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ABSTRACT 

Hyperactivity is observed in early Alzheimer’s disease (AD) in multiple brain regions, including 

the visual cortex. We recently found that the postsynaptic structures favor visual cortex 

hyperactivity, which disrupts functional connectivity and leads to visual recognition memory 

deficits in a mouse AD model. It is unclear whether presynaptic structures also favor 

hyperactivity and whether hyperactivity depends on the target or source of presynaptic terminals. 

In addition, it is not well understood whether the functional connectivity of brain regions under 

nonpathological conditions predicts their hyperactivity in amyloid pathology. We used c-Fos 

immunolabeling under resting state conditions to map brain-wide neural activity and performed 

network analysis. We also quantified excitatory and inhibitory presynaptic terminals in 

hyperactive and non-hyperactive brain regions.We found that hyperactivity in the visual network 

originates in the cortex, and brain regions highly connected to the primary visual cortex in 

nonpathological conditions tend to be hyperactive in amyloid pathology. Immunolabeling 

presynaptic terminals from subcortical and cortical neurons show that the source rather than the 

target brain regions determine the vulnerability of synapses. Furthermore, we observed a 

reduction in presynaptic structures selectively in the hyperactive region, indicating presynaptic 

changes are unfavorable to hyperactivity. Brain regions with higher functional connectivity 

under nonpathological conditions are vulnerable to hyperactivity in amyloid pathology. 

Furthermore, presynapse loss may serve as an adaptation to maintain neuronal activity 

homeostasis. 
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INTRODUCTION 

Neuronal hyperactivity occurs early in some Alzheimer’s disease (AD) patients and mouse 

models of amyloidosis[1-21]. Multiple cellular and synaptic mechanisms, including structural 

synaptic changes, increased excitation, reduced inhibition, altered intracellular calcium levels or 

extracellular glutamate levels are associated with hyperactivity[1, 2, 6-8, 10, 11, 13-16, 22-44]. 

Hyperactivity elicited by disruption of any of these factors may occur independently in different 

brain regions. Alternatively, hyperactivity originating in a brain region may spread globally due 

to properties of network connectivity. Consistently, the highly connected default mode network 

has been found to be hyperactive in AD patients[4, 45-50]. Hyperconnectivity and hyperactivity 

may influence each other under pathological states, but the extent to which functional 

connectedness under nonpathological conditions predispose circuits to hyperactivity in 

amyloidosis is unclear. 

 Neuronal hyperactivity is observed in circuits beyond the default mode network and the 

hippocampus[1, 21, 23, 51-55]. The visual cortex is one of the understudied brain regions in the 

context of AD due to the absence of gross structural deficits in this brain region until very late 

stages[56-59]. However, in some patients the visual cortex is affected early in the disease 

progression, and these patients exhibit profound visuospatial defects[60-72]. Neuronal 

hyperactivity and is also observed in the visual cortex of AD patients[52, 54, 60, 73]. Likewise, 

many mouse models of AD exhibit structural and functional deficits in the visual cortex[1, 2, 23, 

51, 53, 74-81]. We recently found that visual cortex hyperactivity disrupts local functional 

connectivity and impairs visual recognition memory in a mouse model of amyloidosis[1]. 

Interestingly, the changes to excitatory and inhibitory postsynaptic densities favored 

hyperactivity[1]. However, it is unclear whether presynaptic structures are differentially 
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influenced by hyperactivity. Since hyperactive regions progress to a hypoactive state in AD[22, 

46, 82-87], increased hyperactivity favored by postsynaptic structures could be compensated by 

loss of presynaptic structures, leading to eventual hypoactivity.  

 Using visual network as a model, we test whether functional connectedness under 

nonpathological conditions favors hyperactivity, which in turn lead to the loss of presynaptic 

terminals in a mouse model of amyloidosis (J20 line) at a pre-plaque stage. Using immediate 

early gene expression-based network mapping, we found that functional connectedness under 

nonpathological conditions is a significant predictor of network hyperactivity. We additionally 

found that hyperactivity is associated with localized loss of specific excitatory presynaptic 

markers, indicating that presynaptic changes oppose hyperactivity. Interestingly, the loss of 

presynaptic terminals is not dependent on hyperactivity in their target brain region, indicating 

that cell-intrinsic properties may influence synapse loss.  

MATERIALS AND METHODS 

ANIMALS 

All animal procedures are approved by the University of Kansas Institute of Animal Use and 

Care Committee and meet the NIH guidelines for the use and care of vertebrate animals. PDGF-

hAPP transgenic mice (J20 line; Gladstone) were maintained as heterozygotes for the hAPP 

transgene by breeding heterozygous J20 male mice with WT female mice. A maximum of five 

mice were housed in a standard cage. Mice were housed on a 12h-light/12h-dark cycle. 

TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY 

Mouse cages were brought to the surgical suite at least five hours before brain extractions to 

avoid capturing c-Fos expression elicited by movement or contextual novelty. 3.5-6-month-old 

(synapse immunohistochemistry) or 5-6-month-old (c-Fos immunohistochemistry) J20-hAPP 
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and WT littermate mice were deeply anesthetized by intraperitoneal injection of 2% avertin in 

phosphate-buffered saline (PBS), pH 7.4 and transcardially perfused with cold PBS followed by 

4% paraformaldehyde. The brains were extracted and post-fixed in 4% PFA overnight at 4°C, 

followed by storage in PBS. For 40μm slicing, the brains were embedded in 4% oxidized agarose 

as previously described[88] to limit artifacts during sectioning and sliced on a vibratome (Leica 

VT1000 S). For 20μm slicing, brains were cryoprotected overnight at 4°C in 15% (w/v) and then 

in 30% (w/v) sucrose in phosphate buffer (PB). The brains were sectioned coronally on a 

microtome (Leica SM 2010R) and collected in PBS with sodium azide (0.02%). 

24 evenly spaced 40μm slices from each brain spanning the posterior midbrain to the 

anterior olfactory bulb were fluorescently immunolabeled for c-Fos, and 3 evenly spaced 20-

40μm slices spanning the VIS, AUD, and LGD (1-2 slices for each region per mouse) were 

fluorescently immunolabeled for VGAT, VGluT1, and VGluT2. Sections were permeabilized for 

2h at room temperature in a 1% TritonX-100 and 10% normal goat serum (NGS) solution in PBS 

followed by incubation with rabbit anti-c-Fos (1:1000, CST) or rabbit anti-VGAT (1:1000, 

Synaptic Systems), mouse anti-VGluT1 (1:2000, Sigma), and guinea pig anti-VGluT2 (1:1000, 

Sigma) in a PBS solution containing 0.1% TritonX-100 and 5% NGS overnight at 4°C. Sections 

were then washed 3X with PBS and incubated with Alexa 555-conjugated goat anti-rabbit 

antibody (1:2000; Fisher) for c-Fos immunohistochemistry or Alexa 488 conjugated goat anti-

rabbit antibody (1:2000, Fisher), Alexa 555-conjugated goat anti-mouse antibody (1:2000, 

Fisher), and Alexa 647-conjugated goat anti-guinea pig antibody (1:2000, Fisher) for two hours 

in a PBS solution containing 0.1% TritonX-100 and 5% NGS at room temperature, followed by 

three washes with PBS before mounting on glass slides. Slices were imaged using an 

ImageXpress Pico automated imaging system (Molecular Devices, San Jose, CA) with a 10x 
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objective for c-Fos acquisition (Leica HC PL FLUOTAR 10x/0.32) and a 63x objective for 

presynaptic termini acquisition (Leica HC PL FLUOTAR 63x/0.70 CORR). 

ANALYSIS 

Slice registration, cell/synapse detection, and brain region area measurements were performed 

using NeuroInfo software (MBF Bioscience, Williston, VT). 12-bit slice images were first 

mapped in 3D to the Allen CCF v3 to allow automated cell/synapse detection and area 

measurement by region. A total of 31 regions covering the entire cerebral cortex, cerebral nuclei, 

interbrain, and midbrain, and 17 subregions of the visual network were mapped for analysis. 

Bright circular objects against a darker background were automatically detected using a scale-

space analysis of the response to Laplacian of Gaussian (LoG) within the expected range of 

labeled cell body or synaptic puncta diameters as described[89]. Briefly, cells/synapses were 

filtered out from all identified objects with a user-defined threshold based on the strength of the 

LoG response within an expected range of cell body diameters. The LOG threshold value was set 

at LoG threshold = 55 for cell bodies and 101 for all synapses (range 0-255). Only objects above 

this LoG strength threshold were included in the analysis to minimize false positives. All regions 

in both hemispheres of the 24 brain-wide slices were analyzed for c-Fos+ cell detection. For 

synapse quantification, 1-2 ~230 x 900μm columns per mouse spanning all layers of the VIS or 

AUD were analyzed, and 1-2 ~230 x 375μm columns per mouse spanning the ventral to dorsal 

LGD were analyzed. Automatically identified cells and synapses were manually proofread, and 

remaining false positive identifications were removed before analysis. Cell/synapse density for 

each mouse was calculated by dividing the total number of cells or synapses per region by the 

area per region across all slices for each brain (24 slices for c-Fos, 2-3 slices for synapses). 

Localized areas containing artifacts were excluded from analysis. 8 WT (6 males, 2 females) and 
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9 hAPP mice (4 males, 5 females) were used for c-Fos+ cell density analysis, and 14 WT (9 

males, 7 females) and 12 hAPP mice (6 males, 6 females) were used for presynaptic density 

analysis. GePhi (Association GePhi, London, England) was used to produce circular network 

graphs and network statistics. Representative images were generated in FIJI (NIH, Bethesda, 

MD), and all other figures and statistical tests were produced in GraphPad Prism (GraphPad 

Software, San Diego, CA). 

RESULTS 

VISUAL NETWORK HYPERACTIVITY IS LOCALIZED TO CORTICAL REGIONS IN HAPP 

MICE  

We recently found increased c-Fos+ cell density in the primary visual cortex in ~5-month-old 

hAPP-overexpressing mice compared to control siblings, indicating hyperactivity in pre-plaque 

stage amyloidosis[1]. Primary visual cortex hyperactivity may arise due to hyperactivity in 

subcortical structures that project to the visual cortex. In turn, the primary visual cortex may 

influence hyperactivity in other brain regions through their functional connections. Therefore, we 

characterized c-Fos+ cell density across 24 evenly spaced slices spanning the brain in hAPP mice 

and WT littermate controls (Figure 1A-C., see Supplementary Table 1 for region abbreviations). 

To test whether subcortical brain regions that project to visual cortex are hyperactive, we 

compared c-Fos+ cell density in the lateral geniculate nuclei and superior colliculus and found no 

significant difference between hAPP and WT mice (Figure 1D, left). However, c-Fos+ cell 

density was significantly increased in the primary visual cortex. Within the primary visual 

cortex, we compared c-Fos+ cell density between hAPP and WT mice in different layers to test 

whether hyperactivity originates in specific layers. We found that all layers, including layer 4, 

which receives subcortical inputs, show hyperactivity (Figure 1D, right). We next tested whether 
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hyperactivity is limited to the primary visual cortex or spread out in the rest of the higher visual 

cortical areas. We found that c-Fos+ cell density was significantly higher in all higher order 

visual cortical areas in hAPP mice (Figure 1D, right). These results indicate that visual network 

hyperactivity originates in cortex in early-stage amyloidosis. 

HYPERACTIVITY-ASSOCIATED SYNAPSE LOSS DEPENDS ON THE SOURCE OF 

PRESYNAPTIC INPUTS  

Increases and decreases in synaptic density are likely to enhance or lower regional neuronal 

activity, respectively. We first tested whether synaptic density differs between hAPP and control 

mice depending on the hyperactivity state of a brain region. We performed immunolabeling for 

excitatory presynaptic proteins of cortical and thalamic neurons (VGluT1 and VGluT2, 

respectively) and inhibitory presynaptic proteins (VGAT) in two visual network regions: the 

primary visual cortex (hyperactive) and the dorsal lateral geniculate nucleus (non-hyperactive) 

(Figure 2A). We found a significant reduction in VGluT1, but not VGluT2 or VGAT densities in 

hAPP mice in the primary visual cortex and a similar trend of reduction in the dorsal lateral 

geniculate nucleus (Figure 2B-D). Excitatory synapse loss from cortical neurons may be a global 

feature in hAPP mice, or it may preferentially occur within broadly hyperactive visual network. 

To test this possibility, we compared synapse densities in another primary sensory cortex, the 

auditory cortex, which is neither hyperactive in hAPP mice nor part of the visual network. 

Consistent with the idea that excitatory synapse loss is preferentially associated with network 

hyperactivity, we did not observe synapse loss in the auditory cortex (Figure 2B-D). 

Interestingly, the primary visual and auditory cortexes exhibit similar hAPP burden at this stage 

despite differences in activity and synaptic adaptation (Figure 2E). These results suggest that 
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presynaptic loss is likely to be a network-related adaptation to hyperactivity rather than a causal 

or brain-wide alteration in amyloidosis. 

VGluT2 in the visual cortex represents thalamic presynaptic inputs[90-92]. The lack of 

reduction in VGluT2 (thalamic synapses) density in the hyperactive primary visual cortex of 

hAPP mice suggests that the activity levels at the source (lateral geniculate nucleus) of 

presynaptic terminals rather than their target (visual cortex) may influence synapse loss. If this is 

the case, we expected that cortical synapses expressing VGluT1 in the non-hyperactive lateral 

geniculate nucleus in hAPP mice to be more reduced than VGlut2 expressing thalamic synapses. 

To test this, we normalized the synaptic density in individual hAPP mice to the average WT 

density for each synapse type. We found that the reduction in VGluT1 is higher than VGluT2 in 

both the visual cortex and lateral geniculate nucleus, though it did not reach statistical 

significance in the latter (p = 0.08; Figure 2F). These results indicate that presynaptic loss is not 

due to hyperactivity in their target brain regions. 

HYPERCONNECTIVITY WITHIN THE VISUAL NETWORK AND ACROSS THE BRAIN IN 

AMYLOIDOSIS 

Previous studies have shown hyperconnectivity in AD networks is associated with 

hyperactivity[9, 12, 22, 73]. To confirm if this is the case in hAPP mice, we compared functional 

connectivity, or correlated c-Fos+ cell densities between brain regions, both within the visual 

network and across the brain. Brain-wide and visual network functional connectivity matrices 

revealed a general increase in pairwise correlation strength between brain regions with the 

exception of the dentate gyrus (Figure 3A). Similar results were seen for the visual network, 

though the cortical correlations were high even in nonpathological condition (Figure 3B). We 

next filtered out regional pairwise activity correlations with a p-value > 0.05 and quantified the 
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number of remaining connections for each node (node degree) both across the brain and within 

the visual network (Fig 3C-D). We observed an average of a 1.9-fold increase in node degree, 

both across the whole-brain network and within the visual network.  

FUNCTIONAL CONNECTIVITY IN NONPATHOLOGICAL CONDITIONS ARE PREDICTIVE 

OF REGIONAL HYPERACTIVITY IN AMYLOIDOSIS 

Multiple brain regions in ~5-month-old hAPP mice show increased c-Fos+ cell density (Figure 

4A). Hyperactivity may emerge independently in these brain regions or may arise through their 

functional connectedness with another hyperactive region. To test whether functional 

connectedness could contribute to hyperactivity, we next investigated whether connection 

strength to the primary visual cortex under nonpathological conditions is predictive of regional 

hyperactivity and hyperconnectivity across the brain in amyloidosis. We observed a positive 

brain-wide correlation between regional connection strength (measured as Pearson’s r) to the 

primary visual cortex in the WT network and regional hyperactivity effect size in the hAPP 

network (Figure 4B, left). Consistently, regions with statistically significant functional 

connections to the primary visual cortex in WT mice displayed a higher mean effect size of 

hyperactivity in hAPP (Figure 4B, right). Likewise, functional connectivity strength to the 

primary visual cortex in the WT network trended towards positive correlation with node degrees 

in hAPP mice (Figure 4C, left). Consistently, regions with strong functional connections to the 

primary visual cortex on average formed 1.5-fold more functional connections across the brain 

than regions with weak or no functional connections to it (Figure 4C, right). These results 

indicate that functional connectivity under nonpathological conditions to a brain region that 

would become hyperactive in amyloid pathology partially determines their hyperactivity and 

hyperconnectivity phenotype in amyloidosis.  
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 Hyperactivity of a brain region in amyloidosis may also be proportional to the number of 

functional connections under nonpathological conditions. Therefore, we next asked whether 

regions that have a higher degree of resting state functional connectivity under nonpathological 

conditions, both within the visual network and across the brain, are generally more at risk of 

becoming hyperactive in amyloidosis. To test this, we correlated the resting state node degree of 

each region in WT mice with the effect size of hyperactivity of the same regions in hAPP mice, 

both within the visual network and across all brain regions (Figure 4D). Under both conditions, 

we observed a significant positive correlation between node degree in the WT network and 

hyperactivity effect size in hAPP mice.  

DISCUSSION 

Here we characterize brain-wide hyperactivity at the cellular level based on immediate early 

gene expression and identify that visual network hyperactivity in amyloidosis stems partly from 

functional connectedness under nonpathological conditions. We also found that VGluT1, but not 

VGluT2 or VGAT expressing synapses, are reduced in both hyperactive and non-hyperactive 

areas of the visual network, which exhibits broad cortical hyperactivity, but not the non-

hyperactive auditory cortex, which lies outside of the visual network. 

 Using in vivo imaging of excitatory and inhibitory postsynaptic structures in the visual 

cortex of hAPP mice, we recently found an increased ratio of excitatory to inhibitory synapses, 

indicating that structural synaptic changes favor visual cortex hyperactivity[1]. Therefore, we 

expected an increase in excitatory presynaptic structures as well. Surprisingly, we found that 

presynaptic structures harboring VGluT1 are reduced in the visual cortex of hAPP mice. This 

finding is consistent with a recent study showing reduced bouton density but unaltered 

postsynaptic spine density in the barrel cortex of the same mouse model[93]. Furthermore, 
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presynaptic terminals are more vulnerable at the initial stages of amyloid accumulation[94-101]. 

A reduction in bouton density but normal or elevated postsynaptic structures indicates that each 

presynaptic structure may be associated with multiple postsynaptic structures. Thus, early stages 

of amyloidosis could be associated with an increase in polysynaptic boutons. Polysynaptic 

boutons could reduce neuronal stimulus specificity and lead to memory interference. 

Consistently, we found that stimulus specificity is reduced in hAPP mice resulting in disrupted 

visual recognition memory due to interference[1]. Hippocampal-dependent memory interference 

is also observed in a different amyloid mouse model[102].  

 The reduction in excitatory presynaptic density could be due to the synaptotoxic effects 

of amyloid[103-108]. Inhibitory synapses have also been shown to be vulnerable to amyloid 

toxicity, but the results are not consistent[3, 25, 109-112]. Within the excitatory synapses, we 

found VGluT1 to be more vulnerable than VGluT2 in amyloid pathology. One possible cause 

could be the higher amyloid accumulation in VGluT1-containing boutons than in VGluT2-

containing boutons[113]. An alternative possibility is that VGluT1 predominantly reflects 

presynaptic terminals from cortical neurons[90, 91], which are hyperactive, whereas VGluT2 in 

the visual cortex arises from the lateral geniculate nucleus[90-92, 114, 115], which is not 

hyperactive. Hyperactivity alters calcium dynamics in presynaptic structures and may lead to 

synaptotoxicity[5, 24, 26, 27, 116-119]. Consistent with this possibility, the auditory cortex, 

which does not show significant hyperactivity in hAPP mice, likewise did not show VGluT1 

reduction. 

 A reduction in VGluT1 density in the non-hyperactive lateral geniculate nucleus and 

normal VGluT2 density in the hyperactive primary visual cortex suggests that hyperactivity at 

the source of these presynaptic terminals rather than at their target may lead to synapse loss. 
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Therefore, we speculate that cell-intrinsic mechanisms, such as altered presynaptic calcium 

dynamics[5, 24, 120-123], rather than cell-extrinsic mechanisms, such as microglia-mediated 

synapse removal[123-127], may be involved in the hyperactivity-associated presynaptic loss. A 

loss in presynaptic terminals would serve to counteract hyperactivity. Consistently, hyperactive 

regions tend to become more hypoactive with disease progression[22, 46, 82]. Hyperactivity-

induced synapse loss is consistent with the observation that functional abnormalities precede 

structural abnormalities in AD[128-134]. 

  An imbalance in excitation and inhibition triggers hyperactivity. However, there is 

considerable heterogeneity among brain regions in disrupting these synapse types[109-111, 135-

137]. The interconnected nature of brain networks allows hyperactivity to spread to multiple 

brain regions without requiring local synaptic disruption. Therefore, excitatory-inhibitory 

disruption occurring in a hub brain region, which influences the activity of many brain structures, 

is likely to be more consequential in the spread of hyperactivity[28, 138-142]. In AD patients, 

hyperconnectivity and hyperactivity are observed in resting-state functional networks[4, 45, 128, 

138, 143-145]. Furthermore, hub regions are more vulnerable to amyloid accumulation and 

neurodegeneration[138, 139, 143, 144, 146-150]. However, when both hyperactivity and 

hyperconnectivity occur, it is difficult to delineate whether increased connectivity precedes 

hyperactivity or vice versa, though the selective vulnerability of hub regions indicates that 

increased connectivity predisposes circuits to a pathological state. Once a brain region becomes 

hyperactive, activity-dependent amyloid production could further exacerbate hyperactivity 

leading to hyperconnectivity [17, 151, 152], and the vicious cycle that ensues would lead to 

synaptic and neurotoxicity. Consistently, we found that brain regions that are highly functionally 

connected under nonpathological conditions tend to become more hyperactive in amyloid 
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pathology, indicating that high connectivity favors the spread of hyperactivity. Functional 

connectivity to an impaired hub region could lead to hyperactivity in a brain region even if it 

lacks a direct structural connection with the hub. With multiple brain regions targeted by the 

same hub, coactivated activity flow could occur through multiple pathways, thus increasing the 

likelihood of hyperactivity. The association of higher functional connectivity with hyperactivity 

and subsequent accumulation of amyloid and synaptic failure indicates that randomly generated 

transient hyperactivity in hub regions may contribute to idiopathic AD when stabilized by the 

aforementioned vicious cycle. 
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FIGURE LEGENDS 

Figure 1: Amyloidosis-associated neuronal hyperactivity emerges in cortical areas of the 

visual network. A) Representative images of 24 evenly spaced landmark slices used for brain-

wide c-Fos+ cell density quantification. B) Representative image of Allen CCFv3 brain region 

overlay following semiautomated slice registration. C) Representative images of c-Fos 

fluorescence in the primary visual cortex of J20-hAPP mice (right) and WT littermate controls 

(left). The blue box is magnified below. Blue circles indicate c-Fos+ cells identified by automatic 

cell detection. Scale bar: 1mm (top), 100µm (bottom). D) c-Fos+ cell density across subcortical 

(left) and cortical (right) regions of the visual network. Data are presented as mean ± SEM, 

multiple t-tests with Benjamini-Hochberg FDR correction for all regions combined, *q-value < 

0.05. n = 8 wild type (WT), 9 J20-hAPP mice. 

Figure 2: Excitatory cortical synapse loss is associated with hyperactivity A) Representative 

images of synaptic immunohistochemistry labeling VGluT1 (top left), VGluT2 (top right), 

VGAT (bottom left), and merged channels (bottom right) in the primary visual cortex, layer 2/3. 

Circles indicate puncta identified by automated synapse detection. Scale bar: 5µm. B-D) Density 

of VGluT1 (B), VGluT2 (C), and VGAT (D) in primary visual cortex (VISp), dorsal lateral 

geniculate nucleus (LGD), and primary auditory cortex (AUD). E) Representative images of 

amyloid-β immunofluorescence with 6E10 antibody in the primary visual cortex (left) and 

auditory cortex (right). Scale bar: 100µm. F) hAPP-wild type (WT) ratio of the densities of 

VGluT1 and VGluT2 puncta. Data are presented as mean ± SEM, student’s t-tests, *p-value < 

0.05, # p-values between 0.05 and 0.1 displayed. n = 14 WT, 12 hAPP mice (primary visual 

cortex and auditory cortex). n = 13 WT, 11 hAPP mice (dorsal part of the lateral geniculate 

nucleus) 
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Figure 3: Amyloidosis increases functional hyperconnectivity across the brain and within 

the visual network. (A-B) Resting state functional connectivity matrices showing pairwise 

correlation (Pearson’s r) of c-Fos+ activity between regions across (A) the brain and (B) the 

visual network for wild type (WT; left) and hAPP mice (right). Region label color indicates 

anatomical brain area. (C-D) Resting state functional connections (p-value < 0.05) across (C) the 

brain and (D) the visual network in WT (left) and hAPP mice (right). Node color indicates 

anatomical brain area, node size indicates degree rank. E) Node degrees of selected brain regions 

across the brain (left) and visual network (right). Paired t-tests, ***p-value < 0.001, ****p-value 

< 0.0001. n = 8 WT, 9 hAPP mice. 

Figure 4: Brain-wide WT resting state connectivity patterns predict regional amyloidosis-

induced hyperactivity and hyperconnectivity A) Effect size (Cohen’s d) of hyperactivity 

across the brain in hAPP mice. Dotted lines at d =0.8 and -0.8. B) Correlation of each region’s 

functional connection strength (Pearson’s r) to the visual cortex from regions across the brain in 

the wild type (WT) network with effect size of hyperactivity in hAPP mice (left). Linear 

regression with 95% confidence intervals shown. Hyperactivity effect sizes of regions that are 

(VIS connection+) or are not (VIS connection-) functionally connected (p-value < 0.05) to the 

visual cortex in the WT network (right). Data presented as mean ± SEM, Welch’s t-test. C) 

Correlation between functional connection strength to the visual cortex in the WT network and 

node degrees in the hAPP network (left). Linear regression with 95% confidence intervals 

shown. Regions that are functionally connected to the visual cortex in the WT network show 

higher node degree in the hAPP network compared to regions that are not (right). Data presented 

as mean ± SEM, Welch’s t-test. D) Correlation between each region’s node degree in WT mice 

and the regional effect size of hyperactivity in hAPP mice within the visual network (left) and 
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across the brain (right). Linear regression with 95% confidence intervals shown. *p-value < 0.05, 

***p-value < 0.001, n = 8 WT, 9 hAPP mice. 
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