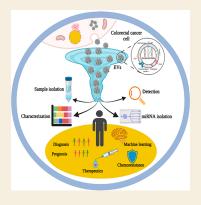


pubs.acs.org/biomedchemau

Importance of Extracellular Vesicle Derived RNAs as Critical **Colorectal Cancer Biomarkers**

Brateen Datta, Debashish Paul, Tina Dey, Suchetan Pal,* and Tatini Rakshit*

Cite This: ACS Bio Med Chem Au 2022, 2, 222-235



ACCESS I

III Metrics & More

Article Recommendations

ABSTRACT: Colorectal cancer typically begins from a nonmalignant polyp formation in the large intestine that, over time, develops into colorectal cancer. The growth of benign polyps can be checked if detected in the early stages of the disease. Doctors usually recommend colonoscopy to average and high-risk individuals for colorectal cancer screening. Elevated carcinoembryonic antigen (CEA) is a broadly used biomarker for colorectal cancer. The genetic and epigenetic alteration of genes such as p53, BRAF, APC, and PIK3CA is also correlated with colorectal cancer in various clinical studies. In general, tissue biopsy is most frequently used for colorectal cancer diagnosis, but the whole tumor heterogeneity cannot be accessed by this technique. Furthermore, such a highly invasive technique is not suitable for repeated testing. Recently, extracellular vesicles (EVs), lipid bilayer enclosed sacs secreted from colorectal cancer cells, are emerging as a diagnostic tool for colon cancer detection. The major advantages of using EVs for colon cancer diagnosis are (i) EVs can be isolated in a noninvasive manner from the body fluid and (ii) EV incorporated cargoes (mostly RNAs) reveal various aspects of colorectal cancer. EV-RNAs are also implicated in tumor invasion and influence the

immune system for the further spread of tumors. However, due to the lack of standardized EV detection strategies, diagnostic applicability is limited. Herein, we review the recent literature on the pathobiological dependence of colorectal cancer on EV-RNAs. Further, we present the advantages of identification and characterization of EV-RNAs to explore the connection between differential expression of extracellular vesicle incorporated RNAs and colorectal cancer. How this approach may potentially translate into point of care colorectal cancer diagnostics is also discussed.

KEYWORDS: extracellular vesicle, noncoding RNA, miRNA, biomarker, colorectal cancer diagnosis

1. INTRODUCTION

Colorectal cancer is the second most deadly cancer in women and the third most prevalent form of cancer in men. According to global cancer statistics, almost 576,858 people died in 2020 worldwide due to colorectal cancer (www.miskawaanhealth. com). In a consensus report published by the Indian Council of Medical Research (ICMR), per 100,000 patients, the annual incidence rate (AAR) of colon cancer is 4.4 in men and 3.9 in women. Though it is a dangerous form of cancer, it is treatable to check further progression if detected early. So, colorectal cancer staging is very significant if overall survival (OS) is concerned. Traditionally, the colonoscopy screening technique is the gold standard suggested for high-risk individuals. One of the advantages of colonoscopy is the ability to perform a biopsy and subsequent pathological inspection of the tissue. Although this is an established detection method, due to high tissue invasiveness, such a recurring biopsy may not be feasible.² Generally, it is not recommended for older people due to complications. The carcinoembryonic antigen (CEA) is extensively used as a molecular biomarker for colorectal cancer but lacks enough sensitivity and specificity to be used as a prognostic biomarker

for colorectal cancer.3 Therefore, there exists an unmet need for alternative noninvasive detection methodologies to be developed for colorectal cancer diagnosis.

Extracellular vesicles (EVs) are double-layer bound lipid sacs of size 30-10000 nm, excreted from almost all cells in different biological fluids, and potentially take part in cell-cell communication.⁴ EVs are majorly classified into exosomes (30-100 nm), microvesicles (100-1000 nm), apoptotic bodies (50-5000 nm), and large oncosomes (1000-10000 nm) (Figure 1). EVs can carry the pathophysiological signature of the parent cell. The incorporated EV moieties have earned much attention as critical biomarkers for disease diagnosis. Moreover, the intrinsic properties of EVs to cross immunological barriers and high stability in blood circulation make them promising drug delivery vehicles. 5,6 Rose Johnstone first

Received: September 26, 2021 Revised: February 3, 2022 Accepted: February 3, 2022 Published: March 1, 2022

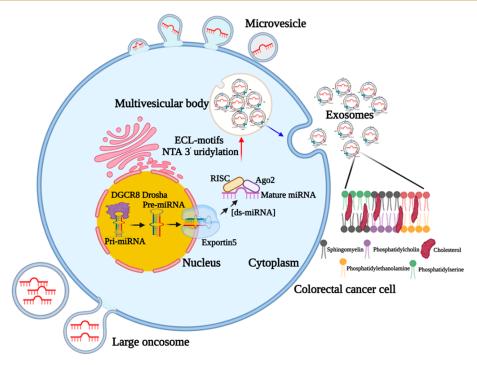


Figure 1. Biogenesis and sorting process of miRNA inside the EVs (exosomes, macrovesicles, and large oncosomes are shown). miRNA biogenesis comes with a series of molecular events.⁶ At first, pri-miRNAs are trapped by RNase III enzyme Drosha and the DiGeorge Critical Region 8 (DGCR8) RNA binding protein, and the pre-miRNA display a stem-loop structure and are exported to the cytoplasm by Exportin-5. After that, dsRNA is formed by cleaving the pre-miRNA loop and 5'/3' nucleotide. One of the loops is then attached with RNA-induced Silencing Complex (RISC), which have members of the Argonaute (Ago) protein family.⁶ Specific Exo motifs allow protein recognition and exosome sorting.

introduced the term "exosome" to describe the small-sized lipid membrane-bound vesicles secreted in the extracellular space. However, the existence of EVs was first reported in two different reports published in 1983.7 The creation of several societies (ISEV, ANZSEV, MISEV, etc.) with the emergence of various dedicated journals (EJEV, JEV, EVNCA, etc.) in this field and the publication of over 14,000 research articles have recognized the potential of EVs in the almost four decades since EVs were discovered. It is well established that EVs mostly incorporate various proteins, sugars, lipids, and various genetic materials (DNA and RNAs) protected from extracellular nucleases and proteases. Whole-genome sequencing of EVs revealed that they carry genome sequences for all chromosomes.^{8,9} Solexa sequencing found more than 16 434 DNA fragments in the EVs isolated from human plasma. 10 Studies divulged that EVs also contain high concentrations of mitochondrial DNA as well. 4,10 Apart from EV surface protein biomarkers, recent studies have explored the presence of RNAs incorporated in the EV inner cavity as an emerging biomarker for colorectal cancer. ^{11–13} These EV-RNAs are engaged in altering the normal biochemical pathway to promote cancer formation, and they are involved in epithelial to mesenchymal transformation (EMT) in colorectal cancer. 12 According to many independent studies, intercellular transport of EV incorporated RNAs imparts the functional aspect of recipient cells. Such as EV-loaded let7a, let7b, miR-148, and miR-99a support mammalian reproduction and embryo development in those cells that take up EVs. 14 The proteogenomic profile of EVs plays an important part in altering the cancer-immune microenvironment. Accordingly, cancer cell-derived EVs facilitate immune escape and cancer metastasis. Moreover, EV incorporated RNA subtype and mutational status exhibit the pathological condition of parent cells. 13

Although differential ultracentrifugation is regarded as the gold standard for EV isolation, unfortunately, there is no standard scalable EV isolation technique available to date. 16 The quantity and quality of extracted RNAs are a concern for researchers during EV incorporated RNA isolation.¹⁷ Although the exact mechanism for the stability of "prone to degradation" RNAs in the nuclease-rich blood is still unknown, it is believed bilayer EV membrane protects incorporated RNAs from degradation.¹⁷ Till now, the critical roles of several EV incorporated RNAs have been discovered for colorectal cancer. 15 It has been apparent that the EV-RNAs are not restricted to cellular pathophysiological function. Any specific alternation in the sequence information can aid cancer progression.¹⁸ Such alterations can be instigated as hallmarks of colorectal cancer. The subtype and heterogeneity of RNAs depend on the pathophysiological condition of the EV secreting parent cell.4 A range of mechanisms explains the strategy of EV-RNA to escape endosomal degradation pathways. During the specific and nonspecific interaction of EV between different cells, the cellular endocytic pathway makes the EVs release incorporated RNAs along with other cargoes to recipient cells. 19 In this manner, EV-RNA alteration not only helps in local cancer progression but acts as a transporter for distant cancer metastasis.¹⁹

In this Review, the key mechanism of RNA packaging inside EV and the role of EV incorporated RNAs in colorectal cancer immune regulation are discussed. In addition, EV-RNA content, characterization methods are critically analyzed. Further, the prospect of EV-RNA as a potential diagnostic and prognostic biomarker for colorectal cancer is discussed in detail.

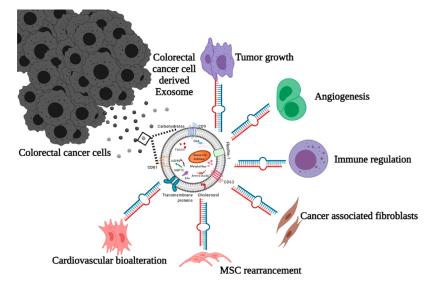
2. INTRA-EV-RNA SORTING

Cell-free nucleic acids secreted from the colorectal tumor cells can represent the metastatic potential of the colorectal tumor. The genetic and epigenetic changes in different circulating nucleic acids are examined as a potential noninvasive colorectal cancer biomarker. The statistically significant increased concentration of CA 19-9, TIMP-3, and CA72-4 cell-free nucleic acids appear to be a sensitive colorectal cancer biomarker.²⁰ Further, the epigenetic alteration of EY4A, TAC1, and SEPT9 circulating nucleic acids represents the premalignant metastatic potential of colorectal cancer. 21,22 A significant increase in circulating mRNA concentrations of CEA, E-CAD, and CD45 is observed in high-risk colorectal cancer.²⁰ Therefore, these altered circulating nucleic acids can be used as diagnostic and prognostic biomarkers for the early detection of colorectal cancer. However, the expression level of these circulating nucleic acids varies from one patient to other, which restricts the standardization of a particular detection method. Furthermore, bloodborne circulating exonuclease can also degrade the freely floating nucleic acids. For these reasons, double membrane-bound EV incorporated nucleic acids are an ideal selective biomarker in terms of increased stability of the biomarker of interest.

The biogenesis of EVs involves the formation of a double invagination in the plasma membrane forming intraluminal vesicles within multivesicular bodies (MVB).⁴ The fusion of MVB with plasma membrane ultimately releases the EV into the extracellular space.^{4,20} EVs are broadly classified into ectosomes and exosomes.²¹ Here we mentioned all the subtypes as EV. During the biogenesis, the cell's endosomal sorting complexes package different pools of RNA based on the microenvironments and pathophysiological conditions of the cells. Other than carrying mRNA, rRNA, and tRNA, EV also contains different types of noncoding RNAs like miRNA, lncRNA (long noncoding RNA), circular RNA, piRNA (PIWI Interfering RNA), etc.^{22,23} The bilayer lipid membrane of EVs protects the incorporated RNAs from ribonuclease-mediated degradation. That makes EVs a better biomarker than circulating nucleic acids in early cancer detection.⁴ However, sometimes RNA degradation fragments have also been detected in EVs.²²⁻²⁴

Following transcription in the nucleus, RNA molecules associated with various RNA binding proteins (RBP) follow the cytoskeleton and microtubular networks to be incorporated inside the EVs. 25,26 Furthermore, interfering RNA species like miRNA, siRNAs, etc. are processed by endogenous enzyme machinery components like Dicer and Drosha.²⁷⁻³⁰ The miRNA-induced silencing complex (RISC) was also found to contribute to miRNA sorting (Figure 1). RNA sequencespecific RBPs like ALIX, AGO2, MVP, etc. play an important role in RNA loading, ^{27,31.32} RBPs like heterogeneous ribonucleoprotein A2B1 (hnRNPA2B1) and scaffold-attachment factor B1 (SAFB) control the incorporation of noncoding interfering RNAs.^{33–35} According to Kosaka et al., sphingomyelinase plays an important role in miRNA sorting in EVs.³⁶ The exact function of several noncoding RNAs (ncRNA) is still not fully understood yet.³⁷ Nevertheless, few studies indicated the contribution of specific RNA binding proteins in ncRNA sorting inside EVs. For example, Shurtleff et al. reported that YBX1 RBP protein regulates the incorporation of different ncRNAs inside human embryonic

HEK293T derived EV.³⁷ Further, they showed the overexpression of YBX1 in the case of cancer.³⁷


Though several mechanisms have been proposed based on the RNA incorporation inside the EV, the proper mechanism is still poorly understood. 27–32 Different post-translational modifications in RBPs may initiate miRNA import machinery inside EVs. 38 Diaz et al. reported the function of La protein modification in the incorporation of miR-122 inside breast cancer MDB-MB231 derived EVs. 39 In another report, Mukherjee et al. reported the role of Hu protein in the extracellular export of miR-122 through EVs. The EV mediated export of miR-122 depends on the post-translational ubiquitinoylation level of Hu protein in starved human Huh7 hepatic cells. 40 It has been reported that the base sequence information in RNA also determines the incorporation based on hydrophobic modification and lipid components of the EV membrane. Bolukbasi et al. proposed that the specific sequence at the 3' UTR (Untranslated region) of mRNA decides the loading into EV.41 Molecular modification of RBPs like phosphorylation, ubiquitylation, etc. also regulates the incorporation of RNAs inside EVs. 38-40 Other than that, the cell type, cell origin, and pathophysiological condition of cell also determine the heterogeneity of EV RNA content.4

The translational regulation by EV incorporated miRNAs mainly depends on the base sequence information on the miRNA. 42-44 A complete complementarity with the target sequence leads to activation of AGO-dependent translational silencing and target mRNA decay. However, partial complementarity with the target sequence, mainly at the 3' untranslated region leads to blockage of target mRNA without degrading it. 42-44

3. EV-RNA MEDIATED INTERCELLULAR COMMUNICATION

Cell communication is an essential step in transferring information to coordinate the homeostasis and development within an individual. EVs are mainly engaged in the contact-independent manner of cell communication. According to reports, EV enclosed RNAs facilitate the exchange between cells to participate in efficient cell communication.

To improve the understanding of EV-RNA-based communication, The Extracellular RNA Communication Consortium (ERCC) was initiated in 2013 (https://commonfund.nih.gov/ exrna). Since then, the ERCC has contributed significantly to understanding the biology of EV-RNA, biomarker identification, proper isolation, and characterization in the advancement in the EV field. EV incorporated RNAs are found to play an important role in immune regulation.⁴⁴ Yi et al. reported that the unidirectional transfer of EV-miRNA from activated T cells to APCs (antigen presenting cells) regulates the cell-mediated immunity to a certain extent.⁴⁵ According to reports, changes in the cellular microenvironments such as pH, oxygen level, and inflammation guide EV-RNA trafficking between cells.¹⁴ Seminal plasma secreted EV incorporated noncoding RNAs like let7-a, miR-148a, miR-375, and miR-99a have an important part in the genital immune response.¹⁴ Not only the immune response but also EV-associated RNAs are also associated with human reproduction and embryonic development. Besides transferring infectious RNA molecules from disease cells to healthy cells to manifest disease progression, EV incorporated RNAs also function to prevent diseases like cardiovascular and atherosclerosis. 4,46 Murine cardiac progenitor cell derived EVs contain miR-21-5p and miR-22a that

Figure 2. Crucial role of exosomal miRNAs in tumor initiation and development are presented. Colorectal cancer cells can transfer miRNAs through the exosomes to the nearby cells. These exosomal RNAs can control cell proliferation, invasion, and metastasis by orchestrating their downstream targets.^{29,73}

facilitate cardiac fitness. 47,48 In addition, EV-RNAs actively participate in cancer development and cell apoptosis by controlling the gene expression pattern. 46 Not only that, the horizontal transport of EV incorporated miRNAs promotes chemoresistance by regaining stem cell properties.⁴⁹ For example, horizontal transfer of miR-21-5p from the cancer microenvironment to the cancer cell incites the phosphorylation of growth-inducing factors such as Akt and Bad, and leads to increased resistance against the chemotherapeutic drug oxaliplatin.⁵⁰ EV-miR21 and EV-miR155 are capable of targeting the cell cycle regulator BRG1 to increase the metastatic potential of colorectal cancer. 50 The development of a vascular network through angiogenesis is critical to cancer cells for growth and nutrition.²⁹ Concerning the explicit role of angiogenesis in cancer, parent cell-secreted RNA containing EVs has an important role to play. In a complex angiogenic network, KLF2 is a transcription regulator for angiogenesis.^{29,50} EV-miR25-3p targets and repress KLF2 activity to mediate angiogenic function throughout the colorectal cancer microenvironment.50

Collective shreds of evidence showed the cross-talk of biological information through EV-RNAs, enabling cellular coordination. As a result, EV not only provides a fertile medium for cancer development but facilitates other essential pathophysiological functions (Figure 2).4 The cell-selective biochemical properties of EVs make them an ideal candidate to validate for a specific disease. Other than cell-specific EV membrane composition, the EV incorporated transcriptome reflects the pathophysiological properties of the parent cell. Mainly, based on deep sequencing of the EV transcriptome and characterization of EV membrane tetraspanins, the organ specificity of EVs is inferred.⁴ Considering all the facts, EV incorporated RNAs can be considered as an efficient natural messaging "app", which may not be the most popular in the current time but can be in the future, as research in this particular field grows.

4. CHARACTERIZING EV-RNA CONTENT

The structural chemistry of free RNAs makes them unstable and susceptible to nucleophilic attack; hence, scientists find EV bound RNAs, free from breakage, to be more attractive as disease diagnosis biomarkers.³⁷ Though the RNA content of EVs mainly depends on the subpopulation and pathophysiological condition, recent studies revealed that storage, isolation, and characterization strategies also lead to bias in the reproducibility of EV-RNA content characterization.⁵¹ Nevertheless, both serum and plasma are excellent bioliquid sources for EV incorporated RNA detection. However, the exact reason for the content difference in these two, is still unknown.⁵² In the current scenario, mainly RT-PCR and microarray-based assays are utilized to identify the presence of a particular RNA inside EVs.⁵³ Yet, unknown RNA molecules usually remain undetectable. In addition to that, due to high sequence similarities among the EV-RNAs, there is a high chance of cross-hybridization.⁵⁴ Furthermore, due to a deficiency in total control over huge EV-RNA pools, the microarray method offers major disadvantages in EV-RNA characterization.⁵⁴ Next-generation sequencing approaches make it possible to overcome such limitations. 55 This method is not restricted to any prior understanding of the genome framework. In a short turnaround time, it offers high sensitivity. 53,56 Many public databases are available based on EV incorporated RNA sequencing. ExoRBase hosts EV incorporated RNA sequence information for both healthy and unhealthy individuals (www.exorbase.org). Presently, information on thousands of sequences for EV-RNA is processed in EV-RNA Atlas under the ERC program. Further, EV-RNA Atlas analyze recently published data using various software and sort into online databases to serve the research community (www.exrna-atlas.org). ExoCarta has an extensive EV-RNA molecular signature, is generally used in understanding the contribution of parent cells to EV-RNA type (www.exocarta.org).⁵¹

The immense advantages of RNA sequencing over traditional hybridization-based assays motivate researchers in EV-RNA library construction for extensive deep sequencing. ^{51,56} The library evaluation and cluster analysis value the evaluation of cytological characteristics of EV-mRNA profiles. ⁵⁷ For instance, EV-RNA expressing inflammatory proteins can direct different functional pathways in the immune system. Generally,

Table 1. Summarized List of EV-RNA Characterization Methods

Characterization method	Advantages and		
	Disadvantages		
Microarray	1. At a time, quantification		
Normal EV mRNA extraction	of multiple transcriptomes		
incva extraction	2. Fast and simple		
cDNA 🔏	1. Narrow limit of detection		
cDNA #	2. Not suitable for unknown		
Hybridization Scan	sequence targets		
mRNA extraction	3. Chance of probe cross-		
Colorectal cancer EV	hybridization		
	References: [60,61]		
Quantitative reverse transcription-polymerase chain	Very sensitive detection		
reaction(qRT-PCR)	2. Reduce the contamination		
i (o o o o o o	during the measurement		
	1. Multiplex detection is		
Quantification	limited		
Newwork Order	2. High cost		
Colorectal cancer EV mRNA isolation cDNA synthesis Amplification	3. Amplicon size cannot be		
Primer Ruffer Reverse Oligo ANTES DNA Sequence	monitored		
transcriptase primer polymerase specific	References: [62,63]		
primer			
Quant-iT RiboGreen RNA Assay kit (Thermo Fisher	Less sample volume		
Scientific)	needed		
,	2. Highly sensitive toward		
Quant-iT RiboGreen RNA Assay kit	low concentration		
Concerns the second sec	Sensitivity decreases upon		
Coor Cocken BAA	medium contamination		
Transactions Ordered	References: [64,65]		
Colorectal cancer RiboGreen tagged mRNA			
EV sample	1.4.		
Qubit RNA HS (high sensitivity) assay	1. Accurate		
(Thermo Fisher Scientific)	2. Can detect low RNA		
	concentration		
9	1. Large sample volumes		
Land and a land	needed		
	2. Sensitive towards the		
RNA quantification Qubit fluorometer	presence of DNA		
Colorectal cancer	contamination		
EV sample	References: [66,67]		

Table 1. continued

Characterization method	Advantages and
	Disadvantages
Bioanalyzer Pico chip (Agilent Technologies)	1. Very sensitive
	2. Requires low sample
	volume
	1. Not suitable for small
https://www.ogilont.com	RNA fragment
https://www.agilent.com	References: [53,68]
Against Tocker(sugram	
Next-generation sequencing	Generates a large number
	of reads
	2. Very sensitive
	1. Expensive
Isolated RNA and Library formation Sequencing and	2. Takes huge run time
RNA fragments data analysis	References: [53,69]
Northern blotting	1. Very specific
Tortal Diotting	2. Can be stored for a long
Electrophoresis RNA separation	time
Isolated mRNA	1. Multiple detections is a
from gel to	problem
membrane	2. Time-consuming
Detection Labelled probe	References: [53,70]
incubation	Kelefelices. [33,70]
miRCURY TM LNA array	1. High Specificity
IIIIKCUK I LIVA arrav	1. High specificity
	2 High Sangitivity
PCR kit	2. High Sensitivity
	3. Less sample volume
	3. Less sample volume needed
PCR kit CDNA Data	Less sample volume needed Target sequence
PCR kit CDNA synthesis PCR Data analysis	Less sample volume needed Target sequence information should be
PCR kit CDNA Data	Less sample volume needed Target sequence information should be known
PCR kit CDNA synthesis Isolated RNA PCR Data analysis	3. Less sample volume needed 1. Target sequence information should be known References: [53,71]
PCR kit CDNA synthesis PCR Data analysis	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of
PCR kit CDNA synthesis Isolated RNA PCR Data analysis	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a
PCR kit CDNA synthesis Isolated RNA Microfluidics	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip
PCR kit CDNA synthesis Isolated RNA PCR Data analysis	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume
PCR kit CDNA synthesis Isolated RNA Microfluidics	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume 3. Multiple analyses can run
PCR kit CDNA synthesis Isolated RNA Microfluidics	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume 3. Multiple analyses can run at a time
PCR kit CDNA synthesis Isolated RNA Microfluidics Incubation channel	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume 3. Multiple analyses can run at a time 4. Low LOD
PCR kit CDNA synthesis Isolated RNA Microfluidics Incubation channel	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume 3. Multiple analyses can run at a time 4. Low LOD 1. Complex to pattern
PCR kit CDNA synthesis Isolated RNA Microfluidics Incubation channel	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume 3. Multiple analyses can run at a time 4. Low LOD 1. Complex to pattern 2. Flow rate control is very
PCR kit CDNA synthesis Isolated RNA Microfluidics Incubation channel	3. Less sample volume needed 1. Target sequence information should be known References: [53,71] 1. Integration of experimental setups on a single chip 2. Low sample volume 3. Multiple analyses can run at a time 4. Low LOD 1. Complex to pattern

Illumina (www.illumina.com) and Ion torrent Hiseq platforms are used in analyzing EV-RNA transcriptomics.⁵³ In limited read numbers and differential expression of EV, next-generation sequencing is a real game-changer in characterizing

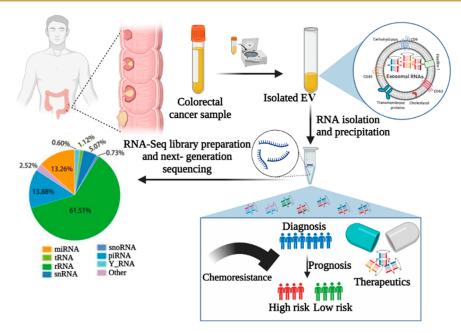
EV-incorporated RNA pools. Many individual reports have described the multiomic study of EVs with a computational approach. The pairwise alignment of an EV incorporated transcriptome with existing RNA sequence information has

exhibited pathobiological insights and differential RNA expression of EVs. 51,59 Although a few articles have already been published in this area, more data sets have yet to be generated with computational analysis of EV composition.

Notwithstanding, the cellular RNA pool is quite different from the EV pool, mainly in terms absence of ribosomal machinery. On in terms of quality and quantity, there is a significant difference in cellular and EV incorporated RNA content. Traditional RNA detection strategies might not be suitable for EV-RNAs. Here, we will discuss different methods of EV-RNA characterization in terms of quality, quantity, and stability in Table 1.

Despite the advantages of various methods, EV research is still in the early stages and needs further advancement.^{73–77} Though "Bioanalyzer" is a popular choice for EV-RNA length profile characterization, it is not specific for RNA; contaminating DNA samples can hamper the quantification.⁷⁸ Pico chip employs sensitiveness toward medium salt concentration, while Quant-iT RiboGreen RNA Assay kit (Thermo Fisher Scientific) is not sensitive toward bioliquids with salt. However, this assay displays sensitivity for phenol-chloroform.⁷⁸ For these reasons, sample pretreatment is essential before any characterization.⁷⁹ At the same time, from a characterization point of view, it is very crucial to differentiate EV incorporated RNAs from cellular RNAs. That being the case, RNases can be applied before the isolation of EV-RNA.^{4,80} Several extraction kits are commercially available to solve the needs. However, extraction of EV-RNA with such commercial kits imposes difficulty in moderate size deep sequencing of EV incorporated lncRNAs.²² Moreover, most assays apply chemical treatment, which substantially increases the purification steps.⁷⁸ In this scenario, precise control over isolation and nanoscale characterization with microfluidics offers several advantages.⁸¹ Ramshani et al. developed a charge inversion-directed microfluidic device. 82 The platform contains two nanocompartments, one for lysing and another for sensing. In the lysing chip, they applied surface acoustic waves to EVs to release incorporated miRNA. Further, they detected released miR-21 on the sensing chip based on the interaction with the membrane fabricated complementary oligonucleotide. 82 The acoustic pressure-controlled microfluidic achieves a LOD score of 1 pM within a turnaround time of 30 min.81 This way, acoustic wave-based isolation and characterization of EV-RNA push all the boundaries in the "separation on chip" detection system. Richards et al. utilized a similar approach for extraction but on an ion-exchange membrane to quantify the EV-miRNA.83 They fabricated a complementary miRNA sequence ion exchange membrane for the sequence-specific hybridization. 83 The application of current through this membrane becomes hampered as more miRNA gets hybridized. This quantifiable alteration of voltage was correlated with miRNA concentration.83 One of the major advantages of this biosensor is the reusability after dehybridizing the bound miRNAs.

Collectively, current knowledge about EVs is limited. Greater scrutiny and much more extensive research are highly needed. Proper validation and standardization of characterization techniques will assuredly support EV transcriptomic research. Emerging CRISPR technology can also be a gamechanger in EV research. The dCas protein not only can empower the CRISPR-based gene regulation but also can enable EV-RNA characterization. Though there are many ifs


and buts with CRISPR, with proper imagination, there might be a chance to characterize EV-RNA differently.

5. EV-RNA: A SECRET PLAYER IN CANCER IMMUNE RESPONSE

The human immune system has several mechanisms to counter against foreign substances. Cancer mutated cells generate different abnormal tumor-associated antigens that are encountered by the immune surveillance system as "nonself". Nonetheless, cancer cells possess certain mechanisms to escape the surveillance system, and when the immune system loses its functionality, it leads to malignancy. Tumor cell-derived EVs play a vital role in evading immune surveillance and transmitting the immune-suppressive message across the tumor microenvironment. Emerging evidence suggests that EV membrane incorporated RNAs can avert such immune responses. Furthermore, cancer-derived EVs can convey death signals to immune cells to bypass the recognition.

According to Takano et al., colorectal cancer cell-derived, EV-miR203 is involved in cellular immunosuppression based on activation of M2-tumor-associated macrophages. 90 EV incorporated miR-203 mainly functions as a communication messenger between tumor and healthy immune cells to increase the proliferation efficiency of cancer cells by evading the cytokine signaling 3 of colorectal cancer and distant organs like the liver. 90 Further, miR889 triggers the expression level of DAB2IP that downregulates the immune infiltration of B cells and CD8+ T cells in colorectal cancer. 91,92 Upregulation of miR-21 in the colorectal exosome downregulates endothelial progenitor cells (ECP) by directly targeting IL-6 R, which results in dysregulation of the thrombus repair process, a prognostic indicator of cancer. 93 Cross-talk between cancer and healthy cells is very common in the development of the tumor microenvironment. Mutant TP53 in colorectal cancer was found to influence macrophages to change into cancersupportive macrophages via exosomal miRNA. Colorectal cancer mutant TP53 secretes miR-1246 incorporated exosomes that interact with nearby macrophages to convert them into "tumor-associated macrophages" (TAM).94 Eventually, these mutated macrophages result in a phenotypic switch to promote epithelial to mesenchymal transformation (EMT) and further secrete tumor responsive factors such as IL-10 and TGF β , contributing to cancer. ⁹⁴ In the context of colorectal cancer, miR 21 and miR155 are also hypothesized to play a major role in TAM formation. 95 The uptake of exosomal miR-141 can lead to the overexpression of wnt/ β catenin signaling pathways to promote EMT.95

Exosomal-miRNA-mediated immune regulation does not always influence cancer formation but impacts tumor suppression associated with immune response regulation in some instances. Specific colorectal cancer cell-derived EV-miR1255b-5p has been found to repress the wnt/ β catenin pathway and contribute to tumor suppression. A certain colorectal cancer cell-derived exosomal miR-486-5p acts as a negative regulator in some transcription factors, associated with growth-promoting receptors like insulin-like growth factors that induce tumor suppression. In line with that, miR-125a-5p downregulates one of the important cellular factors, VEGF, and has been found to diminish the proliferation efficiency in colorectal cells. Furthermore, EV-RNA can trigger an innate immune response by activating toll-like receptors (TLRs). The activation of TLRs is independent of base sequence information. miRNA and other

Figure 3. Colorectal cancer cell derived exosome secretion and isolation using the gold standard ultracentrifugation approach and subsequent RNA isolation and RNA-seq data acquisition and analysis 4,75 for exosomal RNA based clinical applications. Colorectal cancer cell derived EVs are enriched with RNAs (shown in the pie chart, reproduced from ref 77 under the terms of the Creative Commons Attribution License, copyright 2021, publisher name: BMJ Journals) which offers next generation therapeutics and new biomarker for diagnosis and prognosis of cancer.

Table 2. Summary of EV RNAs as a Promising Candidate for Colorectal Cancer Diagnosis

serial no.	bioliquid source	overexpressed miRNA type	function in colorectal cancer	AUC value ^a	ref
1	serum	miR-23a	metastasis	0.95	101
2		miR-1246	cytoskeleton remodelling	0.94	101
3		miR-25-3p	metastasis	0.68	119
4		miR-106b-3p	ECM degradation	0.94	95
5		miR-301a	cell growth	0.84	120
6		miR-125a-3p	chemoresistance	0.68	121
7		CRNDE-h	chemoresistance	0.89	113
8		miR18a	dual function	0.80	13
9	plasma	miR-21	cell-proliferation	0.91	123
10		LNCV6-98390	drug-resistance	0.77	115
11		miR-27a	cell cycle regulation	0.89	124
12		miR92a-3p	metastasis	0.85	125
13		miR-6803-5p	tissue invasion	0.74	126
14		LNCV6_84003	EMT	0.73	127
15		GAS5	cell proliferation	0.87	116
16		miR-29a	ECM remodeling	0.82	128, 129
17	cell lines	miR-1268	metastasis	0.92	102

"AUC (Area under the curve) represents the efficacy of a diagnostic marker. The value can go from 0 to 1. The 0 represent zero percentage accuracy while 1 exhibit 100% perfection as a promising biomarker. A perfect biomarker must have an AUC value close to 1.

non-miRNAs are able to mediate TLR and set the innate immune response system in motion. The alteration of RNA expression in EVs can substantially influence the cancer immune response. By understanding the exact dysregulation profile, it is possible to construct a proper comprehensive framework for analyzing the immune state of an individual.

CLINICAL SIGNIFICANCE OF EV-RNA AS A PROMISING BIOMARKER FOR COLORECTAL CANCER

Recent progress in the EV field revealed that colorectal cancer EV cargoes, namely, RNA, miRNA, circular RNA, and lncRNA, are expressed more unusually than a normal cell.

Incorporated cargoes are free from degradation and can potentially be used as a potential biomarker for colorectal cancer (Figure 3).

6.1. EV-miRNA as a Diagnostic Marker

The differential expression pattern of EV-miRNA holds immense potential in colorectal cancer early diagnosis. ¹⁰¹ miRNA profiling of colorectal cancer EVs is done either with colorectal tissue or by using blood plasma. ¹⁰¹ To mention a few examples, EV isolated from containing miRNAs such as miR-23a, miR-1246, let-7a, miR-1229, miR-150, miR-223, and miR-21, which are highly overexpressed in colorectal cancer patients when compared with a healthy individual. ¹⁰¹ Based on measurements of the area under the curve (AUC) value, it was

found that the diagnostic capability of miR-23a, miR-1246, and miR-21 is much more accurate than that of other miRNAs having high AUC values (close to 1) (Table 2). Recently, Zhou et al. demonstrated the downregulation of miR150-5p, a promising diagnosis and prognosis candidate for colorectal cancer with an AUC value of 0.870. Further, the colorectal cancer exosome overexpressing miR-106b-3p promotes epithelial to mesenchymal transition (EMT) and can be used as a potential biomarker for colorectal cancer.

In the serum sample, overexpression patterns of different EV-miRNAs were also explored in cancer cell lines of different colorectal cancer stages. In one study, Cheng et al. found that the expression level of several miRNAs inside EV is more unique than that of cell lysate. 19 Moshammer et al. revealed that miR-21 and miR 200c-3p were upregulated in all colorectal cancer cell lines, but other miR-200 family RNAs hardly get transferred to EV. 50 Furthermore, depending on the cancer stages and the unique mutational status of each cell line, the EV-miRNA upregulation-downregulation pattern changes. 103-105 In one experiment, Bjørnetrø validated the expression level of six EV miRNAs in different colorectal cancer cell lines, HCT 116, HCC2998, KM20L2, RKO, and LoVo, that were cultured either at normal oxygen levels (21%) or in low oxygen levels (0.2%). They found that the expression levels of EV miR-30d-5p, miR-30e-5p, miR-31-5p, and miR-194-5p were dysregulated to a large extent, depending on the culture oxygen concentration. 106 Due to uncontrollable cell proliferation, hypoxia is common in cancer, and thereby, hypoxic condition specific EV-miRNAs can be regarded as promising early colorectal cancer biomarkers.⁹⁶ Not only the oxygen level but also the mutational condition of specific genes influence the changes in EV-miRNA expression in different colorectal cancers.⁹⁴ For instance, dominant P53 mutation in colorectal cancer enhanced the expression level of EVmiR1246, leading to extracellular matrix (ECM) degradation, one of the critical criteria for cancer malignancy.

6.2. EV-miRNA as a Chemotherapy Resistance Biomarker

In addition to cancer diagnosis, analysis of this natural delivery vehicle for cancer treatment prognosis has been widely pursued in recent years. Takano et al. found the upregulation of EVmiR203 associated with poor colorectal cancer prognosis. 90 In continuation to that finding, Matsumura noted that exosomal miR19a is also related to poor prognosis. 107 One of the significant concerns with cancer therapy is chemotherapy resistance. Though the puzzle has not been solved yet, it is believed that cancer cells acquire chemoresistance by genetic and epigenetic alternation. 95,108 To improve the treatment outcome, it is imperative to access whether the chemotherapy is effective. For that reason, researchers are studying the possible relation between exosome dysregulated miRNA expression and colorectal cancer chemoresistance. 109 Jin et al. found overexpression of serum-derived EV incorporated miR-1246, miR-21-5p, miR-96-5p, and miR-1229-5p in 5fluorouracil resistant colorectal cancer. 110 Further, Yagi et al. explored the higher expression level of EV-miR125-5b in 5fluorouracil, leucovorin, and oxaliplatin resistant cancer cells. Continual monitoring of chemotherapeutic efficacy at very early stages of treatment highly demands a minimally invasive approach.¹¹¹ Although some work based on the detection of EV-miRNA biomarkers to solve this purpose has been reported, further research is necessary to provide certainty to oncologists to determine whether to change the treatment.

6.3. EV-IncRNAs: Possible Role as a Colorectal Cancer Biomarker

Long noncoding RNAs, the most significant class of RNA molecules, though they never express proteins, play a crucial role in gene regulation at both transcriptional and post-transcriptional levels. Understanding the mutational status and exact role of lncRNA in cancer is a growing area of focus. Ren et al. found the overexpression of lncRNA H19 incorporated in exosomes derived colorectal cancer-associated fibroblasts. 113 Another report investigated the upregulation of EV incorporated colorectal neoplasia differentially expressed-h (CRNDE-h) as a promising biomarker with an AUC value of 0.892.114 They also found CRNDE-h and CRNDE-p inside exosomes as a potential diagnostic-prognostic biomarker for colorectal cancer. 114 It is also reported that colorectal cancer patient plasma-derived exosomes containing LNCV6 116109, LNCV6 98390, LNCV6 38772, LNCV 108266, LNCV6 84003, and LNCV6 98602 are overexpressed based on cancer stage; this was found to be a promising biomarker with AUC value close to 0.7. 115 Another fascinating study explored serum-derived exosome lncRNA biomarker growth arrest-specific 5 (GAS5) as a promising avenue for colorectal cancer diagnosis with an AUC value of 0.964. 116 Further, exosome colorectal cancer-associated transcript 2 (CCAT2) was proposed as an excellent candidate for colorectal cancer. The exact mechanism of biogenesis and function is not been fully understood until now. 115 Collectively, recent experiments proved that there is a need for further study to use lncRNA as a promising, reliable, and accurate early liquid biopsy biomarker. Nonetheless, the population size of the study needs to be increased to establish if a biomarker is statistically significant.

6.4. Other Biological Information-Rich EV-RNAs from Colorectal Cancer

Other exosomal RNA species may also play an essential role as colorectal cancer biomarkers. Recent studies confirm that not only linear but circular RNAs can also be transferred horizontally through EVs. 117 Circular RNAs are mainly generated by back alternative splicing. Being circular without any terminal ends makes it more stable against nuclease degradation. 119 Though the exact reason for circular RNA sorting inside EVs is still unknown, according to reports, the circular RNAs could be incorporated through binding with RNA binding proteins (RBPs). 118,119 Reports also indicated that EV-incorporated circular RNAs are six times higher than in cells. 117,118 The abnormal expression level of these circular RNAs influences the immune response with cancer formation even in colorectal cancer. 117-123 For instance, Li et al. suggested circular RNA KLDHC10 overexpression in colorectal cancer cell-derived exosomes compared to those from a healthy individual. 117 The studies mentioned have indicated the diagnostic efficacy of different RNAs as a colorectal cancer marker. The markers with high AUC values are capable of distinguishing cancer patients from healthy individuals. 117 Though few studies targeted early diagnosis, further in-depth research in terms of health condition, sex, geographical location, and age is needed. A list of colorectal cancer cellderived exosomal RNAs and their role in the cancer progression cascade with diagnostic accuracy is summarized in Table 2. Large-scale clinical trials impart a strong, robust scientific foundation in guiding research in the right direction. This can reveal the actual efficacy of a treatment or diagnosis process in physiological conditions to a large population, based

on the distribution of a wide variety of samples by gender, age, geographical location, etc. Although EVs were initially believed to be a random occurrence of the cell, various independent research studies have shown the efficacy of EVs in cancer diagnosis. Currently, several EV-based diagnoses have been registered for clinical trials. Utilizing high throughput sequencing and other sensitive methods, the expression pattern of EV-loaded dysregulated RNAs with colorectal cancer is reported, and few studies are ongoing (www.clinicaltrials.gov). The dysregulated RNA characteristics are shown in Table 3.

Table 3. Characteristics of EV RNAs in Colorectal Cancer Clinical Trials

serial no.	biomarker	no. of patients	specificity (%) ^a	sensitivity (%) ^b	ref
1	miR-1246	88	84	95.5	102
2	miR-23a	88	81	92	102
3	miR-17-3p	170	70	64	130
4	miR-92a	196	71.2	84	130
5	Let-7a	88	44	50	131
6	miR-135	315	95	46.2	101
7	miR-223	100	41	46.6	131
8	miR-29a	196	89.1	69	101
9	miR-1224-5p	100	28	31.8	101
10	miR-17-92	316	81.5	69.5	122
11	miR-1229	100	20	22.7	101

^aSpecificity = true negative/(true negative + false positive). ^bSensitivity = True positive/(true positive + false negative).

7. FUTURE OUTLOOK

There is no accurate diagnostic test that can detect early colorectal cancer with high sensitivity. For this reason, standardization of an effective method is in high demand in the current scenario. In this Review, we have indicated the potential of EVs in human physiology and further discussed the mechanism behind specific RNA incorporation inside EVs with a perspective on immune escape and colorectal cancer outcome. 129-133 Besides the base sequence information on specific RNAs, a recent investigation detected the glycosylation modification on RNA surfaces. Bertozzi's lab proposed that the glycosyl groups decorate on RNA surfaces in a similar way to proteins. There is a high possibility of variation in glycosylation patterns between diseased patients and healthy controls. 134 In this slightly offbeat yet exciting area of modern biology, it will be very interesting to investigate the presence of glycosylated RNA inside/on the surface of EVs, if any. The new inputs and scientific insights in this particular field will be very valuable in the diagnosis of glioblastoma, mesothelioma, and other aggressive cancer subtypes. 77,135 Though different opinions exist, the ability of EV to cross the blood-brain barrier (BBB) makes it a desirable source of cancer biomarkers in general. 136-138 The progress of technology has advanced the detection of the analyte of interest in many aspects, such as mRNA detection in cells by the modification of complementary DNA/synthetic xenonucleic acids molecules on the atomic force microscopy tip surface followed by RT-PCR noninvasively. 137 The same strategy can also be realized for cancer EVs for temporal RNA analysis. 138 With more research and advanced technology, post-transcriptional modifications of EV incorporated DNA and RNAs can also be sensed at a single nucleotide level. In addition to measuring the proteogenomic

profile of cancerous EVs using conventional biochemical methods, various biophysical characterization techniques have been customized for EV detection such as nanoparticle tracking assay, dynamic light scattering, flow cytometry, etc. An excellent initiative called EV-TRACK (www.evtrack.org) has been initiated, aiming to standardize EV characterization. The identification of specific EV subpopulations to incorporated nucleic acid analysis with the help of spectroscopic methods, like SERS, surface plasmon resonance, electrochemical detection, FT-IR spectroscopy, etc., can be conducted from bench to bedside.

The pathobiological heterogeneity of tumor cells offers the biggest challenge in the effective diagnosis of cancer. 138 Simultaneous identification and characterization of EV incorporated cargoes can overcome such limitations. Detection of a single analyte is not sufficient, at least for cancer diagnosis. Further, disease monitoring and management with point of care (POC) diagnosis have emerged as an excellent platform that is rapid, simple, patient-friendly, and cost-effective in recent times. The global POC market is expected to reach \$36 billion by 2028 with a CAGR (compound annual growth rate) of 3.25%. 132 With the unprecedented pressure that has been placed on the medical sector after the current COVID-19 pandemic, it is very relevant to advance technologies that can facilitate rapid medical decisions and are easy to use for nontechnical personnel. To meet the expectations, scientists are constantly developing multiplex EV sensing medical devices by applying different machine learning algorithms. The scientific curiosity behind mimicking the pathophysiological condition of cancer cells with tiny EVs has advanced EV research over the past decade. However, currently, there is a lack of available standard isolation and characterization techniques for EVs.⁵³ In addition, the physiological condition of EVs, storage conditions, and understanding of vesicle stability are still unclear.⁵³ That being the case, it is essential to recognize the unmet needs of existing technology to prioritize EV research with every novel idea and advancement in science.

AUTHOR INFORMATION

Corresponding Authors

Suchetan Pal — Department of Chemistry, IIT Bhilai, Chhattisgarh 492015, India; Email: suchetanp@ iitbhilai.ac.in

Tatini Rakshit — Department of Chemistry, Shiv Nadar University, Delhi-NCR, Uttar Pradesh 201314, India; orcid.org/0000-0002-4182-9240; Email: tatini.rakshit@snu.edu.in

Authors

Brateen Datta — School of Medical Science and Technology, IIT Kharagpur, West Bengal 721302, India; Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India

Debashish Paul — Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India; Department of Chemistry, Shiv Nadar University, Delhi-NCR, Uttar Pradesh 201314, India; orcid.org/0000-0002-6764-5052

Tina Dey — Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India

Complete contact information is available at:

https://pubs.acs.org/10.1021/acsbiomedchemau.1c00043

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

B.D. and T.D. thank DST inspire, and D.P. thanks SERB CRG for project JRF fellowship. S.P. thanks Startup Research Grant from SERB (SRG/2019/000953), Innovative Young Biotechnologist award by DBT (BT/12/IYBA/2019/14), and Research Initiation Grant from IIT Bhilai. T.R. thanks DST inspire [DST/INSPIRE/04/2017/002375], SERB CRG [CRG/2019/007013], and Research Initiation Grant from SNU-Delhi-NCR.

REFERENCES

- (1) ICMR. Consensus Document for Management of Colorectal Cancer; M/s Aravali Printers & Publishers (P) Ltd., 2014. https://main.icmr.nic.in/sites/default/files/guidelines/Colorectal%20Cancer_0.pdf (accessed 2021-08-12).
- (2) Kuipers, E. J.; Grady, W. M.; Lieberman, D.; Seufferlein, T.; Sung, J. J.; Boelens, P. G.; van de Velde, C. J. H.; Watanabe, T. COLORECTAL CANCER. *Nat. Rev. Dis. Primers* **2015**, *1*, 15065.
- (3) Duffy, M. J. Carcinoembryonic Antigen as a Marker for Colorectal Cancer: Is It Clinically Useful? *Clin. Chem.* **2001**, *47* (4), 624–630.
- (4) Kalluri, R.; LeBleu, V. S. The Biology, Function, and Biomedical Applications of Exosomes. *Science* **2020**, *367* (6478), eaau6977.
- (\$\tilde{S}\$) Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J. J.; Lötvall, J. O. Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. *Nat. Cell Biol.* **2007**, *9* (6), 654–659.
- (6) Datta, B.; Paul, D.; Pal, U.; Rakshit, T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS Appl. Bio Mater. 2021, 4 (4), 2863–2885
- (7) Harding, C. V.; Heuser, J. E.; Stahl, P. D. Exosomes: Looking Back Three Decades and into the Future. *J. Cell Biol.* **2013**, 200 (4), 367–371.
- (8) Kahlert, C.; Melo, S. A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; Weitz, J.; Chin, L.; Futreal, A.; Kalluri, R. Identification of Double-Stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and P53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer. *J. Biol. Chem.* **2014**, 289 (7), 3869–3875.
- (9) van Niel, G.; D'Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. *Nat. Rev. Mol. Cell Biol.* **2018**, 19 (4), 213–228.
- (10) Cai, J.; Han, Y.; Ren, H.; Chen, C.; He, D.; Zhou, L.; Eisner, G. M.; Asico, L. D.; Jose, P. A.; Zeng, C. Extracellular Vesicle-Mediated Transfer of Donor Genomic DNA to Recipient Cells Is a Novel Mechanism for Genetic Influence between Cells. *J. Mol. Cell Biol.* **2013**, *5* (4), 227–238.
- (11) Paul, D.; Roy, A.; Nandy, A.; Datta, B.; Borar, P.; Pal, S. K.; Senapati, D.; Rakshit, T. Identification of Biomarker Hyaluronan on Colorectal Cancer Extracellular Vesicles Using Correlative AFM and Spectroscopy. *J. Phys. Chem. Lett.* **2020**, *11* (14), 5569–5576.
- (12) Ruiz-López, L.; Blancas, I.; Garrido, J. M.; Mut-Salud, N.; Moya-Jódar, M.; Osuna, A.; Rodríguez-Serrano, F. The Role of Exosomes on Colorectal Cancer: A Review. *J. Gastroenterol. Hepatol.* **2018**, 33 (4), 792–799.
- (13) Komatsu, S.; Ichikawa, D.; Takeshita, H.; Morimura, R.; Hirajima, S.; et al. Circulating MiR-18a: A Sensitive Cancer Screening Biomarker in Human Cancer. *In Vivo* **2014**, 28 (3), 293–297.
- (14) Vojtech, L.; Woo, S.; Hughes, S.; Levy, C.; Ballweber, L.; et al. Exosomes in Human Semen Carry a Distinctive Repertoire of Small Non-Coding RNAs with Potential Regulatory Functions. *Nucleic Acids Res.* **2014**, *42* (11), 7290–7304.

- (15) Fitts, C. A.; Ji, N.; Li, Y.; Tan, C. Exploiting Exosomes in Cancer Liquid Biopsies and Drug Delivery. *Adv. Healthcare Mater.* **2019**, *8* (6), 1801268.
- (16) Théry, C.; Witwer, K. W.; Aikawa, E.; Alcaraz, M. J.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. *J. Extracell. Vesicles* 2018, 7 (1), 1–47.
- (17) Dong, L.; Lin, W.; Qi, P.; Xu, M.; Wu, X.; Ni, S.; Huang, D.; et al. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 2016, 25 (7), 1158–1166.
- (18) Danac, J. M. C.; Uy, A. G. G.; Garcia, R. L. Exosomal MicroRNAs in Colorectal Cancer: Overcoming Barriers of the Metastatic Cascade (Review). *Int. J. Mol. Med.* **2021**, 47 (6), 112.
- (19) Cheng, L.; Sharples, R. A.; Scicluna, B. J.; Hill, A. F. Exosomes Provide a Protective and Enriched Source of MiRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. *J. Extracell. Vesicles* **2014**, *3*, 23743.
- (20) Maio, G. D.; Rengucci, C.; Zoli, W.; Calistri, D. Circulating and Stool Nucleic Acid Analysis for Colorectal Cancer Diagnosis. *World Journal of Gastroenterology* **2014**, 20 (4), 957–967.
- (21) Song, L.; Li, Y. SEPT9: A Specific Circulating Biomarker for Colorectal Cancer. *Adv. Clin Chem.* **2015**, *72*, 171–204.
- (22) Liu, Y.; Tham, C. K.; Ong, S. Y. K.; Ho, K. S.; Lim, J. F.; Chew, M. H.; Lim, C. K.; Zhao, Y.; Tang, C. L.; Eu, K. W. Serum Methylation Levels of TAC1. SEPT9 and EYA4 as Diagnostic Markers for Early Colorectal Cancers: A Pilot Study. *Biomarkers* 2013, 18 (5), 399–405.
- (23) Abels, E. R.; Breakefield, X. O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. *Cell. Mol. Neurobiol.* **2016**, *36* (3), 301–312.
- (24) Cocucci, E.; Meldolesi, J. Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. *Trends Cell Biol.* **2015**, 25 (6), 364–372.
- (25) Huang, X.; Yuan, T.; Tschannen, M.; Sun, Z.; et al. Characterization of Human Plasma-Derived Exosomal RNAs by Deep Sequencing. *BMC Genomics* **2013**, *14*, 319.
- (26) van Balkom, B. W. M.; Eisele, A. S.; Pegtel, D. M.; Bervoets, S.; Verhaar, M. C. Quantitative and Qualitative Analysis of Small RNAs in Human Endothelial Cells and Exosomes Provides Insights into Localized RNA Processing, Degradation and Sorting. *J. Extracell. Vesicles* 2015, 4, 26760.
- (27) Chakrabortty, S. K.; Prakash, A.; Nechooshtan, G.; Hearn, S.; Gingeras, T. R. Extracellular Vesicle-Mediated Transfer of Processed and Functional RNY5 RNA. RNA 2015, 21 (11), 1966–1979.
- (28) Di Liegro, C. M.; Schiera, G.; Di Liegro, I. Regulation of mRNA Transport, Localization and Translation in the Nervous System of Mammals (Review). *Int. J. Mol. Med.* **2014**, 33 (4), 747–762.
- (29) Eliscovich, C.; Buxbaum, A. R.; Katz, Z. B.; Singer, R. H. mRNA on the Move: The Road to Its Biological Destiny. *J. Biol. Chem.* **2013**, 288 (28), 20361–20368.
- (30) Arroyo, J. D.; Chevillet, J. R.; Kroh, E. M.; et al. Argonaute2 Complexes Carry a Population of Circulating MicroRNAs Independent of Vesicles in Human Plasma. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108* (12), 5003–5008.
- (31) Clancy, J. W.; Zhang, Y.; Sheehan, C.; D'Souza-Schorey, C. An ARF6-Exportin-5 Axis Delivers Pre-miRNA Cargo to Tumour Microvesicles. *Nat. Cell Biol.* **2019**, 21 (7), 856–866.
- (32) Melo, S. A.; Sugimoto, H.; O'Connell, J. T.; Kato, N.; Villanueva, A.; et al. Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis. *Cancer Cell* **2014**, 26 (5), 707–721.
- (33) Squadrito, M. L.; Baer, C.; Burdet, F.; Maderna, C.; Gilfillan, G. D.; Lyle, R.; Ibberson, M.; De Palma, M. Endogenous RNAs

Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells. Cell Rep. 2014, 8 (5), 1432–1446.

- (34) Teng, Y.; Ren, Y.; Hu, X.; Mu, J.; Samykutty, A.; et al. MVP-Mediated Exosomal Sorting of MiR-193a Promotes Colorectal Cancer Progression. *Nat. Commun.* **2017**, *8* (1), 14448.
- (35) Iavello, A.; Frech, V. S. L.; Gai, C.; Deregibus, M. C.; Quesenberry, P. J.; Camussi, G. Role of Alix in MiRNA Packaging during Extracellular Vesicle Biogenesis. *Int. J. Mol. Med.* **2016**, 37 (4), 958–966.
- (36) Kosaka, N.; Yoshioka, Y.; Hagiwara, K.; Tominaga, N.; Ochiya, T. Functional analysis of exosomal microRNA in cell-cell communication research. *Methods Mol. Biol.* **2013**, *1024*, 1–10.
- (37) Shurtleff, M. J.; Yao, J.; Qin, Y.; Nottingham, R. M.; Temoche-Diaz, M. M.; Schekman, R.; Lambowitz, A. M. Broad Role for YBX1 in Defining the Small Noncoding RNA Composition of Exosomes. *Proc. Natl. Acad. Sci. U. S. A.* **2017**, *114* (43), E8987–E8995.
- (38) Hu, W.; Liu, C.; Bi, Z.-Y.; Zhou, Q.; Zhang, H.; et al. Comprehensive Landscape of Extracellular Vesicle-Derived RNAs in Cancer Initiation, Progression, Metastasis and Cancer Immunology. *Mol. Cancer* **2020**, *19* (1), 102.
- (39) Temoche-Diaz, M. M.; Shurtleff, M. J.; Nottingham, R. M.; Yao, J.; Fadadu, R. P.; Lambowitz, A. M.; Schekman, R. Distinct Mechanisms of MicroRNA Sorting into Cancer Cell-Derived Extracellular Vesicle Subtypes. *eLife* 2019, 8, e47544.
- (40) Mukherjee, K.; Ghoshal, B.; Ghosh, S.; Chakrabarty, Y.; Shwetha, S.; Das, S.; Bhattacharyya, S. N. Reversible HuR-MicroRNA Binding Controls Extracellular Export of MiR-122 and Augments Stress Response. *EMBO Rep* **2016**, *17* (8), 1184–1203.
- (41) Bolukbasi, M. F.; Mizrak, A.; Ozdener, G. B.; Madlener, S.; Ströbel, T.; Erkan, E. P.; Fan, J.-B.; Breakefield, X. O.; Saydam, O. MiR-1289 and "Zipcode"-like Sequence Enrich MRNAs in Microvesicles. *Mol. Ther. Nucleic Acids* **2012**, *1* (2), e10.
- (42) Hotamisligil, G. S.; Davis, R. J. Cell Signaling and Stress Responses. *Cold Spring Harb. Perspect. Biol.* **2016**, 8 (10), a006072.
- (43) Bazzoni, R.; Takam Kamga, P.; Tanasi, I.; Krampera, M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. *Front. Cell Dev. Biol.* **2020**, *8*, 596079.
- (44) Zhou, X.; Xie, F.; Wang, L.; Zhang, L.; Zhang, S.; Fang, M.; Zhou, F. The Function and Clinical Application of Extracellular Vesicles in Innate Immune Regulation. *Cell. Mol. Immunol.* **2020**, *17* (4), 323–334.
- (45) Yi, M.; Xu, L.; Jiao, Y.; Luo, S.; Li, A.; Wu, K. The Role of Cancer-Derived MicroRNAs in Cancer Immune Escape. *J. Hematol. Oncol.* **2020**, *13* (1), 25.
- (46) Stefanius, K.; Servage, K.; de Souza Santos, M.; Gray, H. F.; Toombs, J. E.; Chimalapati, S.; Kim, M. S.; Malladi, V. S.; Brekken, R.; Orth, K. Human Pancreatic Cancer Cell Exosomes, but Not Human Normal Cell Exosomes, Act as an Initiator in Cell Transformation. *eLife* **2019**, *8*, e40226.
- (47) Kesidou, D.; da Costa Martins, P. A.; de Windt, L. J.; Brittan, M.; Beqqali, A.; Baker, A. H. Extracellular Vesicle MiRNAs in the Promotion of Cardiac Neovascularisation. *Front. Physiol.* **2020**, *11*, 579892.
- (48) Mayourian, J.; Ceholski, D. K.; Gorski, P. A.; et al. Exosomal MicroRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. *Circ. Res.* **2018**, *122* (7), 933-944.
- (49) He, Q.; Ye, A.; Ye, W.; Liao, X.; et al. Cancer-Secreted Exosomal MiR-21-5p Induces Angiogenesis and Vascular Permeability by Targeting KRIT1. *Cell Death Dis.* **2021**, *12* (6), 576.
- (50) Vautrot, V.; Chanteloup, G.; Elmallah, M.; Cordonnier, M.; Aubin, F.; Garrido, C.; Gobbo, J. Exosomal MiRNA: Small Molecules, Big Impact in Colorectal Cancer. *J. Oncol.* **2019**, 2019, 1–18.
- (51) Doyle, L. M.; Wang, M. Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. *Cells* **2019**, *8* (7), 727.

- (52) Veziroglu, E. M.; Mias, G. I. Characterizing Extracellular Vesicles and Their Diverse RNA Contents. *Front. Genet.* **2020**, *11*, 700
- (53) Karimi, N.; Cvjetkovic, A.; Jang, S. C.; Crescitelli, R.; Hosseinpour Feizi, M. A.; Nieuwland, R.; Lötvall, J.; Lässer, C. Detailed Analysis of the Plasma Extracellular Vesicle Proteome after Separation from Lipoproteins. *Cell. Mol. Life Sci. CMLS* **2018**, 75 (15), 2873–2886.
- (54) Hill, A. F.; Pegtel, D. M.; Lambertz, U.; Leonardi, T.; O'Driscoll, L.; Pluchino, S.; Ter-Ovanesyan, D.; Nolte-'t Hoen, E. N.M. ISEV Position Paper: Extracellular Vesicle RNA Analysis and Bioinformatics. *J. Extracell. Vesicles* **2013**, 2 (1), 22859.
- (55) 't Hoen, P. A. C.; Ariyurek, Y.; Thygesen, H. H.; et al. Deep Sequencing-Based Expression Analysis Shows Major Advances in Robustness, Resolution and Inter-Lab Portability over Five Microarray Platforms. *Nucleic Acids Res.* **2008**, *36* (21), e141.
- (56) Kapranov, P.; Cheng, J.; Dike, S.; Nix, D. A.; et al. RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. *Science* **2007**, *316* (5830), 1484–1488.
- (57) Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; Foster, B.; Moser, M.; Karasik, E.; et al. The Genotype-Tissue Expression (GTEx) Project. *Nat. Genet.* **2013**, *45* (6), 580–585.
- (58) Yue, B.; Yang, H.; Wu, J.; Wang, J.; Ru, W.; Cheng, J.; Huang, Y.; Lei, C.; Lan, X.; Chen, H. Characterization and Transcriptome Analysis of Exosomal and Nonexosomal RNAs in Bovine Adipocytes. *Int. J. Mol. Sci.* **2020**, *21* (23), 9313.
- (59) Eylem, C. C.; Yilmaz, M.; Derkus, B.; et al. Untargeted Multi-Omic Analysis of Colorectal Cancer-Specific Exosomes Reveals Joint Pathways of Colorectal Cancer in Both Clinical Samples and Cell Culture. *Cancer Lett.* **2020**, *469*, 186–194.
- (60) Murillo, O. D.; Thistlethwaite, W.; Rozowsky, J.; Subramanian, S. L.; Lucero, R.; Shah, N.; Jackson, A. R.; Srinivasan, S.; et al. ExRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. *Cell* **2019**, *177* (2), 463–477.
- (61) Mao, K.; Wu, X. Microarray Analysis of Small Extracellular Vesicle-Derived MiRNAs Involved in Oxidative Stress of RPE Cells. Oxidative Medicine and Cellular Longevity 2020, 2020, 1–11.
- (62) Head, S. R.; Mondala, T.; Gelbart, T.; Ordoukhanian, P.; Chappel, R.; Hernandez, G.; Salomon, D. R. RNA Purification and Expression Analysis Using Microarrays and RNA Deep Sequencing. In *Transplantation Immunology*; Zachary, A. A., Leffell, M. S., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2013; Vol. 1034, pp 385–403.
- (63) Endzeliņš, E.; Berger, A.; Melne, V.; et al. Detection of Circulating MiRNAs: Comparative Analysis of Extracellular Vesicle-Incorporated MiRNAs and Cell-Free MiRNAs in Whole Plasma of Prostate Cancer Patients. *BMC Cancer* **2017**, *17* (1), 730.
- (64) Kumar, S. R.; Kimchi, E. T.; Manjunath, Y.; Gajagowni, S.; Stuckel, A. J.; Kaifi, J. T. RNA Cargos in Extracellular Vesicles Derived from Blood Serum in Pancreas Associated Conditions. *Sci. Rep* **2020**, *10* (1), 2800.
- (65) Qadir, F.; Aziz, M. A.; Sari, C. P.; Ma, H.; et al. Transcriptome Reprogramming by Cancer Exosomes: Identification of Novel Molecular Targets in Matrix and Immune Modulation. *Mol. Cancer* **2018**, *17* (1), 97.
- (66) Kalani, M. Y. S.; Alsop, E.; Meechoovet, B.; et al. Extracellular MicroRNAs in Blood Differentiate between Ischaemic and Haemorrhagic Stroke Subtypes. *J. Extracell. Vesicles* **2020**, *9* (1), 1713540.
- (67) Ahlberg, E.; Jenmalm, M. C.; Tingö, L. Evaluation of Five Column-based Isolation Kits and Their Ability to Extract MiRNA from Human Milk. *J. Cell Mol. Med.* **2021**, 25 (16), 7973–7979.
- (68) Bart, G.; Fischer, D.; Samoylenko, A.; Zhyvolozhnyi, A.; et al. Characterization of Nucleic Acids from Extracellular Vesicle-Enriched Human Sweat. *BMC Genomics* **2021**, 22 (1), 425.
- (69) Shao, H.; Chung, J.; Lee, K.; Balaj, L.; et al. Chip-Based Analysis of Exosomal MRNA Mediating Drug Resistance in Glioblastoma. *Nat. Commun.* **2015**, *6* (1), 6999.

- (70) Buschmann, D.; Kirchner, B.; Hermann, S.; et al. Evaluation of Serum Extracellular Vesicle Isolation Methods for Profiling MiRNAs by Next-Generation Sequencing. *Journal of Extracellular Vesicles* **2018**, 7 (1), 1481321.
- (71) Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Jiang, Y.; et al. Exosomes: key players in cancer and potential therapeutic strategy. *Signal Transduction Targeted Ther.* **2020**, *5*, 145.
- (72) Akers, J. C.; Ramakrishnan, V.; Kim, R.; Phillips, S.; et al. MiRNA Contents of Cerebrospinal Fluid Extracellular Vesicles in Glioblastoma Patients. *J. Neurooncol* **2015**, *123* (2), 205–216.
- (73) Reátegui, E.; van der Vos, K. E.; Lai, C. P.; Zeinali, M.; et al. Engineered Nanointerfaces for Microfluidic Isolation and Molecular Profiling of Tumor-Specific Extracellular Vesicles. *Nat. Commun.* **2018**, 9 (1), 175.
- (74) Xu, J.; Xiao, Y.; Liu, B.; Pan, S.; Liu, Q.; Shan, Y.; Li, S.; Qi, Y.; Huang, Y.; Jia, L. Exosomal MALAT1 Sponges MiR-26a/26b to Promote the Invasion and Metastasis of Colorectal Cancer via FUT4 Enhanced Fucosylation and PI3K/Akt Pathway. *J. Exp Clin Cancer Res.* **2020**, 39 (1), 54.
- (75) Prendergast, E. N.; de Souza Fonseca, M. A.; Dezem, F. S.; Lester, J.; Karlan, B. Y.; Noushmehr, H.; Lin, X.; Lawrenson, K. Optimizing Exosomal RNA Isolation for RNA-Seq Analyses of Archival Sera Specimens. *PLoS One* **2018**, *13* (5), e0196913.
- (76) https://www.ncbi.nlm.nih.gov/sra/SRP142765.
- (77) Guo, S.; Chen, J.; Chen, F.; Zeng, Q.; Liu, W.-L.; Zhang, G. Exosomes Derived from *Fusobacterium Nucleatum* -Infected Colorectal Cancer Cells Facilitate Tumour Metastasis by Selectively Carrying MiR-1246/92b-3p/27a-3p and CXCL16. *Gut* **2021**, 70 (8), 1507–1519.
- (78) Kakan, S. S.; Janga, S. R.; Cooperman, B.; Craig, D. W.; Edman, M. C.; Okamoto, C. T.; Hamm-Alvarez, S. F. Small RNA Deep Sequencing Identifies a Unique MiRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren's Syndrome. *Frontiers in Immunology* **2020**, *11*, 475.
- (79) Mateescu, B.; Kowal, E. J. K.; van Balkom, B. W. M.; Bartel, S.; Bhattacharyya, S. N.; Buzás, E. I.; Buck, A. H.; et al. Obstacles and Opportunities in the Functional Analysis of Extracellular Vesicle RNA an ISEV Position Paper. *J. Extracell. Vesicles* **2017**, *6* (1), 1286095.
- (80) Witwer, K. W.; Buzás, E. I.; Bemis, L. T.; Bora, A.; et al. Standardization of Sample Collection, Isolation and Analysis Methods in Extracellular Vesicle Research. *J. Extracell. Vesicles* **2013**, *2*, 20360.
- (81) Contreras-Naranjo, J. C.; Wu, H.-J.; Ugaz, V. M. Microfluidics for Exosome Isolation and Analysis: Enabling Liquid Biopsy for Personalized Medicine. *Lab. Chip* **2017**, *17* (21), 3558–3577.
- (82) Ramshani, Z.; Zhang, C.; Richards, K.; Chen, L.; Xu, G.; Stiles, B. L.; Hill, R.; Senapati, S.; Go, D. B.; Chang, H.-C. Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. *Commun. Biol.* **2019**, 2 (1), 189.
- (83) Richards, K. E.; Go, D. B.; Hill, R. Surface Acoustic Wave Lysis and Ion-Exchange Membrane Quantification of Exosomal MicroRNA. In *MicroRNA Detection and Target Identification*; Dalmay, T., Ed.; Methods in Molecular Biology; Springer: New York, 2017; Vol. 1580, pp 59–70.
- (84) Horodecka, K.; Düchler, M. CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. *Int. J. Mol. Sci.* **2021**, 22 (11), 6072.
- (85) Houghton, A. N.; Guevara-Patiño, J. A. Immune Recognition of Self in Immunity against Cancer. *J. Clin. Invest.* **2004**, *114* (4), 468–471.
- (86) Kim, S. H.; Bianco, N. R.; Shufesky, W. J.; Morelli, A. E.; Robbins, P. D. MHC Class II+ Exosomes in Plasma Suppress Inflammation in an Antigen-Specific and Fas Ligand/Fas-Dependent Manner. J. Immunol. Baltim. Md 1950 2007, 179 (4), 2235–2241.
- (87) Raposo, G.; Nijman, H. W.; Stoorvogel, W.; Liejendekker, R.; Harding, C. V.; Melief, C. J.; Geuze, H. J. B Lymphocytes Secrete Antigen-Presenting Vesicles. *J. Exp. Med.* **1996**, *183* (3), 1161–1172. (88) Théry, C.; Duban, L.; Segura, E.; Véron, P.; Lantz, O.; Amigorena, S. Indirect Activation of Naïve CD4+ T Cells by

- Dendritic Cell-Derived Exosomes. Nat. Immunol. 2002, 3 (12), 1156–1162.
- (89) Vignard, V.; Labbé, M.; Marec, N.; André-Grégoire, G.; Jouand, N.; Fonteneau, J.-F.; Labarrière, N.; Fradin, D. MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. *Cancer Immunol. Res.* **2020**, 8 (2), 255–267.
- (90) Takano, Y.; Masuda, T.; Iinuma, H.; Yamaguchi, R.; et al. Circulating Exosomal MicroRNA-203 Is Associated with Metastasis Possibly via Inducing Tumor-Associated Macrophages in Colorectal Cancer. *Oncotarget* **2017**, *8* (45), 78598–78613.
- (91) Whitehead, B.; Wu, L.; Hvam, M. L.; Aslan, H.; Dong, M.; Dyrskjøt, L.; et al. Tumour Exosomes Display Differential Mechanical and Complement Activation Properties Dependent on Malignant State: Implications in Endothelial Leakiness. *J. Extracell. Vesicles* **2015**, 4, 29685.
- (92) Xiao, Y.; Li, Z.-H.; Bi, Y.-H. MicroRNA-889 Promotes Cell Proliferation in Colorectal Cancer by Targeting DAB2IP. *Eur. Rev. Med. Pharmacol. Sci.* **2019**, 23 (8), 3326–3334.
- (93) Wang, W.; Yuan, X.; Xu, A.; Zhu, X.; Zhan, Y.; Wang, S.; Liu, M. Human Cancer Cells Suppress Behaviors of Endothelial Progenitor Cells through MiR-21 Targeting IL6R. *Microvasc. Res.* **2018**, *120*, 21–28.
- (94) Cooks, T.; Pateras, I. S.; Jenkins, L. M.; Patel, K. M.; et al. Mutant P53 Cancers Reprogram Macrophages to Tumor Supporting Macrophages via Exosomal MiR-1246. *Nat. Commun.* **2018**, 9 (1), 771.
- (95) Liu, H.; Liu, Y.; Sun, P.; Leng, K.; Xu, Y.; Mei, L.; Han, P.; Zhang, B.; Yao, K.; Li, C.; Bai, J.; Cui, B. Colorectal cancer-derived exosomal miR-106b-3p promotes metastasis by down-regulating DLC-1 expression. *Clin. Sci.* **2021**, *47* (6), 419–434.
- (96) Zhang, X.; Bai, J.; Yin, H.; Long, L.; Zheng, Z.; Wang, Q.; Chen, F.; Yu, X.; Zhou, Y. Exosomal MiR-1255b-5p Targets Human Telomerase Reverse Transcriptase in Colorectal Cancer Cells to Suppress Epithelial-to-Mesenchymal Transition. *Mol. Oncol.* 2020, 14 (10), 2589–2608.
- (97) Liu, X.; Chen, X.; Zeng, K.; Xu, M.; He, B.; Pan, Y.; et al. DNA-Methylation-Mediated Silencing of MiR-486–5p Promotes Colorectal Cancer Proliferation and Migration through Activation of PLAGL2/IGF2/β-Catenin Signal Pathways. *Cell Death Dis.* **2018**, 9 (10), 1037.
- (98) Tang, L.; Zhou, L.; Wu, S.; Shi, X.; Jiang, G.; Niu, S.; Ding, D. MiR-125a-5p Inhibits Colorectal Cancer Cell Epithelial-Mesenchymal Transition, Invasion and Migration by Targeting TAZ. *OncoTargets Ther.* **2019**, *12*, 3481–3489.
- (99) Tong, Z.; Liu, N.; Lin, L.; Guo, X.; Yang, D.; Zhang, Q. MiR-125a-5p Inhibits Cell Proliferation and Induces Apoptosis in Colorectal Cancer via Targeting BCL2, BCL2L12 and MCL1. Biomed. Pharmacother. Biomedecine Pharmacother. 2015, 75, 129–136. (100) Turchinovich, A.; Drapkina, O.; Tonevitsky, A. Transcriptome
- of Extracellular Vesicles: State-of-the-Art. Front. Immunol. **2019**, 10, 202.
- (101) Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; et al. Circulating Exosomal MicroRNAs as Biomarkers of Colorectal Cancer. *PLoS One* **2014**, *9* (4), e92921.
- (102) Zou, S.-L.; Chen, Y.-L.; Ge, Z.-Z.; Qu, Y.-Y.; Cao, Y.; Kang, Z.-X. Downregulation of Serum Exosomal MiR-150–5p Is Associated with Poor Prognosis in Patients with Colorectal Cancer. *Cancer Biomark. Sect. Dis. Markers* **2019**, 26 (1), 69–77.
- (103) Cheng, L.; Sharples, R. A.; Scicluna, B. J.; Hill, A. F. Exosomes Provide a Protective and Enriched Source of MiRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. *J. Extracell. Vesicles* **2014**, *3*, 23743.
- (104) Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M. Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional Transfer of MicroRNA-Loaded Exosomes from T Cells to Antigen-Presenting Cells. *Nat. Commun.* **2011**, 2 (282), 282.
- (105) Guduric-Fuchs, J.; O'Connor, A.; Camp, B.; O'Neill, C. L.; Medina, R. J.; Simpson, D. A. Selective Extracellular Vesicle-Mediated

Export of an Overlapping Set of MicroRNAs from Multiple Cell Types. BMC Genomics 2012, 13, 357.

- (106) Bjørnetrø, T.; Redalen, K. R.; Meltzer, S.; Thusyanthan, N. S.; Samiappan, R.; Jegerschöld, C.; Handeland, K. R.; Ree, A. H. An Experimental Strategy Unveiling Exosomal MicroRNAs 486–5p, 181a-5p and 30d-5p from Hypoxic Tumour Cells as Circulating Indicators of High-Risk Rectal Cancer. *J. Extracell. Vesicles* **2019**, 8 (1), 1567219.
- (107) Matsumura, T.; Sugimachi, K.; Iinuma, H.; et al. Exosomal MicroRNA in Serum Is a Novel Biomarker of Recurrence in Human Colorectal Cancer. *Br. J. Cancer* **2015**, *113* (2), 275–281.
- (108) Takeshima, H.; Ushijima, T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. *npj Precis. Oncol.* **2019**, *3*, *7*.
- (109) Jo, Y.; Choi, N.; Kim, K.; Koo, H.-J.; Choi, J.; Kim, H. N. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-Mimicking *In Vitro* Models in Anti-Cancer Drug Development. *Theranostics* **2018**, *8* (19), 5259–5275.
- (110) Jin, G.; Liu, Y.; Zhang, J.; Bian, Z.; Yao, S.; Fei, B.; Zhou, L.; Yin, Y.; Huang, Z. A Panel of Serum Exosomal MicroRNAs as Predictive Markers for Chemoresistance in Advanced Colorectal Cancer. Cancer Chemother. Pharmacol. 2019, 84 (2), 315–325.
- (111) Yagi, T.; Iinuma, H.; Hayama, T.; Matsuda, K.; Nozawa, K.; Tsukamoto, M.; Shimada, R.; Akahane, T.; Tsuchiya, T.; Ozawa, T.; Hashiguchi, Y. Plasma Exosomal MicroRNA-125b as a Monitoring Biomarker of Resistance to MFOLFOX6-Based Chemotherapy in Advanced and Recurrent Colorectal Cancer Patients. *Mol. Clin. Oncol.* **2019**, *11* (4), 416–424.
- (112) Dragomir, M.; Chen, B.; Calin, G. A. Exosomal LncRNAs as New Players in Cell-to-Cell Communication. *Transl. Cancer Res.* **2018**, 7 (S2), S243–S252.
- (113) Ren, J.; Ding, L.; Zhang, D.; Shi, G.; Xu, Q.; Shen, S.; Wang, Y.; Wang, T.; Hou, Y. Carcinoma-Associated Fibroblasts Promote the Stemness and Chemoresistance of Colorectal Cancer by Transferring Exosomal LncRNA H19. *Theranostics* **2018**, 8 (14), 3932–3948.
- (114) Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal Long Noncoding RNA CRNDE-h as a Novel Serum-Based Biomarker for Diagnosis and Prognosis of Colorectal Cancer. *Oncotarget* **2016**, 7 (51), 85551–85563.
- (115) Wang, L.; Duan, W.; Yan, S.; Xie, Y.; Wang, C. Circulating Long Non-Coding RNA Colorectal Cancer-Associated Transcript 2 Protected by Exosome as a Potential Biomarker for Colorectal Cancer. *Biomed. Pharmacother.* **2019**, *113*, 108758.
- (116) Liu, L.; Meng, T.; Yang, X.-H.; Sayim, P.; Lei, C.; Jin, B.; Ge, L.; Wang, H.-J. Prognostic and Predictive Value of Long Non-Coding RNA GAS5 and MircoRNA-221 in Colorectal Cancer and Their Effects on Colorectal Cancer Cell Proliferation, Migration and Invasion. *Cancer Biomark. Sect. Dis. Markers* **2018**, 22 (2), 283–299. (117) Li, J.; Jiang, X.; Wang, K. Exosomal MiRNA: An Alternative Mediator of Cell-to-Cell Communication. *ExRNA* **2019**, *1* (1), 31.
- (118) Wang, P.; He, X. Current Research on Circular RNAs Associated with Colorectal Cancer. *Scand. J. Gastroenterol.* **2017**, *52* (11), 1203–1210.
- (119) Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; et al. Cancer-Derived Exosomal MiR-25–3p Promotes Pre-Metastatic Niche Formation by Inducing Vascular Permeability and Angiogenesis. *Nat. Commun.* **2018**, 9 (1), 5395.
- (120) Karimi, N.; Ali Hosseinpour Feizi, M.; Safaralizadeh, R.; Hashemzadeh, S.; Baradaran, B.; Shokouhi, B.; Teimourian, S. Serum Overexpression of MiR-301a and MiR-23a in Patients with Colorectal Cancer. *J. Chin. Med. Assoc. JCMA* **2019**, 82 (3), 215–220.
- (121) Wang, J.; Yan, F.; Zhao, Q.; Zhan, F.; Wang, R.; Wang, L.; Zhang, Y.; Huang, X. Circulating Exosomal MiR-125a-3p as a Novel Biomarker for Early-Stage Colorectal Cancer. *Sci. Rep.* **2017**, *7* (1), 4150.
- (122) Kral, J.; Korenkova, V.; Novosadova, V.; Langerova, L.; et al. Expression Profile of MiR-17/92 Cluster Is Predictive of Treatment Response in Rectal Cancer. *Carcinogenesis* **2018**, *39* (11), 1359–1367.

- (123) Tsukamoto, M.; Iinuma, H.; Yagi, T.; Matsuda, K.; Hashiguchi, Y. Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. *Oncology* **2017**, 92 (6), 360–370.
- (124) Liu, X.; Pan, B.; Sun, L.; Chen, X.; Zeng, K.; Hu, X.; Xu, T.; Xu, M.; Wang, S. Circulating Exosomal MiR-27a and MiR-130a Act as Novel Diagnostic and Prognostic Biomarkers of Colorectal Cancer. *Cancer Epidemiol. Biomarkers Prev.* **2018**, *27* (7), 746–754.
- (125) Fu, F.; Jiang, W.; Zhou, L.; Chen, Z. Circulating Exosomal MiR-17–5p and MiR-92a-3p Predict Pathologic Stage and Grade of Colorectal Cancer. *Transl. Oncol.* **2018**, *11* (2), 221–232.
- (126) Hu, D.; Zhan, Y.; Zhu, K.; Bai, M.; Han, J.; Si, Y.; Zhang, H.; Kong, D. Plasma Exosomal Long Non-Coding RNAs Serve as Biomarkers for Early Detection of Colorectal Cancer. *Cell. Physiol. Biochem.* **2019**, *51* (6), 2704–2715.
- (127) Liu, W.; Yang, D.; Chen, L.; Liu, Q.; Wang, W.; Yang, Z.; Shang, A.; Quan, W.; Li, D. Plasma Exosomal MiRNA-139–3p Is a Novel Biomarker of Colorectal Cancer. *J. Cancer* **2020**, *11* (16), 4899–4906.
- (128) Yan, S.; Han, B.; Gao, S.; Wang, X.; Wang, Z.; Wang, F.; Zhang, J.; Xu, D.; Sun, B. Exosome-Encapsulated MicroRNAs as Circulating Biomarkers for Colorectal Cancer. *Oncotarget* **2017**, 8 (36), 60149–60158.
- (129) Akbar, N.; Paget, D.; Choudhury, R. P. Extracellular Vesicles in Innate Immune Cell Programming. *Biomedicines* **2021**, *9* (7), 713. (130) Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma MicroRNAs Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer. *Int. J. Cancer* **2010**, *127* (1), 118–
- (131) Ng, E. K. O.; Chong, W. W. S.; Jin, H.; Lam, E. K. Y.; Shin, V. Y.; Yu, J.; Poon, T. C. W.; Ng, S. S. M.; Sung, J. J. Y. Differential Expression of MicroRNAs in Plasma of Patients with Colorectal Cancer: A Potential Marker for Colorectal Cancer Screening. *Gut* **2009**, *58* (10), 1375–1381.
- (132) The Need for Awareness of Clinical Research. NIH Clinical Research Trials and You.https://www.nih.gov/health-information/nih-clinical-research-trials-you/need-awareness-clinical-research (accessed 2021-08-30).
- (133) Koga, Y.; Yasunaga, M.; Takahashi, A.; Kuroda, J.; et al. MicroRNA Expression Profiling of Exfoliated Colorectalocytes Isolated from Feces for Colorectal Cancer Screening. *Cancer Prev. Res. Phila. Pa* **2010**, 3 (11), 1435–1442.
- (134) Flynn, R. A.; Pedram, K.; Malaker, S. A.; Batista, P. J.; et al. Small RNAs Are Modified with N-Glycans and Displayed on the Surface of Living Cells. *Cell* **2021**, *184* (12), 3109–3124.
- (135) Hishii, M.; Matsumoto, T.; Arai, H. Diagnosis and Treatment of Early-Stage Glioblastoma. *AACsian J. Neurosurg.* **2019**, *14* (2), 589–592.
- (136) Banks, W. A.; Sharma, P.; Bullock, K. M.; Hansen, K. M.; Ludwig, N.; Whiteside, T. L. Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. *Int. J. Mol. Sci.* **2020**, *21* (12), 4407.
- (137) Osada, T.; Uehara, H.; Kim, H.; Ikai, A. MRNA Analysis of Single Living Cells. J. Nanobiotechnol. 2003, 1, 2.
- (138) Fisher, R.; Pusztai, L.; Swanton, C. Cancer Heterogeneity: Implications for Targeted Therapeutics. *Br. J. Cancer* **2013**, *108* (3), 479–485.