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ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is
known about how antibiotic resistance genes of typical gut bacteria influence micro-
biome dynamics. Here, we leveraged genomes from metagenomes to investigate
how genes of the premature infant gut resistome correspond to the ability of bacte-
ria to survive under certain environmental and clinical conditions. We found that for-
mula feeding impacts the resistome. Random forest models corroborated by statisti-
cal tests revealed that the gut resistome of formula-fed infants is enriched in class D
beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene
are at higher abundance in formula-fed infants than C. difficile strains lacking this
gene. Organisms with genes for major facilitator superfamily drug efflux pumps have
higher replication rates under all conditions, even in the absence of antibiotic ther-
apy. Using a machine learning approach, we identified genes that are predictive of
an organism’s direction of change in relative abundance after administration of van-
comycin and cephalosporin antibiotics. The most accurate results were obtained by
reducing annotated genomic data to five principal components classified by boosted
decision trees. Among the genes involved in predicting whether an organism in-
creased in relative abundance after treatment are those that encode subclass B2
beta-lactamases and transcriptional regulators of vancomycin resistance. This dem-
onstrates that machine learning applied to genome-resolved metagenomics data
can identify key genes for survival after antibiotics treatment and predict how or-
ganisms in the gut microbiome will respond to antibiotic administration.

IMPORTANCE The process of reconstructing genomes from environmental sequence
data (genome-resolved metagenomics) allows unique insight into microbial systems.
We apply this technique to investigate how the antibiotic resistance genes of bacte-
ria affect their ability to flourish in the gut under various conditions. Our analysis re-
veals that strain-level selection in formula-fed infants drives enrichment of beta-
lactamase genes in the gut resistome. Using genomes from metagenomes, we built
a machine learning model to predict how organisms in the gut microbial commu-
nity respond to perturbation by antibiotics. This may eventually have clinical applica-
tions.
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Antibiotic use steadily increased over the past several decades and is correlated with
the prevalence of antibiotic resistance in bacteria (1). Widespread antibiotic resis-

tance, in combination with the decline in development of new antibiotics, presents a
major threat to human health (2). The gut microbiome is a reservoir for antibiotic
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resistance genes (3) and may be involved in the spread of resistance genes to
pathogens (4–6). Additionally, antibiotics are often prescribed to treat infections with-
out considering how the drug will affect the gut microbial community, which can lead
to negative consequences for the human host (7). It is therefore important to study how
the antibiotic resistance genes harbored by organisms in the gut microbiome impact
community dynamics.

The preterm infant gut resistome is considered a research priority because prema-
ture infants are almost universally administered antibiotics during the first week of life
(8). Early life is a critically important time for community establishment (9), and neonatal
antibiotic therapies have both transient and persistent effects on the gut microbial
community. Included among the many ways in which antibiotics have been shown to
affect the microbiome are lower bacterial diversity (10), enrichment of Enterobacteri-
aceae (10, 11), reduction of Bifidobacterium spp. (12), and enrichment of antibiotic
resistance genes (13), including those that have no known activity against the particular
antibiotic administered (14). Previous studies have shown that the community compo-
sition of the infant microbiome is affected by diet, with artificial formula selecting for
Escherichia coli and Clostridium difficile (15) and breast milk selecting for certain strains
of Bifidobacterium (16). Hypotheses regarding the effect of birth mode on the micro-
biome are contested, with most studies finding that it has an effect on the gut
microbiome (17–19) whereas some show no effect (20, 21). Gender (22) and maternal
antibiotics administered before or during birth (23–25) also influence microbiome
assembly.

Here we used genome-resolved metagenomics coupled with statistical and machine
learning approaches to investigate the gut resistome of 107 longitudinally sampled
premature infants. We show that certain antibiotic resistance genes in particular
genomes affect how clinical factors influence the gut microbiome and, in turn, how the
antibiotic resistance capabilities of a gut organism influence its growth and relative
abundance.

RESULTS AND DISCUSSION
Antibiotic resistance of the premature infant microbiome. A total of 107 pre-

mature infants were studied during the first 3 months of life. The median birth weight
was 1,228 g (interquartile range [IQR] � 902 to 1,462), with 35% of the infants having
extremely low (�1,000 g) birth weight and 65% of infants having birth weight of
�1,000 g (see Table S1 and Text S1 in the supplemental material). Birth weight is closely
linked to gestational age, which is divided into the following categories: late preterm
(34-week to �37-week gestation), moderate preterm (32-week to �34-week gestation),
very preterm (28-week to �32-week gestation), and extremely preterm (�28 weeks
gestation) (26). Among the infants in this study, 30% were extremely preterm; such
infants tend to have significant health problems, including higher rates of necrotizing
enterocolitis and extreme dysbiosis of the microbiota (27). The majority (60%) of the
infants in our study were classified as very preterm, just 10% of our infants were
classified as moderate preterm, and no infants were classified as late preterm (Table S1
and Text S1). Because the infants in this study were mostly very or extremely preterm,
it should be noted that the biological characteristics reported here are highly divergent
from those of typical full-term infants (28).

Longitudinal sampling of each infant resulted in a total of 902 samples that were
sequenced and analyzed. All 107 infants received gentamicin and ampicillin during the
first week of life, and 36 of those infants received additional antibiotics in the later
weeks due to disease (Table 1). Data on the types of antibiotics given to the infants,
along with the day of life (DOL) on which they were administered, are available in
Table S2. All samples were subjected to Illumina short-read shotgun sequencing, and
the sequence data were assembled using idba-ud (see Materials and Methods for
details). Binning resulted in a dereplicated set of 1,483 genomes (Table S3). The
taxonomic composition of these samples is typical for the premature infant gut (Fig. 1A
and B). Resfams (29) annotations of predicted amino acid sequences from the resulting
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scaffolds (Table S4) revealed that the most abundant resistance mechanisms were
resistance-nodulation-cell division (RND) efflux pumps and ATP-binding-cassette (ABC)
transporters (Fig. 1C and D). Note that, in addition to their ability to contribute to
antibiotic resistance, efflux pumps and transporters have been associated with stress
response (30–32) and may reflect a rapidly changing environment during the first few
months of life.

TABLE 1 Infant characteristics

Characteristic

Value for infants who:

Received no antibiotics
after the first week

Received antibiotics
after the first weeka

No. of samples 604 298
Total no. of infantsb 71 36
No. of infants who received breast milk 52 32
No. of infants who were delivered by C-section 54 22
No. of infants of male sex 34 17
No. of infants with maternal antibiotics 24 20
aThe infants represented in the column corresponding to those who received antibiotics after the first week
(right) were administered antibiotics while in the NICU beyond the first week of life due to late-onset
sepsis, necrotizing enterocolitis, or another disease.

bAll 107 premature infants were in the neonatal intensive care unit (NICU) of the Magee-Women’s Hospital in
Pittsburgh, PA.

FIG 1 Microbiome and resistome of the premature infant gut microbial community. The numbers of samples included in each week’s average are as follows:
for the infants that did not receive antibiotics after the first week, week 2 n � 197, week 3 n � 188, week 4 n � 110, week 5 n � 16, week 6 n � 20, week
7 n � 7, and week 8 n � 8; for the infants that received antibiotics after the first week, week 2 n � 72, week 3 n � 73, week 4 n � 53, week 5 n � 24, week
6 n � 16, week 7 n � 8, and week 8 n � 13. (A) The genus-level taxonomic composition of the gut community for the infants that did not receive antibiotics
after the first week of life. (B) The genus-level taxonomic composition of the gut community for the infants that received antibiotics beyond the first week of
life. (C) For the infants that do not receive antibiotics after the first week, the total resistance content of the premature infant gut microbiome has a slight
negative correlation with age (P � 0.003.). (D) The resistance gene levels of infant microbiomes that were exposed to additional antibiotics did not display a
significant trend (P � 0.265).
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For the infants that did not receive additional antibiotics (Fig. 1C), a decreasing trend
in total antibiotic resistance potential was observed over time (P � 0.005) (Text S1).
During the first week of life, empirical antibiotic therapy perturbs the microbiome by
preferentially enriching for antibiotic-resistant organisms. This is consistent with prior
results showing temporarily elevated resistance gene levels after administration of
antibiotics (17). Microbial community recovery begins following this period. For the
infants that received antibiotics after the first week of life (Fig. 1D), there was no
consistent trend of decreasing resistance potential (Text S1). This suggests that admin-
istration of antibiotics to premature infants after the first week of life can prolong the
enrichment of the resistome.

Approximately 20% of the resistance genes annotated by Resfams (Table S4) were
not assignable to specific organisms in the microbiome (Table S5 and Text S1). This was
partly due to some genes being carried on plasmids, which were excluded from the
genomic analysis.

Formula feeding influences the gut resistome through strain-level selection.
Permutational multivariate analysis of variance (PERMANOVA) tests, which discern and
isolate the effects of factors through partitioning of variance (33), were performed to
investigate the effect of feeding regimen, delivery mode, gender, maternal antibiotics,
and the infant’s current antibiotic therapy on the resistome (Text S1). Tests were
performed on the resistomes of samples taken at weeks 2, 4, and 6 to avoid the bias of
repeated measures in longitudinal sampling. At week 2, the distribution of antibiotic
resistance genes seen with formula-fed infants was not significantly different from that
seen with infants that received breast milk. However, a difference was detected at
weeks 4 and 6 (P � 0.05), accompanied by an increase in effect size as assessed by
PERMANOVA F-statistic (Table S6). This signals divergence of the resistomes of formula-
fed and breast-fed infants over time. The PERMANOVA tests were not sensitive enough
to detect any effects on the resistome resulting from delivery mode, gender, or
antibiotics, which may have been because the test displays conservatism when vari-
ances are positively related to group sample size (34). Because these factors have been
shown to alter the microbiota (19, 22, 24, 25), it is unlikely that the resistome was truly
unchanged. Since feeding type was the only factor that produced a detectable re-
sponse, we further investigated its effects.

Random forest models were used to classify resistomes as belonging to either a
formula-fed baby or a breast-fed baby, and we used the feature importance scores of
the trained models to select resistance genes for further study (Table 2). One of the four
selected resistance genes was significantly associated with a feeding group: class D
beta-lactamase was enriched in formula-fed infants (P � 0.05) (Fig. 2A). Genome-
resolved analysis (Table S5 and S7) revealed that class D beta-lactamase genes are most
frequently carried by Clostridium difficile (Text S1). Among the 67 C. difficile genomes in
the dereplicated data set, 38 harbor a class D beta-lactamase gene. Phylogenetic
analysis reveals that these 38 organisms are very closely related (Fig. 2B). To ascertain
if this C. difficile strain is involved in the enrichment of class D beta-lactamase in the
formula-fed infant gut resistome, the relative abundances of C. difficile with and without
a class D beta-lactamase gene in the gut microbiome of breast-fed and formula-fed
infants were assessed. C. difficile with a class D beta-lactamase gene was consistently
more abundant than C. difficile lacking this gene among the infants that received only
formula, while both types of C. difficile were low in relative abundance among the

TABLE 2 Features selected using the random forest Gini importance metric after training on resistomes of formula-fed infants and
breast-fed infants

Resfams category Feature importance score Mann-Whitney U value P value Corrected P valuea

ANT6 0.071 17 0.327 1
Class D beta-lactamase 0.089 66 0.008 0.031
mexX 0.098 11 0.106 0.426
soxR mutant 0.071 10 0.081 0.324
aBonferroni corrections were applied to the P values obtained from Mann-Whitney U tests to adjust for multiple testing.
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infants that received breast milk (Fig. 2C). Even with the lower relative abundance of
some C. difficile strains, there was no significant difference in genome completeness
and N50 between the two groups (Table S3 and Text S1), assuring us that there was no
methodological issue that reduced our ability to detect beta-lactamase. Prior studies
have reported an increased abundance of C. difficile in the gut microbiomes of
formula-fed infants (15), but here we reveal that formula feeding enriches for a
particular C. difficile strain.

Class D beta-lactamase hydrolyzes beta-lactam antibiotics (35), and there is no
known connection between host diet and its antibiotic resistance function. It is thus
unlikely that class D beta-lactamase offers a selective advantage to organisms in the gut
of formula-fed infants, but this gene may be linked to other genes that confer an
advantage. Pairwise correlations of the Resfams and KEGG metabolism modules in
C. difficile genomes revealed that one KEGG module, the cytidine 5=-monophospho-3-
deoxy-D-manno-2-octulosonic acid (CMP-KDO) biosynthesis module, was perfectly cor-
related with the presence of the class D beta-lactamase gene. CMP-KDO catalyzes a key
reaction in lipopolysaccharide biosynthesis (36). Further inspection of the KEGG anno-
tations revealed that only one gene from this module was present in C. difficile: the
arabinose-5-phosphate isomerase gene. This gene typically occurs in Gram-negative
bacteria, where it plays a role in synthesis of lipopolysaccharide for the outer mem-
brane (37), and yet a recent study identified arabinose-5-phosphate isomerase in a
Gram-positive organism, Clostridium tetani (38). Although the function of this gene in
Gram-positive bacteria is unknown, it is hypothesized to be a regulator and may
modulate carbohydrate transport and metabolism (38). If so, C. difficile (Gram-positive)
strains with arabinose-5-phosphate isomerase may have a competitive advantage
because they are able to rapidly respond to the availability of the carbohydrates that
are abundant in formula. It is also possible that other, potentially unknown genes are
responsible for the observed effect and that these genes may not necessarily relate to
metabolism of compounds in formula. Breast-fed babies have an increased abundance

FIG 2 Formula feeding affects the resistome. (A) Class D beta-lactamase is enriched in formula-fed infants at 4 weeks of age (Mann-Whitney U � 66,
Bonferroni-corrected P � 0.031). (B) Phylogenetic tree of Clostridium difficile genomes based on the ribosomal protein S3 gene. Names of genomes harboring
a class D beta-lactamase are colored green and labeled with an asterisk. (C) The relative abundances of C. difficile genomes with class D beta-lactamase in
formula-fed and breast-fed infants (top) (n � 38) and the relative abundances of C. difficile genomes lacking class-D betalactamase in formula-fed and breast-fed
infants (bottom) (n � 29). Only the infants harboring C. difficile were included in calculations of average relative abundances.
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of Bifidobacterium (Text S1) (16), so the ways in which different strains of C. difficile
interact and compete with Bifidobacterium may contribute to the observed trend.

Major facilitator superfamily (MFS) pumps are associated with increased rep-
lication. A previous analysis revealed that antibiotic administration is associated with
elevated bacterial replication index (iRep) values, which was hypothesized to be due to
high resource availability after elimination of antibiotic-susceptible strains (39). Expand-
ing upon this result, we show here that the mean iRep value for a sample in the days
following antibiotic treatment is positively correlated with total resistance gene content
(P � 0.05) (Fig. 3A). To be present in the period following antibiotic administration, all
organisms must be antibiotic resistant; it is thus unclear why a larger inventory of
resistance genes should lead to higher growth rates.

To characterize the effect of antibiotic resistance genes on iRep values in isolation
from the confounding effects of antibiotics, we studied infants that did not receive any
antibiotics after the first week of life. In these infants, organisms carrying genes for MFS
transporters had significantly higher iRep values than those that do not have MFS
genes (P � 5 � 10�5) (Fig. 3B). As there are known differences in median iRep values
among phyla (39), the comparison was repeated within each phylum that contained
members with and without MFS genes. The trend of higher iRep values for organisms
with MFS was most apparent in Firmicutes (P � 5 � 10�4) (Fig. 3B). The genomes
lacking MFS show comparatively high completeness scores (Table S3 and Text S1),
suggesting that this finding is not due to missed detection of the MFS genes. Therefore,
the presence of these antibiotic resistance genes appears to inherently increase repli-
cation, even when no antibiotics are being administered. This could be due to protec-
tion from antibiotics being produced at a low level by other gut organisms (40) or a
result of naturally beneficial physiological functions of MFS pumps (41). We also
acknowledge that this finding may simply reflect a high incidence of organisms with
MFS genes present during periods of fast replication without a causal link.

A model that predicts an organism’s response to vancomycin and cephalospo-
rins. We modeled the relationship between the gene content of a gut organism and its
direction of change in relative abundance (increase versus decrease) after a premature
infant is administered a combination of a glycopeptide antibiotic (vancomycin) and
a beta-lactam antibiotic (cephalosporin [either cefotaxime or cefazolin]). Principal-
component analysis (PCA) was performed on Resfams (29) and KEGG (42) annotations
to generate a low-dimensional representation of each organism’s metabolic potential
and resistance potential. The first five principal components (PCs) cumulatively ex-

FIG 3 Antibiotic resistance and replication. (A) Among the samples taken within 5 days after antibiotic treatment, the antibiotic resistance potential of each
sample is correlated with its mean replication index value (Pearson’s r � 0.39, P � 0.03). (B) In infants that did not receive antibiotics after the first week of
life, bacteria harboring at least one major facilitator superfamily (MFS) transporter gene had significantly higher iRep values (Mann-Whitney U � 827,176.0, P �
1.55 � 10�5), and this pattern is apparent within the members of the Firmicutes phylum (Mann-Whitney U � 136,756.0, P � 0.0002).
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plained 48% of the variation in the data set. Using these PCs as input, the AdaBoost-
SAMME algorithm (43) was applied, with decision tree classifiers as base estimators. The
model, trained on 70% of the data, performed extremely well on the validation set, with
a precision value of 1.0 and a recall value of 1.0, indicating that every genome was
correctly classified. Because the validation set was utilized for testing during the
preliminary stages of model development, the model was also evaluated with a final
test set, with which it achieved 0.9 precision and 0.7 recall (Text S1).

Of the features that acted as the strongest contributors to each of the PCs, five
genes with a tendency to occur in microbes that increase in relative abundance
after antibiotic treatment were identified (Fig. 4). One of these is the subclass B2
beta-lactamase gene, which is carried by several of the organisms that persisted
after antibiotics, including Enterococcus faecalis, Clostridium baratii, and Bradyrhi-
zobium sp. (Table S5 and S7 and Text S1). Subclass B2 beta-lactamase has been
shown to hydrolyze carbapenems and to display much lower levels of resistance to
cephalosporins (44). Considering its substrate specificity for carbapenems, this beta-
lactamase may not directly contribute to an organism’s ability to persist after treatment
with cephalosporins; rather, it may be linked to other, potentially unknown genes.
However, the substrate specificity of an antibiotic resistance gene can depend on the
organismal context of that gene (45), and a single base substitution in a beta-lactamase
gene can alter substrate specificity (46), so the possibility that beta-lactamases falling
into the B2 subclass may confer resistance to cephalosporins in some gut organisms
should not be discounted.

Furthermore, our model shows that a gene linked to vancomycin resistance, vanR,
is among the genes predictive of an organism’s propensity to increase in relative
abundance after antibiotic treatment (Fig. 4). VanR is the transcriptional activator of an
operon harboring genes involved in peptidoglycan modification (VanH, VanA, and
VanX), which prevents vancomycin from binding to its target (47). This gene cluster
usually resides on plasmids (48, 49). VanR, encoded by a gene that is essential for the
initiation of the activity of the vancomycin resistance operon promoter (50), was
chromosomally present in several genomes of organisms that increased in abundance
after treatment with antibiotics, such as Enterococcus faecalis and Clostridium perfrin-
gens (Table S5 and S7 and Text S1). Because our genomic analysis precluded the
assignment of genes on plasmids, VanR was the best indicator of resistance.

In addition to genes specifically encoding resistance to beta-lactams or glycopep-
tides, efflux pumps and transporters were also strong contributors to the PCs used as

FIG 4 The tendency of genes to occur in the class of genomes that increased in relative abundance after
antibiotics. Genes and modules strongly contributing to the principal components used in the machine
learning model were identified, and class tendency was calculated using the ratio of the gene’s
prevalence in the increased-abundance group to its prevalence in the decreased-abundance group.
Genes associated with the increased-abundance class of genomes are colored red.
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input to the model. Mex genes (of the resistance-nodulation-cell division family of drug
efflux pumps) and ATP-binding cassette (ABC) transporter genes were associated with
microbes that increase in relative abundance after treatment with antibiotics (Fig. 4).
Multidrug efflux pumps are essential for the intrinsic drug resistance of many bacteria,
and overexpression of the genes for these pumps leads to elevated resistance levels
(51). Bacteroides ovatus and Bacteroides helcogenes carried multiple copies of Mex efflux
pumps, while Enterococcus faecalis and Clostridium baratii harbored several ABC trans-
porter genes (Table S5 and S7 and Text S1). Although the genomes of these organisms
also encoded target-specific resistance genes such as the subclass B2 beta-lactamase,
the more general pumps and transporters likely enhanced their ability to flourish after
antibiotic treatment.

Previous studies have utilized data from 16S rRNA gene amplicon sequencing or
read-based metagenomics of the human microbiome to predict life events and disease
states of the human host using machine learning or other modeling techniques (52, 53).
However, read-based metagenomics lacks resolution at the genomic level, and, due to
strain-level differences in antibiotic resistance (54), taxonomy data from marker gene
studies cannot be used to predict how particular organisms in a community will
respond to antibiotics. Here, for the first time, we utilized the data obtained by
reconstructing genomes from metagenomes to make predictions about the future
states of individual gut microbes. This has tremendous potential for application in the
fields of medicine and microbial ecology. For example, such a model can be used
before administering drugs to a patient to verify that a particular combination of
antibiotics will not lead to overgrowth of an undesirable microbe. Our report serves as
a proof of concept for this application of machine learning used in conjunction with
genome-resolved metagenomics to derive biological insight.

MATERIALS AND METHODS
Sample collection, sequencing, assembly, and gene prediction. Fecal samples were collected

from 107 infants that resided in the neonatal intensive care unit (NICU) at the Magee-Women’s Hospital
in Pittsburgh, PA, during the sampling period. Briefly, DNA was extracted using a PowerSoil DNA isolation
kit (Mo Bio Laboratories, Carlsbad, CA) and sequenced using an Illumina HiSeq platform. Details on
sample recovery, extraction, library preparation, and sequencing have been previously reported (55–57).
Using default parameters for all the programs, the reads were trimmed with Sickle (https://github.com/
najoshi/sickle), cleared of human contamination following mapping to the human genome with Bowtie2
(58), and assembled with idba_ud (59). Additionally, idba_ud was used to generate coassemblies for each
infant by simultaneously assembling all the samples belonging to the infant. Prodigal (60) run in the
metagenomic mode was used for gene prediction.

Genome recovery and calculation of relative abundances. For each infant, reads from all samples
from that infant were mapped to all individual assemblies from that infant as well as to the coassembly
for the infant using SNAP (61). Coverage of scaffolds was calculated and used to run concoct (62) with
default parameters on all individual assemblies and coassemblies. To remove redundant bins, all bins
recovered from each infant were dereplicated using dRep (63) v0.4.0 with the following command: dRep
dereplicate_wf--S_algorithm gANI -comp 50 -con 25 -str 25 -l 50000 -pa 0.9 -nc.1.

Using Bowtie2 (58), the reads from each sample were mapped to the set of genomes that were
recovered from that particular infant. The read mapping output files were used to calculate the average
coverage of each genome in each sample, and the coverage values were converted to relative abun-
dance values by utilizing the read length, total number of reads in the sample, and genome length.

iRep calculation. For each sample, a set of representative genomes was first chosen from the
complete collection of dereplicated genomes. First, all genomes were clustered at 98% average nucle-
otide identity (ANI) using dRep (63). A pangenome was then generated for each of these clusters using
PanSeq (64), creating a list of fragments representing the entire sequence space of each cluster. All
pangenomes of all clusters were merged, and reads from all samples were mapped to the resulting
pangenome set using SNAP (61). By analyzing the coverage of all fragments in the pangenome set, the
breadth of each genome in each sample was calculated (number of genome fragments �1 � coverage/
total genome fragments). Genomes with less than 85% breadth were removed from analysis. For all
remaining genomes, the genome from each cluster with the highest breadth was added to that sample’s
representative genome list.

Next, reads from each sample were mapped to its representative genome list using bowtie2 (58)
default parameters. iRep (39) was run on the resulting mapping files using default parameters and
without GC correction. Only values that passed iRep’s default filtering and were �3 were considered for
analysis.

Annotation. The amino acid sequences of genes predicted by the metaProdigal gene finding
algorithm (60) were searched against Resfams (29), an antibiotic resistance gene-specific profile
hidden Markov model (HMM) database, using the hmmscan function of HMMER v 3.1b2 (65). The
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--cut_ga option was used to set the reporting and inclusion limits as the profile-specific gathering
threshold, and those limits have been manually optimized on a profile-by-profile basis to ensure
Resfams prediction accuracy (29). The Resfams annotation output and the coverage of each scaffold
that had a hit to a Resfams profile were used to generate sample resistance gene summaries. Each
sample resistance gene summary (see Table S8 in the supplemental material), which represents the
antibiotic resistance potential of a particular infant gut microbiome at a particular point in time,
displays the counts per million reads (CPM) for each of the 170 antibiotic resistance gene families
in the Resfams database. Additionally, genome resistance gene profiles that indicated the count of
each resistance gene were developed for each genome (Table S5). Information about the database,
including descriptions of the antibiotic resistance genes represented by each accession code, is
available at http://www.dantaslab.org/resfams/.

To gather general metabolism data, all binned sequences were searched against the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (42) HMMs and the results were parsed for genome profiling. This
resulted in a KEGG metabolism profile for each organism that displayed the fraction of each KEGG
module encoded by that genome (Table S9).

Statistical and computational analysis. To evaluate the effect of feeding regimen, delivery
mode, gender, maternal antibiotics, and the infant’s current antibiotic therapy, three cross-sectional
PERMANOVA (66) tests were performed for weeks 2, 4, and 6 using the adonis2 function of the vegan
package in R (67). For each infant, the first sample of each week was identified and the resistance gene
summary of that sample was included in the PERMANOVA. If antibiotics were being administered on the
day of sampling (which also indicates a current disease diagnosis), the infant was labeled as currently
receiving antibiotics. Infants that were exclusively fed breast milk and infants that were given breast milk
at any point were both classified as receiving breast milk. The Bray-Curtis dissimilarity metric was used
and 9,999 permutations were performed to assess the marginal effects of the terms. The factor revealed
to correspond to significant differences in antibiotic resistance gene content (P � 0.05) was selected for
continued analysis. To identify antibiotic resistance genes associated with either formula feeding or
breast milk feeding during the weeks indicated by the PERMANOVA results, the infant’s diet was used to
classify sample resistance gene summaries using random forest models (68). Mann-Whitney U tests were
performed on Resfams genes that had feature importance scores above 0.07 in the random forest model,
as calculated by the Gini importance metric. Genomes containing resistance genes significantly associ-
ated with a particular feeding type, along with genomes of the same species lacking these genes, were
further investigated. The ribosomal protein S3 (RPS3) genes for each genome were identified using
rp16.py (https://github.com/christophertbrown/bioscripts/blob/master/bin/rp16.py). The RPS3 nucleo-
tide sequences were aligned with MUSCLE (69) using default parameters, and a maximum-likelihood
phylogenetic tree was built with RAxML (70). Pairwise Pearson correlations of Resfams data with KEGG
modules within these genomes were calculated.

The Pearson correlation of the mean replication index (iRep) value for a sample and the sample’s total
resistance gene content was determined for samples collected within 5 days following antibiotic
treatment. The rates of replication of organisms harboring antibiotic resistance genes were compared to
those of organisms lacking resistance genes of the same category. All P values were subjected to
Bonferroni correction for multiple testing.

Infants from whom a sample was taken both before and after a post-week antibiotic treatment were
identified, and the before-treatment and after-treatment samples were selected (no samples were
available from the period prior to the time at which the empirical antibiotics were administered during
the first week). Genomes from the selected samples were identified and labeled as either increasing or
decreasing in relative abundance from the preantibiotic sample to the postantibiotic sample. Using
scikit-learn (68), development of a machine learning model to predict the direction of change in relative
abundance for each genome based on its Resfams and KEGG metabolism data was attempted, and yet
an adequate model could not be developed, presumably due to variations in the ways in which
organisms respond to different antibiotic combinations. Therefore, the data set was narrowed to include
the six infants that received either cefotaxime or cefazolin (both cephalosporin antibiotics) in conjunction
with vancomycin. Seventy percent of the genomes obtained from these infant samples were used for
training, 15% were used as a validation set for model improvement, and 15% were held out as a final test
set. Several attempts to improve model performance through algorithm choice, feature engineering, and
parameter tuning were applied, and the model that exhibited the best results with regard to precision
and recall was selected. This model was then used to make predictions for the final test set. Each feature
constructed for the model was a principal component of the Resfams and KEGG metabolic data, and the
genes/modules contributing most strongly to each of these principal components were identified. The
tendency of each of the genes and modules to occur in the increased-abundance class was calculated
by adding �1 to the gene’s mean value in the increased-abundance class divided by its mean value in
the decreased-abundance class.

Data availability. The dataset used was comprised of 597 previously reported samples (55–57) and
305 new samples. These samples are available at NCBI under accession number SRP114966. The code for
the analysis, along with all the data and metadata used in the analysis, is hosted at https://github.com/
SumayahR/antibiotic-resistance.
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