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Brain-derived neurotrophic factor (BDNF) involving tropomyosin kinase B and low
affinity p75 neurotropin receptors is the most abundant and researched neurotropins
in mammal’s brain. It is one of the potential targets for therapeutics in Alzheimer’s
disease (AD) owing to its key role in synaptic plasticity. Low levels of BDNF are
implicated in the pathophysiology of neurological diseases including AD. However, a
healthy lifestyle, exercise, and dietary modifications are shown to positively influence
insulin regulation in the brain, reduce inflammation, and up-regulate the levels of BDNF,
and are thus expected to have roles in AD. In this review, the relationship between
BDNF, mental health, and AD is discussed. Insights into the interrelationships between
nutrition, lifestyle, and environment with BDNF and possible roles in AD are also
provided in the review. The review sheds light on the possible new therapeutic targets
in neurodegenerative diseases.
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INTRODUCTION

A feature of multifactorial and heterogeneous neurodegenerative (Alzheimer’s disease; AD) is the
self-association of neurotoxic β-amyloid (Aβ) oligomers forming Aβ monomers, which is indicative
of abnormal protein processing. AD is the most prevalent (70%) dementia in the western world
and is also becoming prevalent in developing countries and thus is a matter of public health
concern (Qiu et al., 2007). As per WHO report of 2019, AD is the seventh leading cause of
mortality worldwide and by 2050 around 106 million of individuals are expected to be suffering
from its worldwide (Brookmeyer et al., 2007). Primitive preclinical AD, Mild cognitive impairment
(MCI), and dementia are three stages of AD progression as per researchers (Albert et al., 2011;
Jack et al., 2011; McKhann et al., 2011; Sperling et al., 2011). Hypertension; metabolic disorders
(lipid profile derangements, diabetes, high BMI, and obesity) are implicated in the pathophysiology
of AD. Other risk factors include genetics (APOEε4 allele &Val66Met), positive family history,
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gender, education, and previous history of head trauma (Bendlin
et al., 2010; Xu et al., 2011). Apart from the above, metabolic
and nutritional factors are also found to be associated with
neurological disorders like parkinsonism, seizures, autism and
AD (Napoli et al., 2014; Paoli et al., 2014) and thus they all
require extensive research with special emphasis on finding and
developing therapeutic targets to halt the disease progression
and/or provide cure. AD is believed to affect the internal and
external functioning of the brain by influencing the physiological
processes (Chen et al., 2021). Brain-derived neurotrophic factor
(BDNF) is the most abundant and well-studied neurotropin in
mammalian brains. Because of its important role in synaptic
plasticity, it is one of the potential therapeutic targets in AD.
Low BDNF levels have been linked to the pathophysiology of
neurological diseases such as AD (Miranda et al., 2019). A healthy
lifestyle, exercise, and dietary changes have been shown to
positively up-regulate BDNF levels, and are thus expected to play
roles in AD (Sleiman et al., 2016; Colucci-D’Amato et al., 2020).
The aim of the review article is to provide interaction among
nutritional management, lifestyle modifications and BDNF levels
in AD patients and look into possible mechanisms/pathways by
which these interactions may halt the progression or prevent AD
at early stages of life.

BRAIN-DERIVED NEUROTROPHIC
FACTOR
The structure of human BDNF is very similar to that of
mice and rats. It has an important role in maintaining
synaptic plasticity and aids in memory storage functions of
the hippocampus. BDNF signaling pathways regulates the
expression of genes by activating the transcription factors
CREB and CREB-binding protein (CBP), which in turn encodes
proteins involved in brain plasticity, tolerance to stress and cell
survival (Mattson et al., 2004). Plasma BDNF levels provide
estimates of BDNF levels in the hippocampus and prefrontal
cortex, and thus serve as a blood biomarker in AD patients
(Klein et al., 2011).

Brain-derived neurotrophic factor binds to the tyrosine kinase
receptor B (TrkB) and the non-specific p75 neurotrophin
receptor (p75NTR). Dementia owing to hippocampal long-
term potentiation (LTP) degradation appears as a consequence
of a decline in BDNF levels or a defect in binding as
demonstrated in various researches using BDNF and/or TrkB
knockout animals (Chen et al., 1999; Kemppainen et al.,
2012). Exogenous BDNF, on the other hand, facilitated
LTP in BDNF- knockout animals (Patterson et al., 1996),
thus providing evidence of a possible role of BDNF in
AD. BDNF appears to have a role in cell survival and
apoptosis by activating TrkB and p75NTR, respectively (Sandhya
et al., 2013). BDNF also has an important roles in gene
transcription regulation [NF-κB and c-Jun N-terminal kinase-
p53-Bax (JNK)], intracellular signaling cascade activation
[Ras/MAPK, PI3K/Akt, and phospholipase C through TrkB
receptor activation], and neurogenesis (Diniz and Teixeira,
2011). In AD, the expression of BDNF are negatively influenced
by the accumulation of Aβ amyloid (Meng et al., 2013; Zussy

et al., 2013), thus furthering the possible role of BDNF and its
signaling pathways in AD.

The impact of various factors and the overall regulation of
BDNF is researched with emphasis on their role in NDs and
memory functions (Erickson et al., 2012a). Because BDNF is
linked to the Val66Met polymorphism (Xia et al., 2019) and is
known to play a role in a variety of NDs, including Parkinson’s
disease (PD) (Wang et al., 2019), and AD (Franzmeier et al.,
2021). It must be thoroughly researched, with an emphasis on
its therapeutic and preventive potential, in order to treat major
depression disorder (MDD) and others.

ADVANCING AGE, ALZHEIMER’S
DISEASE, AND BDNF: TRIAD OF
INCONVENIENCE

Advancing age is a risk factor for AD and on the other
hand, BDNF levels are influenced by aging (Gaitán et al.,
2021). Thus, there appears a common link between aging,
AD, and BDNF which requires further exploration and
extensive research. Cognitive impairment with advancing age
is associated with reduced expression of BDNF and results
of various studies have reported reduced concentrations
in aged rodents, primates, and humans. Impairment may
be correlated to defects in transcription, processing, and
translation, as shown in studies conducted on aged rodents
(Silhol et al., 2005; Shimada et al., 2014). Ethnicity and
country of origin (White et al., 1996) decrease neuronal
processing at the level of synapse (Burke and Barnes,
2006), and gray matter shrinkage with advancing age
(Driscoll et al., 2009) appears to be important contributory
factors as well.

LIFESTYLE, DIET, DRUGS, AND BDNF
LEVELS

Lifestyle, exercise, diet, and environmental factors also appear
to influence BDNF signaling and thus appear to play a
role in AD (Pistollato et al., 2018). High prevalence in the
geriatrics population of African American and Japanese origin
points toward the role of lifestyle as a risk/contributory
factor in AD (Barnes, 2022). Animal models have reported
that chronic stress and sedentary lifestyle negatively influence
BDNF signaling (Perna and Brown, 2013; Vassoler et al.,
2013). Flavanol, omega-3 fatty acids (FAs), cocoa polyphenolic,
and apigenin have promising effects on BDNF levels (Cimini
et al., 2013; Hjorth et al., 2013). Donepezil and galantamine
(Acetylcholinesterase inhibitor) treated animal and human
patients have shown to have higher levels of BDNF (Sakr
et al., 2014). Aerobic exercises not only improves cognitive
function but also minimizes the synaptic dysregulations (Baker
et al., 2010; Intlekofer and Cotman, 2013). Thus, an exercise,
diet, lifestyle, and drug centric models may be developed to
provide better insights into the role of BDNF and its possible
mechanisms and association with cognitive decline and AD.
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TABLE 1 | Effects of BDNF (biomarker) levels in various neuropsychiatric conditions.

Neurodegenerative conditions BDNF levels (Biomarker) References

Alzheimer’s Disease High levels of oligomeric Aβ in AD-related to reduced hippocampal and
cognitive functions. Lower serum BDNF levels correlated with developing
dementia followed by AD. Aβ lowered BDNF by reducing phosphorylated CREB
protein.

Buchman et al., 2016; Amidfar et al., 2020

Major Depressive Disorder Hippocampal slices showed decreased BDNF/Trk mRNA in MDD. Lower levels
of BDNF are converted into higher levels using antidepressive drugs. Matrisciano et al., 2009; Emon et al., 2020

Bipolar Disorder Decreased serum or plasma levels of BDNF in the hippocampus of suicidal BD
and altered DNA methylation in any stage (euthymic, depressive & manic).

Polyakova et al., 2015; Schröter et al., 2020

Parkinson’s disease Lower levels of BDNF in serum associated with degeneration of the striatum in
PD. The decreased expression is also connected with motor symptoms.
Cognitive functions were also affected.

Scalzo et al., 2010; Palasz et al., 2020

Schizophrenia Changes in BDNF levels in serum in SCZ patients. Decreased expression of
BDNF/Trk mRNA in the dorsolateral prefrontal cortex and hippocampus in SCZ.

Rizos et al., 2008

Epilepsy Epileptic seizures enhanced the levels of BDNF due to glutamate signaling.
Elevated levels of BDNF mRNA expression in the hippocampus and cortex of
the temporal lobe in epilepsy patients.

Martínez-Levy et al., 2018; Lin et al., 2020

Effect of BDNF levels in different neurological conditions has
been summarized in Table 1.

BDNF AND ALZHEIMER’S DISEASE

Various studies have explored the potential roles of BDNF in
etiopathogenesis and progression of NDs (Rosa et al., 2016;
Eyileten et al., 2021). Studies have shown possible relationships
between altered blood and CNS levels of BDNF and NDs
including AD (Eyileten et al., 2021). Memory and cognitive
defects have been associated with deregulation of BDNF, m RNA
and protein (Rosa et al., 2016). The importance of BDNF in
preventing neurodegeneration in AD has also been highlighted
(Laske et al., 2011) by providing neurotrophic support (Ventriglia
et al., 2013). Administration of BDNF improves cognitive
dysfunctions, restores cell signaling mechanisms, and enhances
expression of age related genes in animal models (Nagahara et al.,
2009). Thus, high levels of BDNF are associated with lower risk
of cognitive impairment in AD patients (Laske et al., 2011). The
decline in BDNF levels is linked to increasing age, and it is
more noticeable in females, the elderly, and those with higher
body weights (Komulainen et al., 2008; Lee et al., 2009). The
decline correlates with memory loss and hippocampal atrophy
(Erickson et al., 2010).

Increased pro-inflammatory activity (Diniz et al., 2010),
elevated oxidative stress and mitochondrial dysfunction
(Swerdlow et al., 2010), diminished hippocampal neurogenesis
(Shruster et al., 2010), and GSK3B hyperactivity (Forlenza et al.,
2011) also play important roles in NDs. Because many of these
mechanisms are regulated or influenced by BDNF and share
intracellular regulatory pathways, understanding them is crucial.
Thus, dysregulation in any one is going to have implications on
others owing to interconnections and common regulations. On
the other hand, improvement in any one is expected to have
positive influences on other pathways. A pathological trigger can
lead to a chain reaction that is expected to stimulate a cascade

ultimately culminating in neurodegeneration and associated
diseases like AD. Simply put, there appears to be a fine balance
of pro- and anti-neurodegenerative pathways that is precisely
regulated, and any change in homeostasis shifts the balance
toward disease process (Swerdlow, 2007).

LINKAGE OF LIFESTYLE AND
ALZHEIMER’S DISEASE VIA BDNF

Brain-derived neurotrophic factor is the neurotrophin that is
most susceptible to lifestyle changes. As demonstrated in animal
studies, exercise and dietary balance appear to normalize BDNF
levels, which have been reduced due to a high fat diet (Molteni
et al., 2004). Regular exercise reduces the risk of developing
dementia and AD after the age of 65 (Erickson et al., 2012b)
which may be attributed to exercise-induced increases in BDNF
and improved brain function, both of which influence cognitive
functions positively (de Assis and de Almondes, 2017). Peripheral
lactate and BDNF levels are shown to increase with high intensity
exercises, whereas both central and peripheral levels of BDNF
are upregulated with administration of lactate at rest. This
is important as both lactate and BDNF levels are expected
to stimulate neuroplasticity (Muller et al., 2020). Results have
demonstrated enhanced remembrance and understanding of
platform positions in Morris water maze, which were attributed
to improvements in cognitive abilities in response to brief
duration of exercise (Szuhany et al., 2015). When BDNF function
in the hippocampus was inhibited in the former group, there was
no difference in cognitive abilities. Running has been reported
to increase neuronal spikes and improve spatial memory by
increasing NTs (van Praag, 2008).

A single aerobic exercise session done consistently was
associated with a higher increase in BDNF levels compared
to if done acutely. A meta-analysis revealed that the results
varied by gender, with males experiencing a greater increase
than females (Szuhany et al., 2015). Interestingly, the increase in
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BDNF has not been consistent with strength/resistance exercises
(Huang et al., 2014b). Only short-term transient increases in
BDNF levels returning to baseline values post exercise have
also been reported (Knaepen et al., 2010). As a consequence
of physical exercise the CaMKII is activated indirectly by an
increase in intracellular calcium ions, which in turn results
in phosphorylation of CRE binding protein due to activation
of CaMKII. Other possible pathways for enhancing BDNF via
physical activity include the reactive oxygen species pathways.
The proposed mechanism is that when neurons produce ROS
in response to PE, the ROS activate the CRE binding protein,
resulting in BDNF transcription via CREB activation (51).

LINKAGE OF NUTRITION AND
ALZHEIMER’S DISEASE VIA BDNF

Epigenetics does play an important role in influencing the
physiological homeostatic mechanisms. Environmental factors
modulating human physiology largely depend upon lifestyle and
dietary habits (Nicolia et al., 2015). Dietary modification is
reported to reduce cognitive decline and risk of AD (Luchsinger
and Mayeux, 2004). Advancing age and metabolic factors
were observed as independent risk factors for AD in various
epidemiological and animal studies. Long-term influence of
diet on cognition appears to be exerted via effects on gene
expression and regulatory frameworks (Dauncey, 2012, 2013;
Gomez-Pinilla and Tyagi, 2013), which in itself are complex
and need further exploration. Influences may vary from effects
on hormones, neurotransmitters, metabolism, cell membrane
function, and sand synaptic plasticity. The physiology of
regulation of feeding provides the insights in understanding
the complexities and possible role of diet. The energy state is
shown to influence a variety of hormones (insulin, thyroid) and
factors (BDNF) which in turn influence the expression of genes
thereby influencing the physiology of brain (Dauncey, 2014).

Interestingly, higher consumption of plant-based food are linked
to lower trimethylamine oxide as well as higher fecal short chain
fatty acids, fiber degrading microbiota and gut biodiversity (De
Filippis et al., 2016; Garcia-Mantrana et al., 2018).

Similarly, studies have found that diet rich in saturated fatty
acids and simple carbohydrates negatively influences memory
and increases the risk of AD (Jackson et al., 2016; Alles et al.,
2019). On the other hand, Medi (Mediterranean) diet is shown to
exert anti-inflammatory properties, enhance insulin and BDNF
production, and thus appears to be beneficial in reducing the risk
of AD (Abuznait et al., 2013; Miquel et al., 2018).

Thus, the combination of PE along with beneficial diet and/or
dietary modification is proposed to reduce the risk/progression
of AD. The combination is expected to be beneficial by virtue
of enhanced anti-oxidants, polyphenols and polyunsaturated
fat (PUFA) (Figure 1). PUFA (rich in long chain omega-
3 FAs found in sea food) is expected to delay the memory
decline and subsequent development of AD (Avallone et al.,
2019). Polyphenols on the other hand exert beneficial effects via
BDNF production, thereby positively influencing the learning
and memory related areas of brain (Rendeiro et al., 2012;
Tan et al., 2017). Omega 3 FAs exert anti-oxidant effects,
maintain/normalize BDNF levels, and improve/increase learning
ability following traumatic injury to brain (Avallone et al., 2019).

The role of life style and dietary modification
(PE/CR/Exogenous BDNF) as futuristic treatment/interventions
in AD appears appealing by virtue of the fact that both are
non-invasive and easy to follow (but require self-control
and determination).

OTHER BDNF INDUCERS

Ginseng Radix extracts in cultured cortical cells are reported to
stimulate the expression of BDNF via cAMP-response element-
binding protein-dependent transcription (Fukuchi et al., 2019).

FIGURE 1 | Exercise and diets rich in PUFAs, polyphenols, and antioxidants have positive effects on the brain, resulting in enhanced BDNF and insulin sensitivity,
and decreased inflammation. On the other hand, sedentary behavior and Western diet enhanced AD risk by reducing BDNF and insulin sensitivity and increasing
inflammation.
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Thus, BDNF appears a promising biomarker and therapeutic
target for NDs. Recently, a pharmacologically validated library
of 1280 compounds were tested for their ability to induce BDNF
in neurons. Results were promising as Dipyrone (antipyretic
drug) stimulated BDNF expression in neurons via Ca2+ influx
(Fukuchi, 2020).

Flavonoids are shown to enhance spatial memory in animal
models. Both factors increase BDNF expression by causing
induction of Akt/PKB (Spencer, 2009; Bechara and Kelly,
2013). Thus, common links and pathways provide excellent
therapeutic targets and thus warrant interventional studies.
Many spices used traditionally almost in every household also
have beneficial effects which need to be exploited for future
interventions in NDs. One such an example is Curcumin.
It is a promising candidate as it increases neurogenesis and
BDNF by pathways involving inhibition of tau kinase JNK
(Cole et al., 2007).

Studies with Mangosteen pericarp rich in xanthones (α-
mangostin and γ-mangostin) in mice exhibit multiple effects
ranging from increased BDNF levels in hippocampal slices, anti-
inflammation and reduced tau levels, which ultimately provide
neuroprotection and improvements in cognitive functions
(Huang et al., 2014a). Findings are suggestive that a diet
containing Mangosteen pericarp formulations can be used in AD
patients to improve cognitive functions.

CONCLUSION

Evidence-based research suggests that dietary and lifestyle
changes can help people with AD. Calorie restriction has emerged
as a potential means of preventing or delaying the onset of
AD. Multiple complex pathways that may have both direct and
indirect effects on brain physiology are linked to increased insulin
secretion, anti-inflammatory effects, and, most importantly,
BDNF production by the underlying protective mechanisms.
Diet, exercise, and calorie restriction all seem promising because
they are non-invasive and have the potential to influence the
secretion of factors and hormones, making them candidates
for the development of newer regimes in the management and
prevention of cognitive impairments and memory loss. However,
the beneficial effects may vary with the amount, duration, and
intensity of modifications, which is especially true for exercise-
induced changes. Thus, long-term prospective studies need to be
designed to evaluate the effect of differential intensity of exercise
on parameters influencing brain functions like cognition.
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