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One of the main objectives of synthetic biology is the development of molecu-
lar controllers that can manipulate the dynamics of a given biochemical
network that is at most partially known. When integrated into smaller com-
partments, such as living or synthetic cells, controllers have to be calibrated
to factor in the intrinsic noise. In this context, biochemical controllers put for-
ward in the literature have focused on manipulating the mean (first moment)
and reducing the variance (second moment) of the target molecular species.
However, many critical biochemical processes are realized via higher-order
moments, particularly the number and configuration of the probability distri-
bution modes (maxima). To bridge the gap, we put forward the stochastic
morpher controller that can, under suitable timescale separations, morph the
probability distribution of the target molecular species into a predefined
form. The morphing can be performed at a lower-resolution, allowing one
to achieve desired multi-modality/multi-stability, and at a higher-resolution,
allowing one to achieve arbitrary probability distributions. Properties of the
controller, such as robustness and convergence, are rigorously established,
and demonstrated on various examples. Also proposed is a blueprint for
an experimental implementation of stochastic morpher.
1. Introduction
Synthetic biology is a growing interdisciplinary field of science and engineering
whose aims include control of living cells [1–8] and design of synthetic cells
with predefined behaviours [9–13]. Key to achieving such goals are nucleic acids
(DNA and RNA molecules). In particular, one approach to controlling living cells
is bymanipulating the dynamics of nucleic acids in the underlying gene-regulatory
networks [2–4,6,7]. On the other hand, a large class of biochemical networks can be
dynamically realized using DNA/RNA molecules [14,15], which can then be
encapsulated inside vesicles, forming pre-programmed synthetic cells [9–13]. At
the centre of this nucleic-acid-based synthetic biology (also called DNA/RNA
computing) is the highly programmable toehold-mediated strand-displacement
mechanism, involving a single-stranded nucleic acid displacing another one from
a duplex in accordance with the Watson–Crick base-pairing [14,16–18]. Strand-
displacement reactions alsoplay important roles inside living cells [19–21], allowing
one to interface synthetic and intracellular DNA/RNA systems [6,7].

Manipulating the dynamics of cells in vivo, and designing their synthetic
counterparts in vitro, are complementary goals of synthetic biology, both invol-
ving overcoming nonlinear, non-modular and stochastic nature of biochemical
networks [2]. In particular, when biochemical systems are integrated into
smaller-volume compartments, such as living or synthetic cells, the lower
copy-numbers of some of the underlying species give rise to intrinsic noise
[9–11,22–26]. The induced stochasticity requires theoretical and experimental
methods (see section S1 in the electronic supplementary material and §5,
respectively) which are more involved than their larger-volume (deterministic)
counterparts [14,15,27]. In this context, a central problem is the development of
a controller network that, when embedded into a given input network, ensures
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Figure 1. Schematic representation of biochemical control. An input
network, Ra ¼ Ra(X ), is shown in black. The input species
X ¼ {X1, X2, . . . , XN} are divided into two mutually exclusive sets: the
target species X t ¼ {X1, X2, . . . , Xn}, that can be explicitly (directly) tar-
geted by the controller and are shown in yellow, and the residual species
Xr ¼ {Xnþ1, Xnþ2, . . . , XN}, that can be only implicitly (indirectly)
affected by the controller and are shown in white. The coupling between
the input species is unknown (respectively, is only partially known) for a
black-box (respectively, grey-box) input network. A known coupling between
X1 and Xn+2 is depicted as a white dashed double-arrow. A controller is
shown, consisting of the sub-network Rb ¼ Rb(Y), called the core,
and Rg ¼ Rg(X t, Y), called the interface, displayed in green and red,
respectively. The controller core Rb specifies how the controlling species
Y ¼ {Y1, Y2, . . . , YM}, introduced by the controller and shown in
purple, interact among themselves, and is depicted as the green double-
arrows. On the other hand, the controller interface Rg specifies how the
controlling species are coupled with the target species, which is displayed
as the red double-arrows. Embedding the controller Rb,g ¼ Rb <Rg

into the input network Ra gives rise to the output network
Ra <Rb <Rg.
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that the resulting output network executes a predefined
stochastic dynamics in a stable and accurate manner, see
figure 1. Importantly, the structure and dynamics of
the input network are either unknown (black-box) or
only partially known (grey-box). Stochastic control can be
sought over probability distributions of the desired biochemi-
cal species (weak control), or at the level of the underlying
sample paths (strong control). See also section S2 in the
electronic supplementary material, where we rigorously
formulate concepts for stochastic biochemical control.

Molecular controllers must satisfy a set of constraints
arising from biochemistry in order to be experimentally
realizable. At the structural level, controllers should consist of
up to second-order (bi-molecular) reactions [28]; at the kinetic
level, the underlying reaction rates should be tunable over a
sufficiently large range. At the dynamical level, assuming stab-
ility, a controller is said to be robust if the dynamics of desired
species in the output network does not explicitly depend on
the initial conditions, nor on the rate coefficients from the
input network; if these two conditions are satisfied only up to
an arbitrarily small error under a suitable timescale separation,
then the controller is said to be quasi-robust, see section S2 in the
electronic supplementary material for more details. (Quasi-)
robustness ensures that the output network accurately traces
the predefined dynamics even when the initial conditions are
unknown or experimentally difficult to manipulate. For
example, the division of a living cell induces extrinsic noise
into the initial conditions of thedaughter cells [22]; analogously,
designing synthetic cells can involve dividing biochemical
systems from test-tubes into a larger numberof cell-like vesicles
with a limited accuracy [9–11]. (Quasi-)robustness also ensures
that the predefined dynamics can be achieved by fine-tuning
the rate coefficients in the controller without having to
know the unknown and uncontrollable rate coefficients from
a black-box input network. Dynamics achieved under (quasi-)
robust controllers are said to display (quasi-)robust adaptation,
and plays important roles in biology, e.g. in cell signalling, gly-
colysis and chemokinesis [29–34]; the same is true for timescale
separations (slow-fast dynamics), which underpin biochemical
multi-stability, oscillations and bifurcations [22–25,27,35–38].

(Quasi-)robust biochemical controllers developed in the
literature have been predominantly focused on manipulating
the stationary mean (first-moment) of the target species
[39–42] and reducing their stationary variance (second-
moment) [43,44]. This approach is a step forward from con-
trolling the deterministic dynamics to which the underlying
stochastic dynamics converges in the thermodynamic limit
[45]. However, many important biochemical phenomena,
such as cellular differentiation and memory, quorum sensing,
bacterial chemokinesis and antibiotic resistance, are realized
via higher-order moments of the underlying probability dis-
tributions [24,25,35,37,46–48]. For example, as a consequence
of containing a gene that can stochastically and transiently
(reversibly) switch between two different states, some cells
can produce a key regulatory protein whose abundance fol-
lows a probability distribution with two modes (maxima),
with each of the modes giving rise to a distinct transient cell
phenotype. The genetic bi-modality thus gives rise to a bi-
phenotypic population of cells that can have a higher chance
of surviving a changing environment [46]; for example, this
phenomenon allows some bacteria to persistently survive anti-
biotic treatments [48]. In this context, particularly important is
the number and configuration of the modes present in the
probability distributions of the molecular species, and the
timing and pattern of stochastic switching in the underlying
sample paths. Such dynamically exotic and biochemically
important phenomena cannot be ensured using controllers
that target only the mean and variance.

To bridge the gap, we put forward a quasi-robust control-
ler called stochastic morpher, presented algorithmically in
section S3 in the electronic supplementary material. Stochastic
morpher consists of a suitable faster interfacing sub-network
de-signed to override the underlying black-box input network
and, together with a suitable slower core sub-network, gradu-
ally transform (morph) the probability distribution of the
desired species into a predened form. This control architecture
is based on the phenomenon called noise-induced mixing [25]
that some gene-regulatory networks utilize in vivo [37].
Control may be achieved at two different levels: the lower-
resolution stochastic morpher incorporates simple production
and degradation of the target species as its faster sub-network
that, in combination with noise-induced mixing, allows one to
achieve multi-modal probability distributions with desired
number and configuration of the modes (weak control), and
with controlled average timing and mode-switching pattern
in the underlying multi-stable sample paths (strong control).
The higher-resolution stochastic morpher involves a more
complicated faster interfacing network, and can achieve
arbitrary probability distributions.

The rest of the paper is organized as follows. In §2,we apply
stochastic morpher on the one-species test network (2.1). In §3,
we focus on the lower-resolution control in greater detail, by
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explicitly controlling two target species from the three-species
test network (3.1). In §4, we apply stochastic morpher on the
gene-expression network (4.1), and demonstrate how implicit
control can be achieved. In particular, we explicitly influence
the mRNA (target species) in a suitable way, ensuring that the
translated protein (residual species) is implicitly controlled. In
§5, we put forward a blueprint for an experimental realization
of stochastic morpher using DNA strand-displacement nano-
technology in order to achieve a bi-phenotypic synthetic cell.
Finally, we conclude by presenting a summary and discussion
in §6. The notation and background theory utilized in the paper
are introducedasneededandare summarized in sections S1–S2
in the electronic supplementarymaterial. General properties of
stochastic morpher, outlined via specific examples in §2–4, are
rigorously established in Sections S4–S6 in the electronic sup-
plementary material.
Interface
18:20200985
2. Production–degradation input network
Consider the one-species uni-molecular input network
R1

a ¼ R1
a(X), given by

R1
a :�O

a1

a2
X, (2:1)

where we adopt the convention of denoting two irreversible
reactions (e.g.� ! X and X ! �) jointly as a single reversible
reaction (e.g. �O X). In this paper, biochemical species, and
their copy-numbers as a function of time t, are represented
with upper-case letters (such as X, and X(t), respectively),
while the copy-number values are denoted by the corres-
ponding lower-case letters (such as x). Symbol � denotes
biochemical species that are not explicitly taken into an account.
Furthermore, we assume reaction networks are under mass-
action kinetics [49], with the positive dimensionless rate
coefficients displayed above/below the reaction arrows.

In what follows, we fix the (dimensionless) rate coefficients
of the input network R1

a(X) to α = (α1, α2) = (1, 1/15). The
stationary probability-mass function (PMF) of (2.1), describing
the long-time dynamics of the input network and denoted by
p∞(x), is given by the Poisson distribution with mean (centred
at) α1/α2 [26], denoted by p1(x) ¼ P(x; a1=a2). For the particu-
lar choice of the rate coefficients, the Poisson PMF is centred at
x = α1/α2 = 15 and is shown as the black dots in figures 2 and 3,
which are interpolated with solid black lines for visual clarity.
In the rest of this section,we embeddifferent forms of stochastic
morpher into the input network (2.1) in order to desirably
influence the dynamics of the species X and showcase the
capabilities of the controller. Network (2.1) can be interpreted
as a simplifiedmodel of genetic transcription,withX represent-
ing an mRNA species being transcribed and degraded, see §4
for a more-detailed model.

2.1. Lower-resolution control
2.1.1. Uni-modality
Consider the stochastic morpher Rb <RP

g ¼ Rb(Y1)<
RP

g (X; Y1), given by

Rb : 2Y1 �!
b1,1

Y1,

RP
g :R1

g0
: X�!g0=1�,

R1
g1
: Y1 �!g1=1Y1 þ X, (2:2)
where X is the target species and Y1 is the controlling species;
see figure 1 for a general set-up. Controller (2.2) consists
of two sub-networks: the core network Rb (Y1), describing a
bi-molecular degradation of Y1, and the interfacing network
RP

g (X; Y1) ¼ R1
g0
(X; �)<R1

g1
(X; Y1), describing a degra-

dation of X, and a production of X catalysed by Y1. To
emphasize the catalytic role of Y1 in R1

g1
, we write

R1
g1
¼ R1

g1
(X; Y1); since R1

g0
is not catalysed by Y1, we write

R1
g0

¼ R1
g0
(X; �). Let us note that reaction R1

g0
is implicitly

assumed to be of the form Y0 +X→Y0, where the abundance
of an additional controlling species Y0 is absorbed into an
effective rate coefficient γ0/ε; see also remarks at the end of
this section. The super-script P from RP

g stands for the Poisson
distribution, as motivated shortly.

In what follows, we analyse the output network
R1

a <Rb <RP
g , obtained by embedding the stochastic

morpher (2.2) into the input network (2.1), which we denote
by (2.1)< (2.2). Assuming the copy-number of Y1 is initially
non-zero, the purpose of network Rb(Y1) is to fire until the
unit copy-number y1 = 1 is reached; the stationary marginal
PMF of the target species X from (2.1)–(2.2) is then given by
p1(x) ¼ P(x; (g1 þ 1a1)=(g0 þ 1a2)), implying that

p1(x) ¼
P x; a1

a2

� �
, as 1 ! 1,

P x; g1
g0

� �
, as 1 ! 0:

8<
: (2:3)

Therefore, as the interfacing networkRP
g fires faster, the input

networkR1
a is over-ridden, and the stationary x-marginal PMF

of the output network R1
a <Rb <RP

g is gradually trans-
formed (morphed) from the Poisson PMF centred at x =
α1/α2 to the Poisson PMF centred at x = γ1/γ0. Note that this
uni-modal morphing controls the first-moment (mean) of the
output network. In figure 2a, we display the long-time
x-marginal PMFs for different values of ε, with the coefficients
from Rb(Y1) and RP

g (X; Y1) fixed to β1,1 = 1 and γ = (γ0, γ1) =
(1, 30), respectively. In particular, the long-time PMF is a
Poisson distribution centred at x = 24 when ε = 10, shown as
the purple squares which, in accordance with (2.3), converges
close to the Poisson distribution centred at x = γ1/γ0 = 30 when
ε = 10−2, shown as the cyan histogram in figure 2a. A represen-
tative sample path corresponding to the histogram is displayed
in figure 2b, together with the mean which is shown as a
red dashed line. The sample path is displayed over a shorter
time interval, allowing for the timescale of the underlying
fluctuations around the mean to be more discernible.

2.1.2. Bi-modality
Consider now the stochastic morpher Rb(Y1, Y2)<RP

g (X;
Y1, Y2), given by

Rb : 2Y1 �!
b1,1

Y1 O
b1,2

b2,1

Y2,

RP
g :R1

g0
: X�!g0=1�,

R1
g1
: Y1 �!g1=1Y1 þ X,

R1
g2
: Y2 �!g2=1Y2 þ X: (2:4)

Sub-network Rb(Y1, Y2) describes first-order conversion
between the two controlling species Y1 and Y2, with the reac-
tion 2Y1→Y1 ensuring that the species Y1 and Y2 satisfy the
conservation law (y1 + y2) = 1 in the long run. On the other
hand, sub-network RP

g (X; Y1, Y2) involves two production
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Figure 2. Application of the lower-resolution stochastic morpher on the input network (2.1) with (α1, α2) = (1, 1/15). The stationary PMF of the input network is
displayed as the interpolated black dots. (a) Numerically obtained long-time x-marginal PMF of the output networks (2.1)< (2.2) with β1,1 = 1, (γ0, γ1) = (1, 30),
and different values of ε. (b) Displays a representative sample path corresponding to the cyan histogram from (a), obtained by applying the Gillespie
algorithm [50], together with the stationary mean (first moment), shown as a red dashed line. Analogous plots are shown for the output networks
(2.1)< (2.4) with (γ0, γ1, γ2) = (1, 5, 30) and (β1,1, β1,2, β2,1) = (1, 1/2, 1/2) (as well as (β1,1, β1,2, β2,1) = (1, 1, 1)) in (c,d), while with (β1,1,
β1,2, β2,1) = (1, 5/6, 1/6) in (e,f ). Finally, (g,h) show the plots for the output networks (2.1)< (2.6) with (γ0, γ1, γ2, γ3) = (1, 5, 55, 30) and (β1,1, β1,2, β2,3,
β3,1) = (1, 1/3, 1/3, 1/3).
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reactions for the species X, one catalysed by Y1 and the other
by Y2. Ignoring the reaction 2Y1→Y1, note that (2.4) can be
interpreted as describing a gene switching between two
different states Y1 and Y2, and producing an mRNA species
X at different rates [25,37].

When (y1, y2) = (1, 0), reaction R1
g2

from (2.4) cannot fire,
and the remaining faster reactions generate the Poisson
PMF centred at x = γ1/γ0; analogously, when (y1, y2) = (0, 1),
the Poisson PMF centred at x = γ2/γ0 is induced. As the con-
trolling species Y1 and Y2 convert between themselves, they
mix the two Poisson PMFs and over-ride the input network
(2.1); the resulting long-time x-marginal PMF of the output
network (2.1)< (2.4) is close to

q(x) ¼ 1þ b1,2

b2,1

� ��1

P x;
g1
g0

� �
þ 1þ b2,1

b1,2

� ��1

P x;
g2
g0

� �
,

as 1 ! 0, (2:5)

see theorem S5.1 in section S5 in the electronic supplementary
material for a general result. Let us stress that bi-modality in
(2.5) is achieved by exploiting the stochasticity and discreteness
of the controlling species Y1 and Y2; see [25] for more details
on this noise-induced mixing phenomenon. In particular, the
output networks (2.1)< (2.4) displays a drastically different
behaviour at the deterministic level (reaction-rate equations
[49]): as a consequence of the deterministic dynamics and
continuous abundances, the target species X is uni-stable with
the unique equilibrium approaching zero as ε→ 0.

PMF (2.5) is a linear combination of two Poisson distri-
butions (bases), whose modes are controlled with the rate
coefficients γ from the interfacing network RP

g (X; Y1, Y2),
while the PMF values at the modes (weights in (2.5)) are con-
trolled with the rate coefficients β from the controller core
Rb(Y1, Y2). In particular, PMF (2.5) is independent of the
asymptotic parameter ε, and depends on β1,2 and β2,1 only via
the ratio β1,2/β2,1, which determines the PMF values at
the two modes, which in turn depend on the ratios γ1/γ0 and
γ2/γ0. However, the underlying sample paths do depend on ε,
which determines the timescale of the fluctuations near each
of the two modes, and on the parameters β1,2 and β2,1, which
influence the sample paths independently and not only via
their ratio. In particular, for a fixed ratio β1,2/β2,1, the value of
β1,2 determines the timescale of stochastic switching between
the twomodes: given the system has started near γ1/γ0, it deter-
ministically moves to a neighbourhood of γ2/γ0 after a random
holding time which is exponentially distributed with mean
1/β1,2. These observations are instances of the fact that PMFs
do not uniquely capture time parametrizations of the under-
lying sample paths, which we exploit for gaining strong
control. Given a fixed ratio β1,2/β2,1, the precise values of the
coefficients can be fixed with the constraint β1,2 + β2,1 = c > 0;
unless otherwise stated, we set c = 1.
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Let us set the two target modes for networks (2.1)< (2.4)
to x = γ1/γ0 = 5 and x = γ2/γ0 = 30, which is achieved by
choosing e.g. γ = (γ0, γ1, γ2) = (1, 5, 30). In figure 2c, we display
the corresponding long-time x-marginal PMFs for different
values of ε, with (β1,1, β) = (β1,1, β1,2, β2,1) = (1, 1/2, 1/2)
chosen so that the two Poisson distributions from (2.5) have
equal weights. One can notice that the uni-modal input
PMF is morphed close to the bi-modal form (2.5), shown as
the cyan histogram in figure 2c. A corresponding representa-
tive sample path is shown in the top sub-panel of figure 2d,
with the mean time spent near each of the two modes
given by 1/β1,2 = 1/β2,1 = 2 time-units. In the bottom
sub-panel of figure 2d, we display a sample path for (β1,1,
β1,2, β2,1) = (1, 1, 1), which also corresponds to the PMF
shown as the histogram in figure 2c, but whose mean switching
time is halved, 1/β1,2 = 1/β2,1 = 1. More generally, instead of bal-
ancing the two Poisson PMFs by choosing β1,2/β2,1 = 1, one can
control the weights of each of the two Poisson PMFs from (2.5)
in a number of ways. For example, in figure 2e,f, we set
b1,2=b2,1 ¼ 2P(g1=g0; g1=g0)=P(g2=g0; g2=g0) � 5, ensuring
that the long-time PMF at the mode x= γ2/γ0 = 30 is approxi-
mately two times higher than at the mode x= γ1/γ0 = 5, which
can be achieved by taking (β1,1, β1,2, β2,1) = (1, 5/6, 1/6).
2.1.3. Tri-modality
Stochastic morpher can be utilized to achieve multi-modality
beyond bi-modality at the PMF level, and a controlled switch-
ing pattern at the underlying sample path level. For example,
let us morph the PMF of the input network (2.1) into a tri-
modal one, with the modes x∈ {5, 30, 55}. Furthermore, let
the underlying sample paths spend on average 3 time-units
in the neighbourhood of each of the modes, with the switch-
ing order 5→ 55→ 30, i.e. after being close to the mode x = 5,
the system should jump near x = 55, then close to x = 30,
before finally returning back to x = 5. To this end, consider
the controller Rb(Y1, Y2, Y3)<RP

g (X; Y1, Y2, Y3), given by

Rb : 2Y1 �!
b1,1

Y1 �!
b1,2

Y2 �!
b2,3

Y3 �!
b3,1

Y1,

RP
g :R1

g0
: X�!g0=1�,

R1
g1
: Y1 �!g1=1Y1 þ X,

R1
g2
: Y2 �!g2=1Y2 þ X,

R1
g3
: Y3 �!g3=1Y3 þ X: (2:6)

Analogous to figure 2a–f, in figure 2g,h we display the long-
time x-marginal PMF, and a representative sample path, of
the output networks (2.1)< (2.6), with γ = (γ0, γ1, γ2, γ3) = (1, 5,
55, 30) and (β1,1, β1,2, β2,3, β3,1) = (1, 1/3, 1/3, 1/3). In the
asymptotic limit ε→ 0, the PMF approaches the linear combi-
nation of three Poisson distributions centred at x = γ1/γ0 = 5,
x = γ2/γ0 = 55 and x = γ3/γ0 = 30, each with equal weights
(see theorem S5.1 in section S5 in the electronic supplemen-
tary material), which is in excellent agreement with the
histogram from figure 2g, where parameter ε is two orders
of magnitude larger than the rate coefficients from R1

a(X)
and Rb(Y1, Y2, Y3). Note that the switching order of the
sample path from figure 2h mirrors the periodic conversion
Y1→Y2→Y3→Y1 from (2.6). Let us stress that, despite
having drastically different shapes and functionalities, the
uni-modal and tri-modal PMFs displayed in figure 2a,g,
respectively, have identical limiting mean (first moment)
given by 30, which we show as red dashed lines in
figure 2b,h. From the perspective of controllers that can
manipulate only the first moment, control achieved in
figure 2a,g is indistinguishable. On the other hand, using
the stochastic morpher, a significantly finer control can be
exerted by manipulating the higher-order moments and,
thus, achieving greater biochemical functionality.

2.2. Higher-resolution control
In §2.1, we have applied the lower-resolution control consist-
ing of the networks Rb and RP

g , given generally by (S13) and
(S14) in section S3 in the electronic supplementary material,
respectively. In this section, we replace the uni-molecular
lower-resolution (Poisson distribution) interfacing network
RP

g with its bi-molecular higher-resolution (Kronecker-delta
distribution) counterpart Rd

g, given by (S15) in section S3 in
the electronic supplementary material.

2.2.1. Kronecker-delta distribution
Consider the higher-resolution stochastic morpher
Rb <Rd

g ¼ Rb(Y1)<Rd
g(X, Z1, Z2; Y1), given by

Rb : 2Y1 �!
b1,1

Y1,

Rd
g :Rm,1,s

g0
:��!1=1 X,

X O
g0,1

1=m
Z1,

X þ Z1 O
g0,2

1=m
Z2,

Rm,1,s
g1

:Y1 þ Z2 �!g1 Y1 þ Z1: (2:7)

Interfacing network Rd
g ¼ Rm,1,s

g0
<Rm,1,s

g1
consists of two sub-

networks:Rm,1,s
g0

describes a production of X, a reversible con-
version of X into a controlling species Z1, and a reversible
conversion of X and Z1 into another controlling species Z2.
On the other hand, Rm,1,s

g1
describes an irreversible conversion

ofZ2 intoZ1, catalysed by Y1. Under suitable conditions on the
rate coefficients (in particular, with μ2γ0,1γ0,2γ1 = (σε)−1 and 0 <
μ≪ ε, σ≪ 1), ensuring that the controlling speciesZ ¼ {Z1, Z2}
are sufficiently fast, network Rd

g from (2.7) reduces to

R1
g0
:��!1=1 X,

R1,s
g1

:Y1 þ 2X���!1=(s1)
Y1 þ X, as m ! 0, (2:8)

see theorem S4.1 in section S4 in the electronic supplementary
material. The first reaction from (2.8) generates a strong posi-
tive drift, which is overpowered by an even stronger negative
drift induced by the second reaction when x≥ 2. As a conse-
quence, the long-time PMF of X from (2.1)< (2.7) is
concentrated at x = 1, and approaches the Kronecker-delta dis-
tribution centred at x = 1, see theorem S5.2 in section S5 in the
electronic supplementarymaterial. In figure 3a, we display the
long-time x-marginal PMFof the output networks (2.1)< (2.7),
with the cyan histogram being in an excellent agreement with
the Kronecker-delta distribution.

2.2.2. Uniform distribution
Network (2.7) achieves a single Kronecker-delta distribu-
tion centred at x= 1. By introducing additional controlling
species Y and Z, any number of Kronecker-delta distributions,
centred at arbitrary points, are achievable. Using this approach,
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one can systematically morph a given input probability distri-
bution into an arbitrary output one on a bounded domain, see
section S5 for proof in the electronic supplementary material.
For example, by placing three Kronecker-delta distributions at
x∈ {1, 2, 3} with equal weights, one obtains the uniform distri-
bution on x∈ {1, 2, 3}, see example S5.1 in section S5 in the
electronic supplementary material and figure 3b.

2.2.3. Hybrid control
The lower- and higher-resolution networks RP

g and Rd
g from

section S3 in the electronic supplementary material, respect-
ively, can be combined into a composite hybrid scheme
for biochemical control. For example, one may wish to
obtain a more-detailed control over regions of the state-
space where the target species are in lower copy numbers,
while a less-detailed control may be sought over the higher
copy-numbers state space. Such a hybrid approach may be
experimentally desirable, as biochemical realizations of the
Kronecker-delta PMFs centred at lower copy-numbers are
less expensive to engineer, since a smaller number of the con-
trolling species Z is required. For example, in figure 3c, we
display morphing of the input PMF into a mixture of the
Kronecker-delta distribution at x = 1 and the Poisson distri-
bution at x = 30 via the controller (S57) from section S5 in
the electronic supplementary material, while figure 3d
shows a corresponding sample path.

2.3. Remarks about the stochastic morpher
The lower-resolution stochastic morpher is a negative-
feedback controller; inparticular, it introducesdegradation reac-
tions, and hence negative self-feedback loops, involving the
target species X t. The degradation reactions, such as X ! �

in (2.2), can be seen as approximations of Y0 +X→Y0, where
Y0 is an auxiliary exclusive catalyst, or �Y0 þ X ! �, where �Y0

is a higher-concentration buffer. Alternatively, one can replace
X ! � with Y1 +X→Y1, without changing the conclusions
made in this section, but at a possible experimental cost, see
§5. Analogous conclusions hold for the zero-order production
reactions in the higher-resolution controller. Note that the
higher-resolution controller contains both negative and positive
feedback loops involving the species X t andZ. Let us also note
that we require the total initial copy number of the controlling
species to be non-zero; such a condition is unavoidable, as any
network, once implemented, depends on the presence of suit-
able (buffer) species.
3. Bi-stable input network
In this section, we apply stochastic morpher to a more
complicated reaction network, highlighting how multi-
ple target species can be jointly controlled. To this end,
consider the three-species bi-molecular input network
R2

a ¼ R2
a(X1, X2, X3), given by

R2
a :�O

a1

a2
X1, ��!a3 X2, ��!a4 X3, X3 �!a5 X1,

2X1 �!a6 2X1 þ X3, X1 þ X2 �!a7 2X1, X1 þ X3 �!a8 X3:

(3:1)

It is assumed that we can explicitly control the target species
X t ¼ {X1, X2}, with the remaining (residual) species being
Xr ¼ {X3}. For a particular choice of the input rate coefficients
α, the long-time (x1, x2)-marginal PMF of network (3.1) is
shown in figure 4a, while the underlying sample paths for
X1 and X2 are shown in cyan and red in figure 4b, respect-
ively. The (x1, x2)-marginal PMF is bi-modal, with the
approximate modes (x1, x2) = (10, 40) and (x1, x2) = (40, 10),
and the species X1 and X2 are negatively correlated.

In what follows, we apply the stochastic morpher in
order to reshape the input PMF from figure 4a into a bi-
modal one, with the species X1 and X2 being positively corre-
lated; in context of cellular control, changing the sign of the
correlation between some of the underlying regulatory
proteins can give rise to different cell phenotypes with new
survival strategies [46]. More precisely, let us morph
the input modes into the target modes given by (x1, x2) = (10,
10) and (x1, x2) = (40, 40), where the (x1, x2)-marginal PMF
takes approximately the same values, and with the switching
time between the two new modes being of the order O(10)
time-units. To this end, consider the stochastic morpher
Rb <RP

g ¼ Rb(Y1, Y2)<RP
g (X1, X2; Y1, Y2), given by

Rb : 2Y1 �!
b1,1

Y1 O
b1,2

b2,1

Y2,

RP
g :R1

g0
: X1 �!g0,1=1�, X2 �!g0,2=1�,

R1
g1
: Y1 �!g1,1=1Y1 þ X1, Y1 �!g1,2=1Y1 þ X2,

R1
g2
: Y2 �!g2,1=1Y2 þ X1, Y2 �!g2,2=1Y2 þ X2, (3:2)

which is a two-species analogue of the network (2.4). As
ε→ 0, the long-time (x1, x2)-marginal PMF of the output
networks (3.1)<(3.2) approaches (see theorem S5.1 in
section S5 in the electronic supplementary material)

q(x1, x2) ¼ 1þ b1,2

b2,1

� ��1

P x1;
g1,1
g0,1

� �
P x2;

g1,2
g0,2

� �

þ 1þ b2,1

b1,2

� ��1

P x1;
g2,1
g0,1

� �
P x2;

g2,2
g0,2

� �
: (3:3)

In order to achieve the desired modes, we fix γ= (γ1,
γ2) = ((γ0,1, γ1,1, γ2,1), (γ0,2, γ1,2, γ2,2)) = ((1, 10, 40), (1, 10, 40)). On
the other hand, in order to ensure that the PMF takes approxi-
mately equal values at the two modes and that the switching
time is of the order O(10) time units, we set β1,2/β2,1 = 4 and
(β1,2 + β2,1) = 1/10, respectively, which is achieved by taking
(β1,1, β1,2, β2,1) = (1, 4/50, 1/50). In figure 4c,d, we display the
long-time (x1, x2)-marginal PMF of networks (3.1)< (3.2), and
theunderlyingrepresentativesamplepaths,when theasymptotic
parameter is fixed to ε= 1, showing that the desired bi-modality
and positive correlation betweenX1 andX2 are already achieved.
Note that the input PMF is at first more attracted towards the
target mode containing more probability mass as ε→ 0, which,
under the particular choice of β, is the mode (x1, x2) = (40, 40).
In figure 4e,f, we set ε= 10−2, and one can notice an excellent
match with the asymptotic prediction (3.3).

To gain more quantitative information about the conver-
gence, in figure 4g we display the distance (error) between
the long-time PMFof the output networks (3.1)< (3.2), denoted
bypε(x1, x2), and the target PMF(3.3), as a functionof the asymp-
totic parameter ε. Measuring the error with the l1-norm,
kp1 � qkl1 ¼

P
x1,x2 jp1(x1, x2)� q(x1, x2)j, one can notice that

kp1 � qkl1 ¼ O(1) for sufficiently small ε. In fact,more generally,
assuming suitable stability of the output network, convergence
of the time-dependent output PMF to the target PMF is
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Figure 4. Application of the lower-resolution stochastic morpher on the input network (3.1) with α = (α1, α2, α3, α4, α5, α6, α7, α8) = (2, 7/2, 2, 18, 3/2, 9/50,
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distance between the target PMF (3.3) and the long-time PMF of output network (3.1)< (3.2) as a function of ε. (h) The long-time x3-marginal PMFs of the input
network (3.1), and the output network (3.1)< (3.2) with ε = 10−2, as the black solid curve, and the cyan histogram, respectively. Also shown, as the dotted red
curve, is the long-time x3-marginal PMFof the network (S64)<Rb(Y1, Y2).
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exponential in time t and linear in parameter ε, see theoremS5.1
in section S5 in the electronic supplementary material.

Note that the explicit control of the target species
X t ¼ {X1, X2} implicitly influences the residual species
Xr ¼ {X3}. We demonstrate this influence in figure 4(h),
where the long-time x3-marginal PMFs from the input net-
work (3.1) is displayed as the solid black curve, while from
the output networks (3.1)< (3.2) with ε = 10−2 as the cyan his-
togram, showing that the PMF is redistributed across two
approximately fixed modes. Also shown, as the dotted red
curve, is a prediction of the x3-marginal PMF in the limit
ε→ 0, based on the results from section S6 in the electronic
supplementary material; in particular, see theorem S6.1 and
example S6.1 in the electronic supplementary material.
4. Implicit control: gene expression input
network

In §3, we focused on explicitly controlling the target species,
while ignoring the underlying residual effects. In this section,
we shift our focus to an implicit control of the residual species
via appropriate explicit manipulation of the target species.
In particular, we show that such an implicit control can be
achieved via the lower-resolution stochastic morpher by suffi-
ciently slowing down the controller core Rb, in addition to
sufficiently speeding up the controller interface Rg. To this
end, consider the two-species uni-molecular reaction network
R3

a ¼ R3
a(X1, X2), given by

R3
a :�O

a1

a2
X1, X1 �!a3 X1 þ X2, X2 �!a4

�: (4:1)

Network (4.1) can be seen as an extension of (2.1), describing a
simplified model for an intracellular gene expression [37]: X1

represents an mRNA, transcribed from a gene and translated
into a proteinX2, with each of the two species being degradable.
In figure 5a,b, we display the uni-modal stationary PMFs of the
target and residual speciesX1 andX2 from (4.1), respectively, for
a particular choice of the input coefficients α. The goal in this
section is to implicitly induce bi-modality into the protein
(residual) species X2 (and thereby create cells with two pheno-
types) by explicitly influencing the mRNA (target) species X1.
Such a setting is suitable when RNA-based controllers are
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utilizedwhich, due to their biophysical properties, are generally
more readily interfaced with mRNAs than with proteins [7,17].

As opposed to explicit control, considered in §§2 and 3,
where black-box input networks have been considered, implicit
control canbe applied only to grey-boxnetworks, as one requires
at least partial knowledge about the underlying structure and
dynamics, see also section S6 in the electronic supplementary
material. In what follows, we assume that the reactions which
change the copy-number of X2 are known and given by X1→
X1 +X2 and X2 ! �; we allow the underlying rate coefficients
(α3, α4) to remain unknown. To implicitly induce bi-modality
into the PMF of X2, let us consider the stochastic morpher
Rh

b <RP
g ¼ Rh

b(Y1, Y2)<RP
g (X1; Y1, Y2), given by

Rh
b : 2Y1 �!

b1,1
Y1 O

hb1,2

hb2,1

Y2,

RP
g :R1

g0
:X1 �!g0,1=1�,

R1
g1
:Y1 �!g1,1=1Y1 þ X1,

R1
g2
:Y2 �!g2,1=1Y2 þ X1: (4:2)

In the limit ε→ 0, the effectivebehaviourof speciesX2 isdescribed
by the so-called residual network �R3

a ¼ �R3
a (X2; Y1, Y2), obtained

by averaging out the equilibrated target species X1, and given by

�R3
a :X2 �!a4

�,

Y1 ����!
a3

g1,1
g0,1

� �
Y1 þ X2, Y2 ����!

a3
g2,1
g0,1

� �
Y2 þ X2, as 1 ! 0,

(4:3)

see theorem S6.1 in section S6 in the electronic supplemen-
tary material. By further letting η→ 0 in (4.2), one finds that the
x2-marginal PMF converges close to

Q(x2) ¼ 1þ b1,2

b2,1

� ��1

P x2;
a3

a4

g1,1
g0,1

� �� �

þ 1þ b2,1

b1,2

� ��1

P x2;
a3

a4

g2,1
g0,1

� �� �
, (4:4)

see theorem S6.2 in section S6 in the electronic supplementary
material. In contrast to the explicitly achieved PMFs in §§2 and
3, the implicitly achieved PMF (4.4) is not robust, as its modes
dependexplicitlyon the input rate coefficientsα3 andα4; however,
note that the weights in (4.4) are robust. Furthermore, for a fixed
ratio (β1,2/β2,1), the free parameter (β1,2 + β2,1) is utilized in §§2
and 3 to achieve strong control of the underlying sample paths;
in this section, we utilize this degree of freedom to sufficiently
slow down the network Y1 O Y2, i.e. we take η(β1,2 + β2,1)≪ 1
to achieve implicit weak control.

While the modes from (4.4) are not robust, their ratio, (γ2,1/
γ1,1), is robust, see corollary S6.1 in section S6 in the electronic
supplementary material for a more general result. Such robust-
ness is inherited from the target species; in particular, the ratio
between themodes of the implicitly controlled species (protein)
is identical to the ratio between the modes of the explicitly con-
trolled species (mRNA). Taking (γ2,1/γ1,1) sufficiently large
ensures that the two Poisson distributions from (4.4) are well-
separated, and bi-modality achieved. Assume we want the
larger mode to be three times further away than the smaller
mode,with the two Poisson distributions having equalweights.
Such constraints are achievable by the output networks
(4.1)< (4.2) with γ = (γ0,1, γ1,1, γ2,1) = (1, 1, 3) and (β1,1, ηβ1,2,
ηβ2,1) = (1, η/2, η/2), with 0 < η≪ 1. In figure 5a, the cyan histo-
gram displays the long-time x1-marginal PMF of (4.1)<(4.2)
when ε = 10−2. On the other hand, in figure 5b, we display the
long-time x2-marginal PMF of the output networks
(4.1)< (4.2) with ε = 10−2 for two different values of η, and
one can notice convergence close to the target (4.4). Note that
the output x1-marginal PMF is uni-modal, as the underlying
two Poisson distributions are not well-separated; on the other
hand, the limiting x2-marginal PMF is bi-modal, as the modes
are magnified by a factor of α3/α4 = 10. Let us also note that, if
the ratio α3/α4 is experimentally measured for the grey-box
input network (4.1), then each of the protein modes, and not
only their ratio, can be implicitly controlled; in fact, α3/α4 can
be deduced from the action of the stochastic morpher.
5. Proposed experimental implementation:
synthetic cells

In this section, we put forward a blueprint for an in vitro
experimental implementation of stochastic morpher via
dynamic nucleic acid nanotechnology based on strand-
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displacement reactions. Structurally, stochastic morpher
involvesup tobi-molecular reactions, someofwhichare catalytic
(non-elementary), while its dynamical operation depends on
time-separated kinetics. DNA/RNA strand-displacement can
in principle meet both of these requirements; in particular,
up to bi-molecular reactions, with arbitrary product and
reactant species compositions, including catalytic reactions, are
readily mapped to elementary reactions when compiled into
nucleic-acid-based physical networks [14,51–53]. On the other
hand, the rate coefficients can be varied over at least six
orders of magnitude under strand displacement [16,17,54],
allowing for timescale separations. The lower-resolution
control, consisting of the networks (S13)–(S14) in section S3 in
the electronic supplementary material, is biochemically less
costly, as it involves only two timescales and only one bi-
molecular reaction; its higher-resolution counterpart, given by
(S13)–(S15), is biochemically more costly, since it contains a
largernumberof timescales, bi-molecular reactionsandauxiliary
species. Let us stress that quasi-robust control can be achieved
with stochastic morpher by tuning ratios and orders of magni-
tude of the underlying rate coefficients, and not their precise
values, as outlined in §§2–4, which is a task achievable within
strand-displacement DNA/RNA computing. Furthermore, sto-
chastic morpher transforms PMFs through a sequence of
intermediate probability distributions that increasingly resemble
thedesired target distribution; therefore, satisfactory partial con-
trolmaybe achievable evenunderweaker timescale separations,
e.g. see the purple intermediate PMFs from figure 2, which
already display some desirable properties.
5.1. DNA Holliday junction and vesicle encapsulation
As a proof-of-concept, we propose an experimental
realization of the lower-resolution stochastic morpher (2.4)
from §2, which is capable of achieving bi-modality. One
way to realize (2.4) is via a biochemical network satisfying
the following two properties: (i) it contains two isomeric
molecular species which can inter-convert (realizing the con-
trolling species Y1 and Y2, and the reaction Y1 O Y2), each
triggering a catalytic production of the target species X at
generally different rates (realizing the reactions Y1→Y1 +X
and Y2→Y2 +X), and (ii) the network is integrated into an
environment with exactly one copy number of the two iso-
meric species (realizing the conservation law (y1 + y2) = 1,
and eliminating the reaction 2Y1→Y1). We propose to
achieve these conditions using a DNA complex, known as
the Holliday junction molecule, encapsulated in a nano-
scale compartment, known as the small unilamellar vesicle
(SUV) [9–12,55], forming a bi-phenotypic synthetic cell sche-
matically displayed in figure 6a. The Holliday junction
consists of four double-stranded arms crossing at a branch
point, designed to be fixed (non-migratory) for our purposes.
In the presence of magnesium ions, the Holliday junction can
adopt two distinct orientations, known as stacked confor-
mational isomers [19,56], realizing the reversible reaction
Y1 O Y2. On the other hand, the SUV encapsulation is an
experimentally demonstrated method for isolating and
observing the dynamics of individual molecules with mini-
mal effect from the external environment [12]. Under a
sufficiently low concentration of Y1 and Y2 during vesicle
assembly, one can utilize single-molecule fluorescence [57]
to identify SUVs containing exactly one copy number of the
Holliday junction.
5.2. Strand-displacement reactions
In order to control the rate coefficients of the reactions
Y1 O Y2, Y1→Y1 +X and Y2→Y2 +X, we put forward
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suitable DNA overhangs involved in the associative toehold
activation [58]. More precisely, we propose to extend (tag)
three arms of the four-armed Holliday junction with distinct
single-stranded DNA molecules (overhangs), which can
associate in a pairwise manner, thereby activating distinct
toeholds shown as the grey/black regions attached to Y1

and Y2 in figure 6b. Furthermore, the overhangs also partially
hybridize with each other, forming duplexes next to the toe-
holds. By controlling the length, and therefore the binding
energy, of the duplexes in the associated DNA overhangs,
one can experimentally tune the kinetics of reaction
Y1 O Y2. On the other hand, by controlling the length of
the association-activated toeholds, one can independently
tune the rates of Y1→Y1 +X and Y2→Y2 +X, by influencing
the two subsequent strand-displacement reactions which pro-
duce the target species X from a suitable precursor molecule,
denoted by �X in figure 6b. Once a molecule of X is produced,
Y1 and Y2 can be recovered via strand-displacement reactions
initiated by a suitable single-stranded DNA, called a recovery
strand, ensuring an effective catalytic role of Y1 and Y2 in
the overall reaction cascade. Let us note that, despite a simi-
larity in the domains of X and the recovery strand, the two
strands have distinct toeholds, which we show in light
blue and black in figure 6b, respectively; therefore, X and the
recovery strand are biochemically distinct. Hence, one can
design downstream strand-displacement reactions that
would be activated by the unique toehold on X and subse-
quently monitored. For example, X could invade the desired
DNA duplex labelled with a fluorophore and a quencher;
the displaced fluorophore-tagged DNA strand can then be
detected through the increase in fluorescence.

The operational timescale of the stochastic morpher is lim-
ited by the abundance of the DNA complexes that act as
substrates for activation and degradation ofX, and for recovery
ofY1 andY2. When a significant fraction of the resources is con-
sumed, the underlying effective rate coefficients slowdownand
the action of the controller weakens. This time limitation can be
relaxed by replenishing the resources either externally by using
semi-permeable SUVs with porous membranes [59], or intern-
ally by encapsulating suitable DNA buffers [60]. In fact, the
proposed gene-like implementation of reaction Y1 O Y2, via
Holliday junction molecules, does not require buffer species,
and in principle has a longer operational time when compared
to the DNA strand-displacement implementation of Y1 O Y2

put forward in [14].
6. Discussion
In this paper, we have introduced a molecular controller (see
section S2 in the electronic supplementary material and
figure 1 for a general outline), called stochastic morpher, that
can, under suitable conditions, gradually transform (morph)
the PMF of a given black-box input network into a predefined
shape. Two forms of the controller have been put forward:
the lower-resolution controller, given by (S13)–(S14) in section
S3 in the electronic supplementary material, that morphs
input PMFs into linear combinations of Poisson distributions,
and its higher-resolution counterpart, given by (S13)–(S15) in
section S3 in the electronic supplementary material, that
achieves linear combinations of Kronecker-delta distri-
butions. The control can be accomplished explicitly on the
target species, or implicitly on the residual species via
the target species. We have showcased the capabilities of
the stochastic morpher on particular biochemical networks
in §§2–4. More broadly, we have established general proper-
ties of the stochastic morpher in section S4 in the electronic
supplementary material using singular perturbation theory
[61], and specialized the results to explicit and implicit con-
trol in sections S5 and S6 in the electronic supplementary
material, respectively. More precisely, we have shown in
theorems S5.1–S5.2 that, under the assumption that the
output networks display a suitable form of stability, both
lower- and higher-resolution stochastic morphers achieve
the desired explicit control. In particular, the PMF of the
explicitly controlled species converges exponentially fast in
time to the desired target distribution, up to an error that
decreases linearly in the asymptotic parameter ε. Importantly,
the target distributions are independent of the input rate
coefficients, and the convergence is robust to the initial
conditions, implying long-time quasi-robustness of the
stochastic morpher. In theorem S5.3, we have proved that
the required stability condition, and hence the results from
theorems S5.1–S5.2, hold for any first-order input network.
Analogous properties have been established for a class of
implicitly controlled residual networks in theorem S6.2. To
the best of our knowledge, stochastic morpher is the first con-
troller that can exert control beyond the mean and variance,
being able to achieve any probability distribution; in particu-
lar, one can achieve desired multi-modal distributions (weak
control) whose sample paths have controlled timing and
mode-switching pattern (strong control). Furthermore, sto-
chastic morpher can also accomplish implicit control of the
residual species, i.e. control of biochemical species that do
not directly interact with the controlling species; in contrast,
the direct interaction is necessary in some other works, e.g.
in the robust controller from [39].

The lower-resolution stochastic morpher incorporates
simple production and degradation of the target species as its
faster sub-network. Faster production and degradation pro-
cesses are omnipresent in living cells, where the continuous
turnover of RNA molecules and proteins naturally shields the
cells against internally and externally induced fluctuations,
and reduces the retro-active load placed on the molecular
circuits [52]. In control theory context, rapid production and
degradation processes are known as high-gain negative-
feedback controllers [62]. A high-gain feedback controller has
been previously put forward for destroying all but one stable
equilibrium, in a given class of multi-stable gene-regulatory
networks, thus achieving uni-stability [41,42]. In this paper,
we have instead combined high-gain feedback control with
noise-induced mixing to systematically morph probability dis-
tributions into any predefined shape, with a particular focus
on multi-modality/multi-stability. On the other hand, the
higher-resolution stochastic morpher shares some similarities
with the work presented in [63], where Kronecker-delta distri-
butions are also implemented using timescale separations and
catalysis similar to [25,64]. However, while we have realized
Kronecker-delta distributions with experimentally feasible
bi-molecular networks, implementations from [63] involve
higher thanbi-molecular networks. In electronic supplementary
material, section S4, using the results from [28], we have proved
that the bi-molecular construction put forward in this paper
reduces in an appropriate limit to the higher-molecular one
from [63]. Furthermore, in this paper, we have focused on bio-
chemical control, involving combining multiple biochemical
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networks together, some of which are black-box (unknown), in
order to achieve suitable dynamical behaviours. Therefore, our
analyses take into a consideration realistic effects biochemical
networks experience in applications, such as retro-activity
[52,65]; such effects have not been included in [63].

In §5, we have put forward a blueprint for an in vitro exper-
imental realization of the bi-modal stochastic morpher (2.4)
using a DNA-based biochemical network encapsulated
inside a nano-scale vesicle, thus implementing a bi-phenotypic
synthetic cell shown in figure 6.Wehave proposed to appropri-
ately assemble the vesicles so that the reaction 2Y1→Y1 from
(2.4) can be eliminated. However, let us note that such a reac-
tion can be achieved within the proposed set-up by replacing
the Holliday junction molecules with suitable DNA dimers.
In particular, we propose assembling sufficiently rigid
dimers containing the Holliday junction and a corresponding
complementary motif (deactivator) on the opposite end, see
[66] for details on multimer assembly of DNA nanostructures.
When multiple dimers are present, a sequence of associations
between the dimers would take place, sequestering all but
one active Holliday junction, thus implementing 2Y1→Y1.
Let us also stress that, in this paper and §5 in particular, we
have assumed that the molecular abundances are spatially
homogeneous (well-mixed) inside reactors at any given
time. This assumption holds if the stochastic morpher is
implemented in sufficiently small compartments. However,
for larger compartments, such as living cells, spatial heterogen-
eity ofmolecular abundances can play important roles [67–71].
To address such challenges, further theoretical and experi-
mental considerations are required, which are beyond the
scope of this paper.

Neglecting spatial heterogeneity in the molecular abun-
dances, the lower-resolution stochastic morpher can also in
principle be implemented in vivo via synthetic RNA-based net-
works encoded genetically inside cells; for concreteness, we
focus on the bi-modal case (2.4).We propose introducing a syn-
thetic plasmid, coding for a target micro-RNA species, into an
Escherichia coli cell. In this context, the slowly interconverting
unit copy-number controlling species are realized via different
states of a suitable plasmid gene, and the switching between
the two states is regulated by the slower binding and unbinding
of suitable transcription factors giving rise todifferent degrees of
promoter activity. The production of the target RNA is achieved
via transcription from the plasmid gene, with the maximum
transcription rate of the order of 10−1 s−1 [72], and we propose
exploiting the natural intracellular degradation of RNA mol-
ecules, occurring at a rate of around 3 × 10−3 s−1 [73]. These
estimations imply that the stochastic morpherRb,g can achieve
multi-modal distributions with modes of up to approximately
30 RNA molecules per cell. To ensure quasi-robustness of the
controller Rb,g, we require that the desired input network Ra

fires at a slower timescale. For the interactions between the
RNA species at a concentration of 30molecules per cell, 0.1 reac-
tions per second corresponds to a rate constant of the order of
106 M�1 s�1, whereas the speed limit of nucleic-acid reactions
inside cells is of the order of 108 M�1 s�1 [74]. IfRa is a synthetic
RNA-based network, the quasi-robust limit can be achieved by
slowing down the input network via sequestration of the key
domains in the secondary structures of the underlying species
[17,54].On the otherhand, ifRa is a nativeRNA-basednetwork,
the quasi-robust limit might be challenging to achieve. In this
context, an approach for speeding up the stochastic morpher
is by transcribing sufficiently long RNA chains that are broken
down into multiple target RNA molecules post-transcription
via suitable ribozymes [75].
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