
RESEARCH ARTICLE National Science Review
9: nwac190, 2022

https://doi.org/10.1093/nsr/nwac190
Advance access publication 8 September 2022

CHEMISTRY

An all-round AI-Chemist with a scientific mind
Qing Zhu1,†, Fei Zhang2,†, Yan Huang1,†, Hengyu Xiao1,†, LuYuan Zhao1,
XuChun Zhang2, Tao Song2, XinSheng Tang2, Xiang Li2, Guo He2, BaoChen Chong2,
JunYi Zhou2, YiHan Zhang2, Baicheng Zhang1, JiaQi Cao1, Man Luo1, Song Wang1,
GuiLin Ye3, WanJun Zhang3, Xin Chen3, Shuang Cong2, Donglai Zhou1, Huirong Li1,
Jialei Li1, Gang Zou1, WeiWei Shang2,∗, Jun Jiang1,4,∗ and Yi Luo1,4,∗

1Hefei National
Research Center for
Physical Sciences at
the Microscale,
School of Chemistry
and Materials
Science, University of
Science and
Technology of China,
Hefei 230026, China;
2School of Information
Science and
Technology, University
of Science and
Technology of China,
Hefei 230026, China;
3Hefei JiShu Quantum
Technology Co. Ltd,
Hefei 230026, China
and 4Hefei National
Laboratory, University
of Science and
Technology of China,
Hefei 230088, China

∗Corresponding
authors. E-mails:
wwshang@ustc.edu.cn;
jiangj1@ustc.edu.cn;
yiluo@ustc.edu.cn
†Equally contributed
to this work.

Received 2 July
2022; Revised 25
August 2022;
Accepted 29 August
2022

ABSTRACT
The realization of automated chemical experiments by robots unveiled the prelude to an artificial
intelligence (AI) laboratory. Several AI-based systems or robots with specific chemical skills have been
demonstrated, but conducting all-round scientific research remains challenging. Here, we present an
all-round AI-Chemist equipped with scientific data intelligence that is capable of performing basic tasks
generally required in chemical research. Based on a service platform, the AI-Chemist is able to automatically
read the literatures from a cloud database and propose experimental plans accordingly. It can control a
mobile robot in-house or online to automatically execute the complete experimental process on 14
workstations, including synthesis, characterization and performance tests.The experimental data can be
simultaneously analysed by the computational brain of the AI-Chemist through machine learning and
Bayesian optimization, allowing a new hypothesis for the next iteration to be proposed.The competence of
the AI-Chemist has been scrutinized by three different chemical tasks. In the future, the more advanced
all-round AI-Chemists equipped with scientific data intelligence may cause changes to the landscape of the
chemical laboratory.
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INTRODUCTION
Empowering a robot with a scientific mind to help
humans decipher the high-dimensional correlations
of the complex world, reduce the Try–Error de-
velopment cost of new materials and even realize
interstellar exploration and colonization has been
a fantasy in many science fiction stories [1,2].
The recent advancement in automated chemical
experiments by robots has offered a glimpse of
hope [3–15]. An automated chemical machine
system (called Chemputer) has been developed to
integrate literature reading, protocol customization,
organic synthesis and characterization [9,10], while
another more generalized system could carry on
Lego-like automated organic synthesis [11,12].
In 2020, a cloud-native chemical platform with
artificial intelligence (AI) as its controller was
reported of performing organic retrosynthesis based

on previously available data [13,14]. Meanwhile,
the research group led by Cooper has pushed a step
further to develop amobile robotic chemist with the
abilities to perform experiments faster than humans
and to select photocatalysts with Bayesian opti-
mization [15]. But, they also specifically mentioned
in their article that the robotic search employed
in their work does not capture existing chemical
knowledge, nor include theory or physical models.
A better approach as they suggested is to equip it
with a computational brain and to fuse theory and
physical models with autonomous searches [15].
Indeed, only after inserting a computational brain
can the robot truly be self-controlled by its scientific
mind to conduct all-round scientific research.

Along this line, we have built an all-round AI-
chemistry laboratory that can (i) propose scientific
hypothesis and generate experiment plans using
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Figure 1. Design of the all-round AI-Chemist with a scientific mind. (A) Three modules of the AI-Chemist: a machine-reading
module, a mobile robot module and a computational brain module. (B) The workflow of the AI-Chemist and the functions of
each module.

existing knowledge, (ii) execute the complete
experimental procedure (synthesis, characterization
and performance testing) for multiple chemical
tasks and (iii) build predictive models exploiting
theoretical computations and experimental data
feedback, so as to execute all-round chemical
research with intelligence. Figure 1A outlines the
overall architecture of the all-round AI-Chemist.
This AI-Chemist with human-like research wisdom
consists of three modules, including a machine-
reading module to capture existing chemical knowl-
edge by automatically reading massive amounts
of chemical literature, a mobile robot module to
produce experimental data by executing various
chemical experiments and a computational brain
module to generate physics/theory-based predictive
models by carrying out theoretical calculations. The
completion of the three modules leads to the birth
of an all-round AI-Chemist with a scientific mind.

RESULTS AND DISCUSSION

The workflow of this all-round AI-Chemist forms a
complete closed loop (Fig. 1B) and is controlled by
home-developed system software (Supplementary
Fig. S1). When the AI-Chemist is prompted with a
scientific question raised by a human researcher, its
service platform with a user-friendly graphical user
interface (GUI) would propose a scientific hypoth-
esis after capturing existing knowledge by machine
reading of massive amounts of literature. This ser-
vice platform possesses the ability of accessing cloud
databases and designing experiment plans and has
a web-based feature that enables it to easily man-
age tasks and remotely monitor the mobile robot.
The experiment plans generated by this service plat-
form are provided to the mobile robot and various
smart chemical workstations. Control system soft-
ware based on a Robot Operating System (ROS)
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[16] is developed to control the mobile robot with a
six-degree-of-freedom robotic arm to move around
and operate all apparatuses. The laboratory host-
ing the robot and apparatus is divided into an auto-
synthesis area, an auto-characterization area and an
auto-performance-testing area, respectively. All in-
struments were designed to operate using vials of
the same type so as to realize the combination of
multiple apparatuses to form a complete worksta-
tion. Many previous synthesis robots have mostly
optimized experimental plans according to previous
data in the literature [9] or the data generated by the
robot itself [15], while the AI-Chemist can ‘think’
more deeply. Thanks to the computational brain it
possesses, it can not only capture existing chemical
knowledge and accept experimental feedback, but
also perform theoretical simulations, train machine-
learning models and carry out Bayesian optimiza-
tions to provide global optimal solution. This robot
can propose a new hypothesis and new experiment
plan by itself, as well as carry out the next round of
chemical experiments by itself.

The first task of an AI-Chemist is to read through
a large amount of literature to gain the wisdom of
human chemists. By digitizing and standardizing
experimental protocols written in natural language
from the literature, the existing knowledge can be
transferred to the robot to enrich its brain. As shown
in Fig. 2A, based on syntax rules, domain dictionar-
ies and machine learning, we build a scientific text
data-mining systemwith eight natural language pro-
cessing (NLP) steps. This system can decompose
titles, paragraphs and sentences by text classifica-
tion, locate important regions by word tokenization
and part-of-speech tagging, name entity recognition,
perform grammatical analysis, extract entity rela-
tionships and realize co-reference resolutions and
error corrections. The NLP steps convert scientific
texts into structureddata understandable forAI.This
data-mining system belongs to a service platform
with a web browser-based humanmachine interface
(HMI), which can further propose hypothesis and
provide intelligent recommendation of experiment
plans according to above structured data. A user-
friendly GUI helps researchers to remotely monitor
the status of the robot andworkstations (Fig. 2B and
Supplementary Fig. S2) and customize the experi-
mental procedure by clicking and dragging on the
GUI. As shown in Fig. 2C, according to the scientific
hypothesis, the service platform communicates with
all workstations to check their status and customizes
experiment workflow. We have also generated a
cloud-based chemical database to facilitate choosing
chemical samples from a solid or liquid dispensing
menu with a dragging-down list (Supplementary

Fig. S3A).Thedatabase can alsobe accessed through
a web interface when searching for any compound,
such as terephthalic acid as shown in Supplementary
Fig. S3B. Once the experiment workflows are vali-
dated, they are stored as experimental templates to
a cloud database for subsequent experiment recall.
The service platform can also carry out preliminary
analysis of experimental data collected, and the
results of characterization and performance testing
are displayed and visualized as graphswhenever pos-
sible on the browser-based interface (Fig. 2D and
Supplementary Figs S4–S9). These experimental
data are also used to establish and update a database
for subsequent prediction models and Bayesian
optimizations (Fig. 2E). The AI-Chemist is able to
automatically iterate experimental conditions until
experimental results reach threshold parameters set
previously (Supplementary Fig. S10).

To execute the whole process of synthesis, char-
acterization and test, we have set up a mobile robot
and 14 workstations in the laboratory, including
an auto-synthesis region, auto-characterization re-
gion and auto-performance-test region, respectively.
When AI-Chemist executes a synthesis task, it uses
the liquid dispensing workstation with an accuracy
of 3μL and the solid dispensingworkstationwith an
accuracy of 0.1 mg to prepare the reagents (Supple-
mentaryFigs S11andS12). It thenuses themagnetic
stirring workstation and sonication mixing worksta-
tion with time-control accuracy of a millisecond to
make thedesired reactions (SupplementaryFigs S13
and S14). Finally, the purification of the products is
conducted at the dryer workstation, centrifugation
workstation and liquid extraction workstation (Sup-
plementary Figs S15–S17). After completing the
synthesis process, the sample vessel with products is
transferred to the auto-characterization region and
auto-performance-test region.Currently, the labora-
tory is equipped with auto-controlled UV–Vis, flu-
orescence and Raman spectroscopy workstations to
characterize the component and structure of prod-
ucts (Supplementary Figs S18–S20), as well as an
auto-controlled electrochemical workstation, cap-
ping workstation, photocatalysis workstation and
HS gas chromatography (GC) to test the catalytic
performance of products (Supplementary Figs S21–
S24). Home-developed system software capable of
robotic path planning, robotic control and connec-
tion, and smart chemical operations is in charge of
coordinating the real-time interactions between the
robot and the workstation.Themobile robot simply
executes all orders in sequence and eachworkstation
only needs to ensure an experimental operation is
executed using accurate parameters and the exper-
imental data are fed back to the system correctly.
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Figure 2. The service platformwithweb browser-based HMI. (A)Machine-readingmodule for capturing existing knowledge and transferring tomachine-
understandable structured data by NLP. (B) User-friendly GUI to monitor the status of chemical workstations and robots in real time. (C) Experimental
workflow diagram: from scientific hypotheses to workstation status, then to experimental design and template. (D) Experimental data such as elec-
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Together, the robot and the workstations form a
holistic smart laboratory for theAI-Chemist (Fig. 3).

To ensure precise and interactive chemical
operations, the mobile robot is equipped with a
dual-lidar-based integrated mapping and localiza-
tion system to obtain its localization information
and laboratory map for navigation and autonomous
obstacle avoidance (Fig. 3 and Supplementary
Fig. S25). An omni-directional mobile platform
with a global localization precision of 10 mm
and max loading of 200 kg ensures the motion
accuracy and load ability of the robot. A large and
scalable loading and delivery platform is ready for

high-throughput and multi-tasking experiments.
The chemical operations are performed using a
six-degree-of-freedom robotic arm (Fig. 3). It is
equipped with a gripper with grasp force feedback
control, depth cameras and laser sensors, and a
vision-guided intelligent detection and localization
system. To fulfill the requirements of high local-
ization accuracy of the gripper in experimental
operations, an independent ArUco label is attached
to each experimental workstation (Supplementary
Figs S26–S30).The robot can recognize the current
workstationby visually identifying the label ID in the
field of view and make the accurate measurement
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of the workstation pose according to the relative
pose between the ArUco label and the target to be
operated on at the experimental workstation. To
handle abnormal situations during experimental op-
eration, such as detecting and locating transparent
vials in unstructured scenarios, a set of algorithms
based on deep learning has been developed (Sup-
plementary Figs S31 and S32). A task management
module is of central importance in the whole robot
control system. It is responsible for detecting the
current status of the robot and workstations and
planning experimental operations (Supplementary
Figs S33 and S34). A video presents an overview
of this intelligent, full-process chemical laboratory
(Supplementary Video 1). Compared with existing
literature reports on automated synthesis systems,
characterization and related performance testing,
our AI-Chemist incorporates a computational brain
and chemical workstations, and is therefore able
to achieve more chemistry functions and higher
control precision (Supplementary Table S1).

Two experiments were performed to examine
the hardware and software of the robot and work-
stations. In the first experiment, the AI-Chemist is
instructed tofind abiocompatible luminophorewith
aggregation-induced emission (AIE) characteristics
[17–19]. The machine-reading module is activated:
from 15 979 papers, 4865 molecules are found to

relate to ‘AIE’, ‘aggregation-induced emission’ and
‘aggregation induced emission’. After data cleansing
based on expertise rules (see details in ‘Methods’
section), 306 molecules are identified to be candi-
dates as commercially available AIE luminophores.
Figure 2A and Supplementary Table S2 list the top
15 molecules with high occurrence frequencies (see
Supplementary Data 1 for complete list). Among
them, Berberine chloride (BBR) [20,21] is the only
one with an emission wavelength located in the
visible region and is therefore chosen for further
investigation. A series of automated experiments are
conducted by the AI-Chemist to synthesis different
berberine chloride solutions and measure their
fluorescence. The robot weights an appropriate
amount of solid berberine chloride sample using the
solid dispensing workstation and then transfers it to
the liquid dispensing workstation to dissolve it into
a solution.The solutions’ optical properties aremea-
sured using photoluminescence (PL) spectroscopy
and UV spectroscopy. As shown in Fig. 4A–C, BBR
solutions of different concentrations and solvents
are compared and the optimal concentration of
BBR is thus identified to be 20 mM.

The second experiment is to optimize a
hydrogen-doping strategy for metal oxide photo-
catalysts. A set of HxMoO3 samples with various
amounts of hydrogenation via Cu–acid treatment
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Figure 4. Chemical experiments performed by mobile robot and workstations. (A) Peak fluorescence intensity with increased concentrations of berber-
ine chloride (BBR). (B) Fluorescence images of the solution in (A) under UV light (365 nm). (C) PL spectra of BBR chloride in solution with different
concentrations of BBR chloride. Excitation wavelength: 405 nm. (D) Tunable hydrogenation of MoO3 by Cu–acid treatment with simulated crystal struc-
ture of HxMoO3 with different concentrations of H-dopants in the lattice. (E) The UV–Vis spectra of the RhB solution after photocatalytic degradation.
(F) Characterization of the photocatalytic degradation efficiency of the RhB (left column, reaction conditions: [cat]= 0.1 g), solution volume: 10 mL H2O,
[RhB]= 10−5 mol/L) and the yield of dye-sensitized photocatalytic H2 production (right column, reaction conditions: [Eosin-Y]= 0.6 mM, [TEOA]= 1.5M,
[cat]= 0.1 g, solution volume: 10 mL. All the light sources are 25Wwhite LED lamps). The error bars show the systematic average error and the compari-
son with the manual work result (blue error bar). (G) Schematic diagrams of experiment flow for dye-sensitized photocatalytic water-splitting experiment
without (top) and with (bottom) the multi-task dynamic optimization. (H) Schematic diagrams of experiment flow for electrocatalytic oxygen evolution
reaction experiments without (top) and with (bottom) the multi-task dynamic optimization.

[22] are produced by the synthesis workstations
(Fig. 4D) and then used for photocatalytic degra-
dation of rhodamine B (RhB) at the photocatalysis
workstation. The photocatalytic reactions are mon-
itored by the UV–Vis spectroscopy workstation
(Fig. 4E): the photocatalytic degradation efficiency
of RhB reaches a maximum level on the sample
HMO-5. To obtain the yield of dye-sensitized
photocatalytic H2 production during the reaction,
the vials are vacuum sealed at the capping worksta-
tion and transferred to the HS GC workstation for
measurement of H2 produced. The sample HMO-6
shows the highest H2 production rate, as shown in

Fig. 4F. Here the average of deviation bars for all
experimentally measured points are 5.5% for the H2
production rate and 8.3% for the RhB degradation
efficiency (SupplementaryTable S3), suggesting the
high accuracy and repeatability of the AI-Chemist.
Based on the task management module, a smart
chemical system capable of multi-task dynamic
optimization is developed. With its help, the total
experiment time and waiting time of the robot
can be significantly shortened: the total time con-
sumption of the four sample racks of dye-sensitized
photocatalytic water-splitting experiments without
optimization is 1810 minutes, while the total time
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consumption of the four sample racks of exper-
iments after multi-task dynamic optimization is
980 minutes (Fig. 4G and Supplementary Text).

The above-mentioned two tasks have proven
that mobile robot and smart workstations can suc-
cessfully execute various experimental operations.
Next, we integrate them with the service platform
and computational brain to act as an AI-Chemist to
conduct all-round chemical research. We take the
non-noble metal oxygen evolution reaction (OER)
electrocatalyst as an example. It has been shown that
high-entropy alloy nanoparticles containing more
than four different elements have high potential
to be the choice for future electrocatalysts due to
their structural stability, diversity of adsorption sites
and remarkable catalytic activity [23–26]. Among
them, the MIL-101 MOF is an ideal platform for
different metal elements to synthesize high-entropy
electrocatalysts [27]. However, the wide range of
choices in element combinations poses grand chal-
lenges for developing high-entropy electrocatalysts.
Even if we only want to determine a desirable metal
combination, it could take hundreds of thousands
of years to traverse the best composition ratio. This
simple fact makes high-entropy alloy nanoparticles
a suitable task for our all-round AI-Chemist with
a scientific mind. Again, the service platform sorts
out metal recommendations via the intelligent
machine reading of ∼16 000 papers from the cloud
database (Fig. 5A and Supplementary Data 2).
Five non-precious metal elements are selected
to construct 207 Try–Error experiments fully
executed by the mobile robot on the smart chemical
workstations. The home-developed smart chemical
system successfully shortens the total time con-
sumption of the four groups of experiments from
630 to 365 minutes through multi-task dynamic
optimization (Fig. 4H and Supplementary Text).
The experimental results summarized in Fig. 5B
show that theNo. 149 andNo. 155 samples have the
best electrocatalytic performance (Supplementary
Figs S36 and S37). We directly carry out Bayesian
optimizations based on the experimental data to
determine the optimal composition ratios. Two
optimized solutions are suggested (Supplementary
Figs S38 and S39), whose composition ratios and
performances are quite close to the best results of
the above-mentioned experiments (Supplementary
Fig. S40). This could imply that these are only local
optimal solutions due to the blindness of Bayesian
optimization based on experimental data [15]. To
take advantage of the computational brain inserted
into our AI-Chemist, we have extended our search
based on theoretical calculations. Herein, ∼20 000
molecular dynamics simulations are performed by
the computational brain module to generate a large

number of structures (Fig. 5C and Supplementary
Fig. S41) and a high-quality simulation data set
through density functional theory calculations (see
details in ‘Methods’ section and Supplementary
Table S4). According to the structure around the
metal node in theMIL-101, we calculate the overpo-
tentials based on the reaction path shown in Fig. 5D
and Supplementary Fig. S42.The trend of simulated
overpotential values is consistent with the experi-
ment, but there are systematic errors for the absolute
value, which need to be corrected by combining sim-
ulations and experiments (Supplementary Fig. S43).
Eventually, a machine-learningmodel for predicting
key electrocatalytic properties from metal composi-
tion ratios is established by using the simulated data
(Fig. 5E) and is calibratedwith theTry–Error exper-
imental data to obtain an accurate prediction model
for real experimental overpotentials (Fig. 5F). This
calibrated model can rapidly and massively predict
the composition-ratio-based overpotentials (inset of
Fig. 5F) that can be used to evaluate the electrocat-
alytic performance of high-entropymaterials. Again,
the Bayesian optimization algorithm is applied to
narrow down the huge searching space (553 401
options) and find the optimal solution. From the
Kiviat diagram, one can see the optimal composition
ratio suggested by the Bayesianmodel is far from the
best sample of the above-mentioned experiments
(Fig. 5G), which indicates that the Bayesian opti-
mization based on the combination of simulated
and experimental data sets can go beyond the local
optimal regions. The sample with the best compo-
sition ratio is then synthesized and characterized by
the AI-Chemist and its overpotential is 231.7 mV
at a current density of 5 mA/cm2, which is consid-
erably better than the results of previous Try–Error
experiments (Fig. 5H and Supplementary Fig. S44).
We also notice that the composition ratio suggested
by Bayesian optimization is almost the same as that
suggested by grid-point scanning (Supplementary
Fig. S45), proving that it is indeed a global optimal
solution.This task has served as a very good example
to illustrate the superior ability of the all-round
AI-Chemist with a scientific mind. As presented in
Supplementary Video 2, the scientific mind of the
AI-Chemist comes from its computational brain,
which is able to calculate the physical parameters
based on physicalmodels such asMDandDFT.The
computational brain can further establish machine-
learning models based on big data and perform
a global search based on Bayesian optimization.
From millions of possibilities, the new scientific
hypothesis for the optimal solution was proposed
and verified experimentally. We also manually
synthesized the optimal material and found that its
OER performance is basically consistent with the
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Figure 5. An all-round chemical research conducted by the AI-Chemist. (A) The order of metal recommendation and the
frequency of metal co-occurrence by machine reading. (B) The overpotential values of 207 Try–Error experiments carried out
by the mobile robot and workstations. (C) An example of the simulated structure generated by molecular dynamics. (D) The
simulated OER reaction path. (E) The prediction results of three catalytic properties by neural network models, where GOH

is the free energy change of the hydroxyl adsorption, GO is the free energy change of the oxygen atom adsorption and �e
is the charge transfer during hydroxyl adsorption. (F) The prediction results of overpotential by the neural network model
calibrated by experimental data. Inset: dimensionality reduction plot by principal component analysis (PCA) for predicted
overpotentials of all exhaustive samples. (G) Kiviat diagram of composition ratios and (H) polarization curves of the optimal
sample suggested by the Bayesian model and the best samples by Try–Error experiments.

results made by the AI-Chemist (Supplementary
Fig. S46), confirming that the experimental results
of our intelligent system are highly stable, reliable,
trustworthy and reproducible.

CONCLUSION
The all-round AI-Chemist with a scientific mind
reported here consists of a service platform, amobile
robot, workstations and a computational brain. It
is able to read literature, to propose hypotheses, to
design experimental plans, to execute automated
operations, to analyse experimental data, to train
machine-learning models and to feedback new hy-
potheses. In other words, it possesses all the abilities
to conduct high-level chemical research, which
can only be possible for a group of well-organized

human chemists. The closed-loop iterative de-
sign of our AI-Chemist shows its versatility in
the fields of electrocatalysts, photocatalysts and
luminescent materials. The AI-Chemist possesses
a universal software protocol and standardized
hardware interface. This modular design makes it
extendable to meet the requirements of various
experimental tasks via adding more experimental
workstations or computational mechanisms in
the future. The fact that optimal materials could
be intelligently screened out or designed by the
AI-Chemist can certainly greatly reduce the time
for human chemists to do experiments. It should
also be mentioned that the AI-Chemist can only
acquire information from the existing knowledge
and conduct experiments within the known tech-
niques. Future discovery still largely depends on
human scientists to develop new theories and invent
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new technology. Nevertheless, it is safe to say that
the AI-Chemist has begun to change our ways
of finding and making new materials. All-round
AI-Chemists with scientific minds may completely
change the conventional chemical laboratory in the
coming years.

METHODS
DFT calculation
The cluster of MOF is obtained based on the
crystal structure of MIL-101. Subsequently, all the
DFT calculations of the electrical structures are
adopted by the Vienna ab-initio simulation package
(VASP) [28]. Considering the long-range van der
Waals (vdW) interaction corrections, the Grimme’s
DFT-D3method is applied with an energy cut-off of
400 eV. The Perdew–Burke–Ernzerhof functional
[29] is applied and the projector augmented wave
method (PAW) [30] is implemented as the basis
set for the plane-wave expansion. The convergence
of forces and energies for the geometric structures
are set to 0.01 eV/Å and 10−5 eV, respectively.
The Brillouin zone is sampled with 1 × 1 × 1
Monkhorst–Pack k-mesh with a vacuum space
of∼15 Å.

Calculation for the free energies
Based on the general single site of the OER mech-
anism, the four electron–proton transfer steps
involved in the whole reaction could be written
as:

∗ +H2O(l) → OH∗ + H+ + e− (1)

OH∗ → O∗ + H+ + e− (2)

O∗ + H2O (l) → OOH∗ + H+ + e− (3)

OOH∗ → ∗ + O2 + H+ + e− (4)

To calculate the free energy changes, a standard
change of Gibbs free energy at zero potential was
calculated according to the following equation:

�G = �E + �ZPE − T�S,

where �E refers to the change in reaction en-
ergy based on DFT simulations, �ZPE is the zero-
point energy change calculated by the vibrational
frequency using the finite difference method and
�S represents the entropy change for each elemen-
tary step. The temperature in our work is set to be
298.15 K.

Molecular dynamics simulations
Classical molecular dynamics (CMD) simulations
are performed using the LAMMPS package [31]
in the isothermal-isobaric (NPT) ensemble via the
Nose-Hoover barostat and thermostat [32,33]. To
accelerate the structural sampling, the CMD simula-
tions are run at 3000 K with a time step of 1 fs. The
initial simulation box of 4× 4× 4 nm3 has periodic
boundaries in the all directions. Sixty different metal
atoms, 20 oxygen atoms and 40 terephthalic acid
ions are randomly placed into the box. The force-
field parameters of them are all generated using the
LAMMPS Interface program [34]. The cut-off dis-
tance for the Lennard–Jones and coulombic poten-
tial is 12.5 Å.The duration of the simulation is 1 ns.

Expertise rules for AIE luminophores
data cleaning
To identify the practically available AIE lu-
minophores, several expertise rules are applied.
First, the CTE molecules and common solvents are
removed, leaving 306 molecules. Then, two more
criteria are applied to further shorten the candidate
list: water solubility and frequency of fluorescence
light. The top entry is tetraphenylethylene, a well-
known and probably the most studied organic AIE
dye [35–37]. AnMLmodel is trained to predict the
water solubility of all the molecules based on their
SMILES. After removing those that are expected to
be insoluble or sparsely soluble in aqueous solution,
the list reduces to 20 s.The fluorescence frequencies
of each of them are predicted by calculating the
energy gap between LUMO and HOME using
DFT. Only molecules with fluorescence located in
the visible range make the final list. The top entry is
berberine (or berberine chloride).

Neural network architecture
The first neutral network (NN) applied different
metal ratios as descriptors to predict the catalytic
properties (GOH∗, GO∗–OH∗, �e). To obtain
the relations between catalytic properties and real
overpotential, the second NN with the catalytic
properties as descriptors was implemented to
predict the real overpotential. One input layer, three
hidden layers and one output layer constituted the
whole NN. The number of neurons in the hidden
layer was 128, 128 and 128, respectively. To estab-
lish the correlation between the descriptors and
prediction targets, the data set (80% for training and
20% for validation) was trained using the Rectified
Linear Unit activation function [38]. The dropout
parameter [39] was used to prevent overfitting of
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the second NN. The backpropagation algorithm
implemented inTensorFlow [40] enabled it to track
the weights successfully and update them rapidly.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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6. Langner S, Häse F and Perea JD et al. Beyond ternary
OPV: high-throughput experimentation and self-driving labora-
tories optimize multicomponent systems. Adv Mater 2020; 32:
1907801.

7. MacLeod BP, Parlane FG and Morrissey TD et al. Self-driving
laboratory for accelerated discovery of thin-film materials.
Sci Adv 2020; 6: eaaz8867.

8. Steiner S,Wolf J and Glatzel S et al.Organic synthesis in a mod-
ular robotic system driven by a chemical programming language.
Science 2019; 363: eaav2211.

9. Mehr SHM, CravenMand Leonov AI et al.Auniversal system for
digitization and automatic execution of the chemical synthesis
literature. Science 2020; 370: 101–8.

10. Granda JM, Donina L and Dragone V et al. Controlling an or-
ganic synthesis robot with machine learning to search for new
reactivity. Nature 2018; 559: 377–81.

11. Blair DJ, Chitti S and TrobeM et al. Automated iterative Csp3–C
bond formation. Nature 2022; 604: 92–7.

12. Li JQ, Ballmer SG and Gillis EP et al. Synthesis of many different
types of organic small molecules using one automated process.
Science 2015; 347: 1221–6.

13. Mo Y, Guan Y and Verma P et al. Evaluating and clustering ret-
rosynthesis pathways with learned strategy. Chem Sci 2021; 12:
1469–78.

14. Vaucher AC, Zipoli F and Geluykens J et al. Automated extrac-
tion of chemical synthesis actions from experimental proce-
dures. Nat Commun 2020; 11: 3601.

15. Burger B, Maffettone PM and Gusev VV et al. A mobile robotic
chemist. Nature 2020; 583: 237–41.

16. Quigley M, Conley K and Gerkey B et al. ROS: an open-source
Robot operating system. In: ICRA Workshop on Open Source
Software, 2009. Abstract 3.2, p. 5. Kobe, Japan.

17. Hong Y, Lam JW and Tang BZ. Aggregation-induced emission.
Chem Soc Rev 2011; 40: 5361–88.

18. Hong Y, Lam JW and Tang BZ. Aggregation-induced emission:
phenomenon, mechanism and applications. Chem Commun
2009; 4332–53.

19. Jagielski J, Kumar S and Wang M et al. Aggregation-induced
emission in lamellar solids of colloidal perovskite quantum
wells. Sci Adv 2017; 3: eaaq0208.

20. Feng H-T, Lam JW and Tang BZ. Self-assembly of AIEgens.
Coord Chem Rev 2020; 406: 213142.

21. Xie Y-Y, Zhang Y-W and Liu X-Z et al. Aggregation-induced
emission-active amino acid/berberine hydrogels with enhanced
photodynamic antibacterial and anti-biofilm activity. Chem Eng
J 2021; 413: 127542.

22. Xie L, Zhu Q and Zhang G et al. Tunable hydrogen dop-
ing of metal oxide semiconductors with acid–metal treat-
ment at ambient conditions. J Am Chem Soc 2020; 142:
4136–40.

23. Sharma L, Katiyar NK and Parui A et al. Low-cost high entropy
alloy (HEA) for high-efficiency oxygen evolution reaction (OER).
Nano Res 2022; 15: 4799–806.

24. Yao Y, Dong Q and Brozena A et al. High-entropy nanoparticles:
synthesis-structure-property relationships and data-driven dis-
covery. Science 2022; 376: eabn3103.

Page 10 of 11

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwac190#supplementary-data
http://dx.doi.org/10.1126/scirobotics.abn0877
http://dx.doi.org/10.1126/scirobotics.abn0877
http://dx.doi.org/10.1038/d41586-020-03411-0
http://dx.doi.org/10.1038/ncomms15733
http://dx.doi.org/10.1038/ncomms15733
http://dx.doi.org/10.1126/science.aat0650
http://dx.doi.org/10.1038/s41578-018-0005-z
http://dx.doi.org/10.1002/adma.201907801
http://dx.doi.org/10.1126/sciadv.aaz8867
http://dx.doi.org/10.1126/science.aav2211
http://dx.doi.org/10.1126/science.abc2986
http://dx.doi.org/10.1038/s41586-018-0307-8
http://dx.doi.org/10.1038/s41586-022-04491-w
http://dx.doi.org/10.1126/science.aaa5414
http://dx.doi.org/10.1039/D0SC05078D
http://dx.doi.org/10.1038/s41467-020-17266-6
http://dx.doi.org/10.1038/s41586-020-2442-2
http://dx.doi.org/10.1039/c1cs15113d
http://dx.doi.org/10.1039/b904665h
http://dx.doi.org/10.1126/sciadv.aaq0208
http://dx.doi.org/10.1016/j.ccr.2019.213142
http://dx.doi.org/10.1016/j.cej.2020.127542
http://dx.doi.org/10.1016/j.cej.2020.127542
http://dx.doi.org/10.1021/jacs.0c00561
http://dx.doi.org/10.1007/s12274-021-3802-4
http://dx.doi.org/10.1126/science.abn3103


Natl Sci Rev, 2022, Vol. 9, nwac190

25. Yao Y, Huang Z and Hughes LA et al. Extreme mixing in nanoscale transition
metal alloys.Matter 2021; 4: 2340–53.

26. Li T, Dong Q and Huang Z et al. Interface engineering between multi-elemental
alloy nanoparticles and a carbon support toward stable catalysts. Adv Mater
2022; 34: 2106436.

27. Henschel A, Gedrich K and Kraehnert R et al. Catalytic properties of MIL-101.
Chem Commun 2008; 35: 4192–4.

28. Kresse G and Furthmüller J. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput Mater Sci
1996; 6: 15–50.

29. Zhang Y and Yang W. Comment on ‘Generalized gradient approximation made
simple’. Phys Rev Lett 1998; 80: 890.
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