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Abstract: (Pro)renin receptor (PRR) is the recently discovered component of the renin- 
angiotensin-aldosterone system (RAS). Many organs contain their own RAS, wherein PRR 
can exert organ-specific localized effects. The Binding of prorenin/renin to PRR activates 
angiotensin-dependent and independent pathways which leads to the development of phy
siological and pathological effects. Continued progress in PRR research suggests that the 
upregulation of PRR contributes to the development of hypertension, glomerular injury, and 
progression of kidney disease and inflammation. In the current review, we highlight the 
function of the PRR in renal inflammation in pathophysiological conditions. 
Keywords: prorenin receptor, renal inflammation, hypertension, diabetes, renin-angiotensin 
system

Introduction
Renin and prorenin were thought of as proenzymes, but recent evidence suggests 
that they also could act as hormones as they bind to cellular targets and mediates 
physiological actions.1,2 Binding of renin/prorenin to PRR has been shown to 
increase the catalytic activity of renin by about four- to fivefold and induce a signal- 
transduction cascade leading to vasoconstriction, sodium, and water reabsorption, 
cell growth, proliferation, and inflammatory responses.3–5 It is expressed in almost 
all of the body tissues including smooth muscle, kidney, liver, brain, testis, lung, 
heart, and adipose tissue,3,6,7 and activation of PRR has been linked to upregulation 
and activation of mitogen-activated protein kinases (MAPKs) and extracellular 
signal-regulated kinases (ERK).8

Expression/Signaling of (Pro)Renin Receptor (PRR) 
in the Kidney
(Pro)renin receptor (PRR), a new member of the renin-angiotensin system (RAS) 
encoded by ATPase H(+)-transporting lysosomal accessory protein 2 (ATP6AP2) 
was first cloned in mesangial cells.2 Full length PRR is a 350-amino acid protein 
(Figure 1) with a single transmembrane domain consists of four different domains 
namely, N-terminal signal peptide, a large extracellular domain, a signal transmem
brane domain, and a short cytosolic domain.7 The extracellular domain can be 
cleaved to soluble PRR (sPRR) which is secreted into the blood and urine.9 Binding 
of sPRR to prorenin leads to the generation of angiotensin II (Ang II) and mediating 
the effects of renin/prorenin.10,11 The cytoplasmic domain complexed with 
V-ATPase is involved in lysosomal acidification12 and is independent of prorenin/ 
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renin binding to PRR13 (Figure 1). Recent studies reported 
that PRR acts as an adaptor protein between the Wnt 
receptor and V-ATPase complex, resulting in activation 
of the Wnt-β-catenin signaling pathway which regulates 
physiologic embryonic development and also pathological 
disease14,15 and deletion of PRR during embryogenesis 
caused pronounced proteinuria, renal failure, and 
death.16,17

In the kidney, PRR is mainly expressed in podocytes, 
mesangial cells, proximal and distal renal tubules.2,7,18 

Depending on the form of PRR, actions can be either 
Ang II-dependent or independent. Activation of full length 

PRR and soluble PRR (sPRR) mediates angiotensinogen 
cleavage, binds and activates prorenin/renin, and contri
butes to its Ras-dependent effects.19,20 Independent of Ang 
II, PRR activates mitogen-activated protein kinase 
(MAPK)-extracellular signal-regulated kinase (ERK)21–23 

signaling pathway which induces proliferation and activa
tion of inflammatory and fibrotic molecules including 
transforming growth factor β (TGF-β), plasminogen acti
vator inhibitor-1 (PAI-1), IL-1β, nuclear factor-ҡB (NF- 
ҡB) and COX-2, contributing to kidney dysfunction.24

PRR is involved in Ang II production and intracellular 
signaling. Activation and overexpression of PRR in 

Figure 1 (A) Biology and signaling of (pro)renin receptor. Representative schematic organization. (B) (Pro)renin receptor (PRR) signaling pathways. Activation/upregulation 
of PRR induces kidney damage via ERK1/2, MAPK, NF-ҡB, TNF-α pathway.
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podocytes18 contribute to the slow progressive glomerular 
sclerosis, increases cell albumin permeability, and autophagy 
causing structural and functional abnormalities.16,18,25 

Activation of ERK1/2 and PI3K-AKT signaling pathway 
by PRR plays a significant role in autophagosome develop
ment, induction of cell apoptosis, and organ damage.26 PRR 
contribution in Ang II generation and RAS activation is 
a significant step in kidney damage.27 In Goldblatt’s hyper
tensive model PRR is increased in the clipped kidney, leading 
to Ang II formation in distal nephron segments, distal tubular 
sodium reabsorption, inflammation, and development of 
hypertension.6 A novel pharmacological inhibitor of PRR 
successfully attenuated the RAS-mediated increase in blood 
pressure.28,29 PRR knockdown in the salt-sensitive hyperten
sion model also decreases Ang II formation.30

Role of PRR in Renal Dysfunction 
and Inflammation
The kidneys play a crucial role in regulating blood pres
sure, and salt and water balance. The PRR in the distal 
nephron is particularly of interest due to its role in stimu
lating sodium reabsorption and the development of 
hypertension.31 The impact of PRR on the kidney is evi
dent from the fact that the expression of PRR is increased 
in different hypertensive models6,32 and the administration 
of PRR antagonists attenuated the hypertensive response 
and renal damage.28

PRR contributes to renal inflammation and fibrosis is 
a gradual process involving the RAS system in the devel
opment of hypertension and end-stage kidney damage.6,33 

Hypertension damages the glomerular filtration barrier, 
which interferes with the filtration of circulating angioten
sinogen, prorenin, renin, angiotensin I, and Ang II and 
their uptake in the proximal tubules. Recent evidence 
indicates that uptake of major components of the circulat
ing RAS, including prorenin, may contribute to high levels 
of RAS proteins in the kidney. In the glomerulus, PRR is 
involved in the stimulation of tyrosine phosphorylation, 
leading to activation of the mitogen-activated protein 
kinase (MAPK)2 and subsequent increase in the expression 
of p-ERK, p-38, and p-JNK.34 PRR is also credited to 
increase the expression of transforming growth factor-β 
(TGF-β) which was inhibited by blocking the prorenin 
receptor suggesting an independent role of PRR in renal 
damage.35,36 In the Goldblatt 2-Kidney 1-clipped hyper
tensive model, we found that PRR expression is upregu
lated in the clipped kidney and activates the MAPK/ 

ERK1/2 signaling pathway which in turn increased the 
expression of COX-2, NF-ҡB, and production of the 
inflammatory factors IL-1β, tumor necrosis factor -α 
(TNF-α), and monocyte chemoattractant protein-1 (MCP- 
1). Targeted knockdown of PRR in the clipped kidney 
attenuated the expression of IL-1β, TNF-α, COX-2, and 
NF-ҡB indicating the intricate and direct interaction 
between PRR and renal inflammation.5

PRR also plays an important role in is renal dysfunc
tion associated with diabetes. Diabetic nephropathy is 
characterized by increased renal inflammation and fibrosis 
and is strongly associated with glomerular injury leading 
to the development of the end-stage renal disease.37 The 
pathophysiology of diabetic nephropathy involves multiple 
mechanisms including the RAS dependent38 and indepen
dent mechanisms.39 Inflammatory cytokines, including IL- 
1, IL-6, and IL-18, and TNF-α, are potentially involved in 
the development and progression of diabetic nephropathy. 
In vivo and human, studies confirm the role of RAS in the 
development and progression of kidney disease in 
diabetes.40,41 Studies have shown that the expression of 
PRR was significantly increased in the invivo and invitro 
diabetic models18,42 along with the upregulation of oxida
tive stress.43 The expression and activity of prorenin and 
PRR are significantly increased in the diabetic kidney44 

and together contribute to the fibrosis, cellular inflamma
tion, proliferation, and apoptosis, and progression of dia
betic nephropathy.24,39,45 These claims are supported by 
the research that shows that blockade of PRR in vivo 
reduced albuminuria and renal production of the inflam
matory cytokines TNF-α and IL-1β39 and attenuated the 
development and progression of diabetic nephropathy.46–48 

These changes were independent of changes in renal pro
duction of Ang II suggesting an independent and additive 
contribution of PRR in the development of renal inflam
mation in diabetes.

Upregulation of PRR expression in the kidney has been 
demonstrated in the streptozotocin-induced diabetic model 
where it augments the expression of inflammatory cytokines 
including TNF- α and interleukins,39 which activates second 
messenger systems, transcription factors, growth factors 
resulting in significant renal damage in diabetes.49 PRR 
mediated upregulation of cytokines also has been shown 
to induce apoptosis and alterations in endothelial perme
ability contributing to renal damage.50,51 The upregulation 
of PRR in diabetes also affects the structure and function of 
podocytes as evident with the reduction in podocin and 
nephrin through the Wnt3a-β-catenin-snail signaling 
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pathway.18 Concurrent studies also showed that the PRR 
and cytokines prevent the formation of F-actin fibers result
ing in the restructuring of the intercellular junction causing 
the loss of endothelial permeability, leading to podocytes 
injury.52,53 Down-regulation of PRR attenuated the inflam
mation and improves the F-actin expression and 
reorganization,18,24,26 indicating the direct role of PRR in 
the pathophysiology of diabetic kidney disease.

Role of Soluble PRR (sPRR) in Renal 
Dysfunction and Inflammation
Full length PRR can be cleaved to a soluble form of PRR 
(sPRR). The sPRR can either be retained inside cells and/ 
or secreted into plasma, urine, and extracellular 
space.32,54 Evidence from the literature suggests that the 
upregulation of sPRR reflects the activation of RAS and 
direct stimulation of MAPK/ERK1/2 signaling pathway 
which may lead to renal dysfunction.32,55 Recent studies 
have identified a more specific role of sPRR in renal 
dysfunction which is demonstrated by the fact that sPRR 
activates the aquaporin 2 (AQP-2) channel in the distal 
nephron via frizzled-8 and β-catenin signaling pathway 
and increases water reabsorption.11,56 Another study high
lighted the role of sPRR in sodium reabsorption where 
sPRR upregulates epithelial sodium channel (ENaC) in 
the distal nephron and increases sodium reabsorption.57 

These findings indicate the role of sPRR in sodium and 
water homeostasis and the development of subsequent 
renal dysfunction.58 sPRR also promotes inflammation, 
adhesion, and endothelial dysfunction via NOX-4/NF- 
ҡB signaling pathway and increases the expression of 
cytokines including IL-6, IL-8, vascular cell adhesion 
protein 1 (VCAM-1), and Intercellular Adhesion 
Molecule 1 (ICAM-1).59 These inflammatory processes 
are gradual and may involve the RAS system.60 

Significance of sPRR in renal fibrosis is demonstrated 
by Xie et al where sPRR is shown upregulates fibronectin 
in human renal proximal tubular cells via activation of 
AKT/β-catenin/snail signaling pathway and inhibition of 
sPRR by selective S1P inhibitor PF429242 attenuated 
expression of fibronectin indicating an important role 
and identifying sPRR as a novel therapeutic target in 
renal fibrosis.61 In addition to the renal effects, sPRR 
plays a role in the impairment of the sympathetic nervous 
system and vascular tone.9,62 In obese mice induced with 
sPRR, blood pressure was increased due to elevation of 
leptin and sympathetic activation.63 In obesity-related 

hypertension sPRR has shown to impair the morphology 
of adipose tissue contributing to the inflammatory 
process.9 These effects were attenuated by knockdown 
of PRR suggesting that plasma leptin mediates the sPRR 
effect on sympathetic tone.9,64 These mechanisms may be 
completely independent of the RAS system. However, 
taken together the above studies demonstrate that renal 
PRR plays a prominent pathophysiological role in renal 
dysfunction and inflammation.

Summary
In conclusion, the studies have demonstrated that PRR 
plays a significant role in the development of renal dys
function, inflammation, and fibrosis. While the association 
between PRR and the inflammatory process is complex. 
These findings identify PRR as a potential therapeutic 
target in the management of renal complications in patho
logical disease.
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