore omit subscript l. Two covariates X1 and X2 are
generated from the standard normal distribution and effect sizes
are set to β1 = β2 = 0.1. 1000 Monte Carlo simulation replicates

FIGURE 5 | Scenario 3: Estimated g-Measure of both VC-lasso and group-lasso under different UniFrac distance kernels in a cross-sectional design. Five different

kernels, KUW , KVAW , K0, K0.5 and KW , and two methods, VC-lasso and group-lasso, are displayed in a cross-sectional design. Four effect strengths, 1 (A), 5 (B),

25 (C), and 100 (D) are shown. There are 5 non-zero variance components, sample size is n = 50, and σ2
d
= 0.
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are generated. We split each dataset to training (80%) and testing
(20%). Five-fold cross-validation is performed in training set to
estimate the optimal λ∗. Selection performance is evaluated and
reported by applying λ∗ to the testing set.

4. RESULTS

4.1. Analysis of Simulated Data
The simulation results are summarized in Figures 1–9 including
variable selection performance under different sample sizes
(Figures 1, 2), different numbers of non-zero variance
components (Figures 3, 4), and different UniFrac distance
measures (Figures 5, 6) for both cross-sectional and longitudinal
designs. Comparisons between VC-lasso and group-lasso are
shown in all cross-sectional simulation studies.

The trajectories of g-Measure versus tuning parameter λ from
cross-validation is presented in Figure 9. g-Measures remain
stable or slightly decrease as λ getting larger under moderate
effect size when σ 2

g = 1 and 5. It starts to decrease when λ is
greater than 0.6. Figure 9 suggests that the trajectories of tuning
criteria is generally consistent across sample sizes, effect sizes, and
study designs.

4.1.1. Scenario 1: Selection Under Different Sample

Sizes

Figures 1, 2, 8A display performance of selection (g-Measure)
and prediction (area under the receiver operating characteristic
curve, AUROC). In Figure 1, we compare VC-lasso (blue bar)
and group-lasso (red bar) using cross-sectional design. In

Figure 2, we compare the g-Measure of VC-lasso under different
sample sizes using a longitudinal design. For both cross-sectional
and longitudinal designs, g-Measure of VC-lasso boosts with
increased sample size and effect sizes. Except for the third quartile
of g-Measure over 1,000 replicates for sample size, n = 20,
VC-lasso always outperforms group-lasso in this scenario.

Area under receiver operating characteristic (AUROC) is used
to evaluate the prediction performance (Figure 8A) when effect
size is fixed at σ 2

g = 25. Larger AUROC represents better
prediction ability. For VC-lasso, AUROC increases with sample
size under cross-sectional design. For longitudinal study, n = 50
has similar AUROC with n = 100, which indicates the optimal
prediction we can receive under this simulation setting. The
AUROCof group-lasso (red bar) is similar under different sample
sizes and shows no advantages compared to the VC-lasso.

4.1.2. Scenario 2: Selection Under Different Number

of Non-zero Variance Components

Figures 3, 4, 8B show simulation results for the selection under
different number of non-zero variance components. Specifically,
Figure 3 shows g-Measure for both VC-lasso and group-lasso in
a cross-sectional design, while Figure 4 presents g-Measure for
VC-lasso in a longitudinal design.

In Figures 3, 4, the performance of VC-lasso selection
improves when effect size increases. For a model with 2 non-
zero variance components, the true discovery rate (TDR, or
sensitivity) is either 0, 0.5 or 1.0, which lead to a large variation
of the g-Measure (Figure 3A). As more non-zero variance

FIGURE 6 | Scenario 3: Estimated g-Measure of VC-lasso under different UniFrac distance kernels in a longitudinal design.Five different kernels, KUW ,KVAW , K0,

K0.5 and KW , are compared. There are 5 non-zero variance components. Sample size is n = 50 and σ2
d
= 0.6.
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FIGURE 7 | Scenario 4: Estimated g-Measure of VC-lasso and group-lasso under fixed effect model in a cross-sectional design. There are 2 (A), 5 (B), 15 (C) clusters

with signals. Sample size is n = 50 and σ2
d
= 0.

FIGURE 8 | Scenario 1 & 2: AUROC. The AUROC is presented as the mean ± 95% confidence interval based on 1,000 simulation replicates for each simulation

scenario when σ2
g = 25. (A) Scenario 1; (B) Scenario 2.

components are included, in Figure 3B,C the trajectory of g-
Measures becomes smoother. The g-Measures of VC-lasso are
higher than the group-lasso in most simulation settings except
that group-lasso has larger third quartile when σ 2

g = 1 in

Figure 3A and σ 2
g = 5 in Figure 3C. As shown in Figure 8B,

VC-lasso has a better prediction ability with an increased number
of non-zero variance components. Compared with our method,
group-lasso is uncompetitive in predictive ability.
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FIGURE 9 | Trajectories of estimated g-Measure as a function of tuning parameter λ (scenario 1 & 2). Estimated g-Measure is displayed as the mean of 5-fold

cross-validation under sample sizes, n = 20 (A,D), 50 (B,E), 100 (C,F), or 2 (G,J), 5 (H,K), 15 (I,L) non-zero variance components (VCs) in both cross-sectional and

longitudinal designs.

4.1.3. Scenario 3: Selection Under Different UniFrac

Distance Kernels

We compare the g-Measure of five different kernels in
Figures 5, 6 for the cross-sectional and longitudinal design,
respectively. Using longitudinal simulated data, the box-plot of
g-Measure shows that the five kernels have similar performance
except that the KW has the lowest third quartile and K0 has
the lowest first quartile when σ 2

g is large. Under the same effect

strength (σ 2
g ) in the cross-sectional design (Figure 5), the g-

Measure of five kernels are almost identical except that K0 has
slightly smaller g-Measure and wider range than other kernels.
For example, K0 has the lowest first quartile in Figures 5B.
This suggests that the kernels computed from different UniFrac
distance play a minor part in the selection performance and

our method is superior to group-lasso regardless of kernel
types.

4.1.4. Scenario 4: Selection Under Fixed Effect Model

Figure 7 has a distinctive pattern from the above scenarios.
For the case that only two microbiome clusters contain signals
(Prevotella and Veillonella), both methods do not perform well
(Figure 7A). In Figures 7B,C, g-Measures for both methods
improve with increased effect sizes and VC-lasso outplays group-
lasso with σ 2

g = 1. For σ 2
g = 5, 25, average and median

g-Measure of VC-lasso across simulation replicates outperform
group-lasso. Besides, we notice that the range of g-Measure for
VC-lasso becomes smaller as signal strengths increase, suggesting
the prediction performance stabilizes as the association with the
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TABLE 3 | Analysis of Forced expiratory volume in one second (FEV1) at genus level in the real pulmonary microbiome cohort using variance component lasso selection

(VC-lasso) and exact tests.

VC-lasso Exact tests

Rank Genus Phylum info eRLRT eLRT eScore

Baseline 1 Corynebacterium Actinobacteria 0.28 0.30 0.30

2 TM7_genera_incertae_sedis TM7 1.00 1.00 1.00

3 Anaerococcus Firmicutes 0.06 0.06 0.07

4 Neisseria Proteobacteria 1.00 1.00 1.00

5 Treponema Spirochaetes 0.13 0.14 0.14

Longitudinal 1 Corynebacterium Actinobacteria 1.00 – 1.00

2 Actinomyces Actinobacteria 0.00 – 0.01

3 Prevotella Bacteroidetes 0.01 – 0.01

4 TM7_genera_incertae_sedis TM7 1.00 – 1.00

5 Porphyromonas Bacteroidetes 0.00 – 0.00

6 Megasphaera Firmicutes 0.06 – 0.06

The phylum information is provided for selected genera. Tuning parameter λ∗ for baseline and longitudinal data is set to 0.01 and 0.2, respectively. Rank represents the order of genera

that appear in the solution path. Results of eLRT are omitted as it is equivalent to eRLRT in a longitudinal design.

TABLE 4 | Analysis of forced expiratory flow (FEF) at genus level in the real pulmonary microbiome cohort using variance component lasso selection (VC-lasso) and exact

tests.

VC-lasso Exact tests

Rank Genus Phylum info eRLRT eLRT eScore

Baseline – – – – –

Longitudinal 1 Methylobacterium Proteobacteria 1.00 – 1.00

4 Prevotella Bacteroidetes <0.01 – <0.01

2 Rothia Actinobacteria 0.01 – 0.03

3 Campylobacter Proteobacteria 0.03 – 0.03

5 TM7_genera_incertae_sedis TM7 0.00 – 0.01

6 Corynebacterium Actinobacteria 0.32 – 0.31

The phylum information is provided for selected genus. Tuning parameter λ∗ = 0.035 for longitudinal data. Rank represents the order of genera that appear in the solution path. No

genus is chosen using baseline data only. Results of eLRT are omitted in longitudinal design as it is equivalent to eRLRT.

outcome increases. In general, VC-lasso has a distinctively better
selection performance even when model is misspecified.

4.2. Application to Longitudinal Pulmonary
Microbiome Data
We apply VC-lasso to a longitudinal dataset of pulmonary
microbiome study. Bronchoalveolar lavage (BAL) fluid were
collected for microbiome profiling. The inclusion criterion for
this cohort were: (1) HIV infection and (2) CD4 count less than
500 cells/mm3 before HAART (Twigg III et al., 2016). Two most
common pulmonary function tests were performed repeatedly:
spirometry and diffusing capacity for carbon monoxide. In
this report we focus on spirometry measures. Spirometry is to
measure the lung volume and how well the lung exhales, such
as average forced expiratory flow (FEF) and forced expiratory
volume in 1s (FEV1). Both spirometry and diffusing capacity
were evaluated as percent predicted values as pulmonary function
tests are usually interpreted by comparing the patient’s value to

predicted value of the healthy subject with similar age, height
and ethnicity (Twigg III et al., 2016).

Twigg III et al. (2016) compared microbiome abundance
differences at overall community level between (1) uninfected
and baseline; (2) uninfected and 1 year after treatment; and
(3) uninfected and 3 year treated subjects. They suggest that
the lung microbiome in healthy HIV-infected individuals with
preserved CD4 counts is similar to uninfected individuals.
Among individuals with more advanced disease, there is
an altered alveolar microbiome characterized by a loss of
richness and evenness (alpha diversity). This alteration might
impact pulmonary complications (often characterized by the
measure of lung functions) in HIV-infected patients on
antiretroviral therapy (ART). In this application, we therefore
aim to identify microbiome genera associated with pulmonary
function in both longitudinal and baseline studies. Ethnicity,
gender, smoking history, CD4 count, and HIV viral load are
included as the covariates. Missing covariates are imputed
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FIGURE 10 | Solution path and AIC/BIC curve of the VC-lasso method in the analysis of 31 genera and the pulmonary function. The solution paths with penalty

parameter are presented for FEV1 (A) and FEF (B) in longitudinal study (upper panel). AIC/BIC curves as a function of tuning parameter for FEV1 (C) and FEF (D) are

shown in the lower panel.

by their mean. Penalized variance component selection is
performed among all 31 genera. Due to limited sample
sizes, we choose the optimal tuning parameter λ∗ by AIC
and BIC.

Tables 3, 4 show selected genera with their phylum
information and the corresponding p-values from exact
tests, i.e., score test (eScore), likelihood ratio test (eLRT), and
restricted likelihood ratio test (eRLRT) (Zhai et al., 2017b).
The genera are ranked in the order they appear in the solution
path (Figures 10A,B). VC-lasso selects 6 genera associated
with FEV1 using longitudinal data and λ∗ = 0.2 (Table 3
and Figure 10C). Three out of six selected genera have eRLRT
p-values < 0.05 (Table 3), including Actinomyces (p < 0.01),
Prevotella (p = 0.01), and Porphyromonas (p < 0.01). Using
baseline data, we identify five genera associated with FEV1,
among which Corynebacterium and TM7 genera incertae sedis are
also selected by using longitudinal data. Several selected genera
received insufficient attention in HIV-infected populations
previously, for example, Anaerococcus andMegasphaera. Studies
have shown that Anaerococcus became more abundant in
children with asthma after azithromycin treatment (Slater
et al., 2013; Riiser, 2015) and Megasphaera has higher relative
abundance in smoking population (Segal et al., 2014). However,
none of them has been reported in HIV infected pulmonary
microbiome (Rogers et al., 2004; Chen et al., 2007; Twigg III
et al., 2016).

For variance component selection on FEF (Table 4), VC-
lasso selects 6 genera in total using longitudinal data with
λ∗ = 0.035. Considering the exact test results (eRLRT and
eScore), four of them show significant association with FEF
(p-value < 0.05), i.e., Prevotella, Rothia, Campylobacter and
TM7_genera_incertae_sedis. Twigg III et al. (2016) reported
that HIV-positive BAL samples contained an increased
abundance of Prevotella after 1-year HAART treatment
while significantly decreased abundances during 3 years of
treatment. Campylobacter is another noteworthy genus that
has significant association with inflammation markers of HIV-
infected population (Iwai et al., 2014). Additionally, significantly
increased abundance of Rothia and TM7_genera_incertae_sedis
in oral wash microbiome has been reported in HAART treatment
group (Iwai et al., 2012; Beck et al., 2015). In conclusion, VC-
lasso provides innovative association evidence between fine level
pulmonary microbiome clusters with lung function phenotypes.
Our report is a hypothesis generation procedure. Association
results need to be further validated in a separate population or
by laboratory experiments.

5. DISCUSSION

In this paper, we propose the variance component selection
scheme VC-lasso for sparse and high-dimensional taxonomic
data analysis. To reduce the dimensionality, we first aggregate
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the dispersed individual OTUs to clusters at higher phylogenetic
level, such as genus, family, or phylum. By translating the
phylogenetic distance information to kernel matrices, we treat
the aggregated taxonomic clusters as multiple random effects
in a variance component model. Then, VC-lasso is performed
for parsimonious variable selection of variance components. The
MM algorithm with lasso penalization derived in Algorithm 1
for parameter estimation extremely simple and computationally
efficient for variance component estimation. The group-lasso as a
comparison can also be used for the microbiome cluster selection
and incorporating higher phylogenetic group information (Yuan
and Lin, 2006; Garcia et al., 2013; Yang and Zou, 2015).
However, group-lasso suffers from the high-dimensionality and
sparsity of OTUs within clusters. And group-lasso is not easy to
accommodate phylogenic information. Beyond that, our novel
approach VC-lasso can be applied to longitudinal designs. In
such cases, we do not penalize the variance component that
contains the repeat measurement correlation. Software and
detailed documentation are freely available at https://github.com/
JingZhai63/VCselection.

The VC-lasso is not limited to random intercept model
for longitudinal studies. More complex random effect models,
such as random intercept and random slope model, can also
be used. More generally, the extension of our method to
multivariate responses is expected to have better prediction
performances. In the precision medicine era, with the rapid
development of sequencing techniques and decreasing costs,
the personal microbiome sequencing is already available to
the consumer, e.g., American Gut (http://americangut.org/)
and uBiome (https://ubiome.com/). Selection for higher-order
interactions with random effect, such as microbiome and
treatment regime interactions (Gopalakrishnan et al., 2017), will
be a straightforward, yet interesting, implementation (Maity and
Lin, 2011; Lin et al., 2016).

In practice, knowledge is needed about which taxonomy
level should be aimed at to develop strategies for intervention.
Considering multiple level taxonomic data, one can extend

VC-lasso to include tree topologies (Wang and Zhao, 2016;Wang
et al., 2017). For example, overlapping or subgroup VC-lasso
can be developed by using both ℓ1 and ℓ2 regularizations (Jacob
et al., 2009; Bien et al., 2013). Last but not the least, the
variance components model requires specification of a kernel
function or kernel matrix a priori, but it is often unclear which
distance kernel to use in practice. To deal with the uncertainty,
we can consider obtaining a composite kernel by utilizing
a multiple kernel learning algorithm, such as a multi-kernel
boosting algorithm (Xia and Hoi, 2013). In conclusion, with
its competitive performance and many potential extensions, our
variance components model with regularization, VC-lasso, is a
powerful tool for mining the emerging microbiome data.
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