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Abstract

We study synchronization phenomenon of coupled neuronal oscillators using the theory of weakly coupled oscillators. The
role of sudden jumps in the phase response curve profiles found in some experimental recordings and models on the ability
of coupled neurons to exhibit synchronous and antisynchronous behavior is investigated, when the coupling between the
neurons is electrical. The level of jumps in the phase response curve at either end, spike width and frequency of voltage
time course of the coupled neurons are parameterized using piecewise linear functional forms, and the conditions for stable
synchrony and stable antisynchrony in terms of those parameters are computed analytically. The role of the peak position of
the phase response curve on phase-locking is also investigated.
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Introduction

A phase response curve (PRC) quantifies temporal deviations of

an oscillator in response to an oncoming stimulus [1–3]. Methods

based on PRCs have been extensively used to predict when

synchronization could occur between biological oscillators [4–7].

Studies based on weakly coupled oscillator theory applied to

coupled neurons have often sought to relate the shape of the PRC

to the emergence and the stability of the phase-locked states [8–

14]. However, some PRCs measured experimentally exhibit

significant departures from being smooth and continuous [15–

18]. In particular these PRCs may show sudden increments in

their level at the beginning and/or end of the oscillation cycle.

There are also some neuronal models that display such behavior.

Such sudden increments in the PRC level are often due to fast

gating dynamics of the neurons, but could also be due to the effect

of higher order PRCs that may become significant in the collective

dynamics of coupled neurons. If the sudden rise in the PRC level is

indeed due to fast gating dynamics, then, for simplicity, it could

rather be approximated by a discontinuous jump in the PRC.

When higher order PRCs become significant, then their shapes

may also have to be incorporated in the relevant analysis.

Sharp jumps in the PRCs were earlier shown to be caused by

fast potassium gating dynamics [19], presence of adaptation

currents such as calcium-dependent afterhyperpolarization (AHP)

current or muscarinic voltage-dependent potassium (M) current

[20,21], or abrupt dynamical changes in the modeling equations.

AHP current, for example, can cause the neuron become less

sensitive at the early phases and thus impart skewness to the PRC.

In some models it can also impart sudden jumps at early phases

[21].

The PRCs of a leaky integrate-and-fire model [22] and

quadratic integrate-and-fire model [23,24] display discontinuities

at the beginning and the end of the oscillation cycle. Adapted

exponential integrate-and-fire neuron model [21,25] is another

example that displays sharp PRC jumps. In all these cases weakly

coupled oscillator theory has been used to predict the stability of

synchrony and antisynchrony. As we will also illustrate, adaptation

is not necessary to realize PRC with sharp jumps. But even when

adaptation was present, we expect that the theory would still be

applicable [20] because the effect of adaptation on synchrony is via

a modification of the shape of the PRC, and/or the voltage time

course; In the synchronized state the change of frequency caused

by adaptation can be assumed to be negligible.

Here we address comprehensively the role of the discontinuous

jumps at the ends of the PRCs in the synchronizability of coupled

oscillatory neurons when the coupling between them is weak and

electrical. Only the first order PRC is used in the analysis. To

model the phase response curve, we employ a piecewise linear

approach that allows a detailed study of the dependence of the

PRC shape on synchrony, while at the same time being applicable

to experimentally determined PRCs. The PRC profile is

constructed with only two piecewise linear segments, and the

voltage profile with three piecewise linear segments. We predict

when synchrony and antisynchrony become stable as the level of

the discontinuous PRC jumps, and the spike width and frequency

are varied. Our study complements other similar studies on

electrically coupled neuronal networks that used leaky integrate-

and-fire models [12,26], and generalizes the results of those that

used quadratic integrate-and-fire models [23,24] by considering a

range of PRC shapes and voltage time courses. We also study how

the location of the PRC maximum (the skewness) affects synchrony
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and antisynchrony. A network simulation of Wang-Buzsáki model

neurons when each neuron displays a PRC with sudden rise in its

level near zero-phase is also presented.

Model

The leaky integrate-and-fire, quadratic integrate-and-fire, and

adaptive exponential integrate-and-fire models whose PRCs are

depicted in Fig. 1(a–c) are described in the figure caption. The

modified Wang-Buzsáki model [19] whose PRC is depicted in

Fig. 1(d) is given by the following evolution equations:

Cm
_VV~Iapp{INa{IK{ILzIele,

_hh~wh½ah(1{h){bhh�,

_nn~wn½an(1{n){bnn�,

where INa~GNam3
?h(V{ENa), IK~GK n4(V{EK ),

IL~GL(V{EL), m?~am=(amzbm), ah~0:07exp({(Vz58)=
20), bh~1=½1zexp({(Vz28)=10)�, an~{0:01(Vz34)=½exp

({(Vz34)=10){1�, and bn~0:125exp({(Vz44)=80). The

parameters are Cm~1 mF/cm2, EL~{65 mV, ENa~55 mV,

EK~{90 mV, GL~0:1 mS/cm2, GNa~35 mS/cm2, and

GK~9 mS/cm2. The applied current Iapp when set above 0:16

mA/cm2 triggers spontaneous oscillations. Ignoring a very brief

downward and negative swing near zero phase, the PRC of the

model may be considered a type-1 and may be treated like a PRC

with sharp jump at the left edge [Fig. 1(d)]. The only difference

between our formulation and the original formulation of this

model is in making the time-scale factor for sodium inactivation

and potassium activation independent: wh and wn that are now

used to control the PRC shape. This model is also used later in

network simulations where the current due to electrical coupling

Iele is proportional to the difference of the voltage of the coupled

neurons.

The main results of the paper use the formulation laid out

below. Extension of this model that incorporates PRC skewness is

presented in the later part of the Results section. We formulate the

PRC and the voltage time course using piecewise linear (PWL)

functions, and then present a method to find the stability of

synchrony and antisynchrony. The choice of PWL functions

facilitates analytical determination of stability boundaries. The

phase response curve is formulated as a function with two

piecewise linear profiles [Y1(t) and Y2(t)] that exhibit finite jumps

or discontinuities at the edges (i.e. at t~0 and at t~T , the period

of oscillation of the neuron). The assumption of finite jumps at the

edges is not necessarily due to a discontinuity in the PRC, but

sharp rise or fall at those phases. But for computation of stability of

phase-locked solutions, the assumption of a discontinuous jump at

the edges does not lead to any artifacts unless another parameter

such as spike width also simultaneously becomes zero; In such a

case the effect of discontinuity must be explicitly incorporated into

the analysis, or the analysis must be carried out in the limit of those

parameters going to zero. The PRC is formulated as below:

Y (t)~

Y1(t)~ Bz
2(C{B)

T
t, 0ƒtv

T

2
,

Y2(t)~ C{
2(C{B2)

T
t{

T

2

� �
,

T

2
ƒtvT ,

8>><
>>:

ð1Þ

where B is the amount of jump on the left edge (t~0), B2 is the

amount of jump on the right edge (t~T ) of the PRC, and C (.0)

is the maximum advancement of the PRC. When B~B2~0, the

PRC becomes symmetric. The PRC profile is depicted in Fig. 2(a)

for a few parameters of B and B2. A monotonically increasing

PRC as in a leaky integrate-and-fire model is obtained by setting

C~(BzB2)=2. Such PRCs are also treated in the Results section

as a special case. No assumption is made on the sign of B and B2 in

deriving the stability regions.

The voltage profile is formulated by the following three

piecewise linear curves [Fig. 2(b)] that are modeled after an

empirical observation of the voltage profile of the Hodgkin-Huxley

(HH) model equations; Spike width parameter W is the only time

varying parameter that appears in the model, and the spike

amplitude is controlled by spike peak Vp, spike threshold Vth, and

spike minimum, Vm:

V (t)~

V1(t)~Vp{
Vp{Vm

2W
t,

V2(t)~Vmz
Vth{Vm

T{ 5
2

W
(t{2W ),

V3(t)~Vthz
Vp{Vth

W
2

(t{Tz
W

2
),

if 0ƒtv2W ,

if 2WƒtvT{
W

2
,

if T{ W
2

ƒtvT :

8>>>>>>><
>>>>>>>:

ð2Þ

At an external applied current of 10 mA/cm2, the HH voltage

time course can be approximated with Vm~{72 mV, Vp~35:43
mV, Vth~{48 mV, and W~1:1 ms, T~14:636 ms (i.e. an

oscillation frequency of 68.3 Hz). Thus W=T~0:075 for this

model. We define a2~Vp{Vm, and a3~Vth{Vm. We term W

the spike width for simplicity although the actual spike width could

be up to 5W=2. The spike width and threshold to spike height

ratio (a3=a2) are freely altered to explore the stability boundaries in

these parameter spaces. But we assume that

a2§a3: ð3Þ

Because the spike downstroke and spike upstroke together add

up to a width of 5W=2, we insist that T is bigger than that. That is,

T{
5

2
Ww0 ð4Þ

Pairs of identical nonlinear oscillatory neurons that may be

originally described by several state variables, but oscillate with a

constant period T and possess a voltage profile V (t), and a PRC,

Y (t), when coupled electrically by a coupling function propor-

tional to the difference of their individual voltages can be reduced

to pairs of phase evolution equations under the assumption of

weak coupling [1–3,27–31]. Two such identical neurons can be

reduced to two phase evolution equations with phases w1 and w2

(that range from 0 and T) described by the following two equations

_ww1(t) ~ 1
T

z H(w2{w1),

_ww2(t) ~ 1
T

z H(w1{w2),

where (w0) is the strength of coupling. H(w) is the interaction

function and quantifies the instantaneous increase of an oscillator

frequency due to coupling to the other oscillator, and is expressed

as follows:

Effect of PRC Discontinuities on Synchrony
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H(w)~
1

T

ðT

0

Y (~tt)½V (~ttzw){V(~tt)�d~tt:

Phase-locking occurs when the phase difference w~w2{w1

remains constant in time, and hence it is convenient to study the

equations in terms of the phase difference that evolves according to

_ww(t)~ H({w){H(w)½ �~ G(y(t)), ð5Þ

where

G(w(t))~
1

T

ðT

0

Y (~tt)½V (~tt{w){V (~ttzw)�d~tt

represents the growth function that quantifies the instantaneous

growth of the phase difference. The change of the growth function

as a function of the phase difference [G
0
(w)] at a stable phase-

locked state (w~w�) should become negative so that any small

perturbation to that steady state subsides. Thus the stability of the

synchronous state (w�~0) of the Eq. 5 is determined by the

eigenvalue:

l~ G
0
(0)~

{2

T

ðT

0

Y (t)V
0
(t)dt, ð6Þ

Figure 1. Prevalence of sharp jumps in the PRCs in some neuronal models. (a) PRC of leaky integrate-and-fire neuron model [22,35]:
_VV~Iapp{V where V is reset to 0 when it crosses a threshold level of 1 (in normalized units). (b) PRC of quadratic integrate-and-fire neuron model

[23]: t _VV~IappzV2 where V is reset to Vr when it crosses a threshold level Vth. (c) PRC of adaptive exponential integrate-and-fire model [21,25]:

Cm
_VV~Iapp{GL(V{EL)z2GLe(Vz50)=2{w, tw _ww~a(V{EL){w such that V and w are reset, respectively, to Vr and wzb whenever V reaches a

peak level V � . The parameters are Cm~0:1 nF, GL~0:01 mS, Vr~{60 mV, V�~{20 mV, EL~{70 mV, and tw~100 ms. The level of adaptation is
controlled by a. (d) PRC of Wang-Buzsáki model that is described in the Model section. Models in (a, b, d) have no adaptation and their second and
higher order PRCs are identical to that of the first order.
doi:10.1371/journal.pone.0058922.g001

Effect of PRC Discontinuities on Synchrony
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and the stability of the antisynchronous state (w�~T=2) of the Eq.

5 is determined by the eigenvalue:

c~ G
0
(T=2)~

{2

T

ðT

0

Y (t)V
0
(t{T=2)dt: ð7Þ

These eigenvalues are computed for the Y (t) and V(t) profiles

formulated in Eqs. 1 and 2, and the stability of synchrony and

antisynchrony is determined in the following sections. We will see

that the PRC jumps (B and B2) can alter the stability of both

synchrony and antisynchrony. A symmetric PRC [Fig. 2(a), thin

curve] leads to stable synchrony and unstable antisynchrony

[Fig. 2(c), thin curve]. An example of the synchronous state

becoming unstable and the emergence of a non-zero phase-locked

state that is very close to the synchronous state due to the finite

jumps at the PRC ends is shown in Fig. 2(a,c). Antisynchrony and

other non-zero phase-locked states can also undergo stability

changes. The case of zero spike width (W=T~0) presents an

enigmatic situation when the unstable synchronous branch and a

stable non-synchronous but phase-locked branch converge at the

same point [Fig. 2(d)]. This situation arises because of the fact that

the discontinuity in the voltage due to W~0 and the discontin-

uous jump in the PRC occur at the same temporal location. The

stable phase-locked branch is very close to the unstable synchrony

branch, and they quickly get separated as W=T is increased.

Hence strictly at W=T~0, the stability criterion for phase-

locked states depends on whether it is computed in the limit of

W=T?0 or otherwise. We will compute the stability of synchrony

and anti-synchrony in the limit of W?0 that inherently uses the

spike effect, and will see a transition from stable synchrony to

unstable synchrony above a critical B=C. For non-zero W=T , this

situation does not arise because the edge effects get factored into

the eigenvalue components computed due to the up and

downstrokes that span finite time widths. The antisynchronous

state is unstable for W=T~0 unless the sum of the PRC jumps is

bigger than twice the PRC maximum (i.e. BzB2w2C). But as

W=T increases, more parameter region is filled with antisyn-

chrony, some with synchrony, and some with bistability. The

bistability could occur between phase-locked states, synchronous,

and antisynchronous states.

The stability boundaries do not depend on the time period T ,

but in numerical simulations we used the period corresponding to

Figure 2. Piecewise linear models of PRC and voltage, and illustration of spike width effect. (a) Sample piecewise linear PRC profiles
studied. (b) Voltage time course that consists of three piecewise linear profiles, modeled after the classic Hodgkin-Huxley model. (c) Growth function
G(w) computed for the three PRCs displayed in (a) and the voltage time course in (b). The sharp drops of the PRC at the edges altered the stability of
synchrony. (d) Bifurcation diagram as a function of the normalized spike width at B~0:5 and B2~0:25. In this and later figures, solid lines indicate
stability and open circles instability of the phase-locked solutions. Synchrony is unstable at all frequencies, whereas antisynchrony is stable at high
frequencies.
doi:10.1371/journal.pone.0058922.g002
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the HH model mentioned earlier. The other spike parameters are

also derived from the same model.

Results

Except the leaky integrate-and-fire (LIF) model which has an

exponential form of PRC, the other three PRCs [quadratic

integrate-and-fire (QIF), adaptive exponential integrate-and-fire

(aEIF), and modified Wang-Buzsáki model] presented in Fig. 1 can

be approximated by PWL formulations in our models. The results

will also be applicable to the LIF model in a qualitative manner.

The LIF and QIF models both have sharp jumps in the PRC at

both early and late phases, and no adaptation currents are present

in either model. The aEIF model has an adaptation current

variable and shows a left PRC jump. The modified Wang-Buzsáki

model that has only sodium and delayed rectifier currents, and no

adaptation currents, displays a sudden downward swing followed

by a sudden rise in the PRC level. We first study symmetric PRCs

depicted in Fig. 2(a). Rigorous analytical arguments are presented

for the boundaries of both stable synchrony and stable antisyn-

chrony (Figs. 3 and 4) when the PRC is symmetric (Eq. 1, Fig. 2).

Later we introduce PRC skewness that parametrizes the position

of the peak PRC level, and analytical results are discussed (Fig. 5)

when the PRC in addition acquires a skewness (Eq. 16) such that

the peak of the PRC is either moved to the left or right. Finally we

present simulation results using networks of Wang-Buzsáki model.

1. Synchrony and Antisynchrony when Spike Width is
Zero

The boundaries of synchrony (r1 and r2) and antisynchrony (s1)

under the assumption of zero spike width are derived in this

section, and are illustrated in Fig. 3(a,b) in the parameter spaces of

(B2=C, B=C) and (B2=C, a3=a2). In the absence of any jumps in

the PRC, the coupled system synchronizes because the entirely

positive PRC encounters a positively sloped voltage segment and

thus the eigenvalue [Eq. 6] becomes negative. In other words, if

the second neuron leads the first by a small phase, the first neuron

speeds up in response because the voltage time course of the

second neuron (say, v2) is higher than the first (say, v1) for most of

the spike interval (coupling to the first neuron is proportional to

v2{v1). And if the second neuron lags the first, the converse effect

occurs.

A positive jump in the PRC at zero phase (left side edge) helps

destabilize synchrony, and a positive jump at T (right side edge)

helps stabilize synchrony more. We can visualize these effects by

imagining the case of non-zero spike width. The spike downstroke

has large negative slope, and the spike upstroke has large positive

slope. Since the PRC is non-zero, the convolution (Eq. 6) with the

downstroke results in a positive eigenvalue that helps destabilize

synchrony, and that with the upstroke results in a negative

eigenvalue that helps stabilize synchrony. In other words, if v2

leads v1, the first neuron slows down in the region from spike peak

to (nearly) the spike downstroke because the spike downstroke of v2

falls below that of v1, whereas it speeds up during the spike

upstroke region because there v2 is bigger than v1. In the limit of

zero spike width, these effects remain because the PRC is non-zero

due to finite jumps. Thus the destabilizing effect of the left edge (B)

can be countered by appropriately increasing the right side jump

(B2) leading to a diagonal line of criticality in the parameter space

of (B2,B1) [Fig. 3(a)]. Increasing the spike threshold such that

a3=a2 is also increased will cause the voltage time course acquire

more positive slope that enhances the negative eigenvalue

component, and consequently we see the boundary of synchro-

nous region being pushed into the earlier unstable region [Fig. 3(a)]

or making a transition to synchrony [Fig. 3(b)] with increasing

a3=a2.

The instability of synchrony occurring for W~0 is more subtle

than that occurring for non-zero spike width. Imagine again the

case of non-zero spike width. When v2 leads v1, the slow down of

the first neuron occurs within the duration of spike downstroke,

and then it speeds up for the rest of its cycle. When the spike width

is zero, the slow down regime is really confined to zero width, but

it still exists because of the non-zero value of the PRC at the edge.

Thus the turn around from speed up to slow down occurs right at

the zero phase, thus creating an equilibrium point (w�~0z) that

becomes stable when the synchrony becomes unstable. The

growth function displaying a stable non-zero equilibrium (due to

the negative slope) merging with unstable synchronous state (due

to positive slope) as the spike width becomes zero is illustrated in

Fig. 3(c). Similar phenomenon occurs even in the stable synchrony

regime, leading to a stable synchrony coexisting with unstable

equilibrium point (w�~0z) [Fig. 3(d)]. Thus the boundaries of

synchrony derived below are in the limit of W going to zero. And

for very small non-zero W these boundaries begin to change

slightly in the parameter spaces, and the non-zero equilibrium and

the synchronous states become more separated.

If the PRC is maximum at half period, the time-shifted (by half

period) voltage not only has a large negative discontinuity, but also

encounters a large PRC level at the discontinuity. Together this

contributes to large positive integral in the eigenvalue of the

antisynchrony (Eq. 7). In other words, if v2 leads v1, v2{v1 that

drives the first neuron becomes large negative at half period, and

thus the first neuron slows further. If this effect is not countered by

the other segments of the voltage (which occurs when condition in

Eq. 10 is satisfied), the antisynchrony remains unstable.

The eigenvalue for the synchronous state (w�~0) is obtained by

using the formula in Eq. 6, and then adding the edge contributions

from both the jumps at the end. Using the formula in Eq. 6 we get

two eigenvalue components,
{2

T

ðT=2

0

Y1V
0

2(t)dt and

{2

T

ðT=2

0

Y2V
0

2(t)dt which when evaluated and added yield

{ a3

2T
(BzB2z2C). The edge contribution from the left side

jump of the PRC is
{2

T

ðj

0

B
{a2

j

� �
dt which when evaluated in

the limit of j?0 yields
2a2B

T
. Similarly carrying out such an

integral at the right side jump of the PRC yields
{ 2(a2{a3)B

T
.

Adding all these four eigenvalue components results in the total

eigenvalue that determines the stability of the synchronous state:

l~ (4a2{a3)B{(4a2{3a3)B2{2a3C½ �=(2T): We directly see

that a positive left side jump makes the eigenvalue more positive

and hence making it less likely to synchronize, and a positive right

side jump makes the eigenvalue more negative and hence making

it more likely to synchronize. The maximum PRC advancement

works in favor of synchrony. The synchronous state is stable when

the eigenvalue is negative, i.e. when

B
0
v B

0� ��
:r1~

(4{3a
0
3)B

0
2z2a

0
3

4{a
0
3

, ð8Þ

where a
0
3~a3=a2, B

0
~B=C, and B

0
2~B2=C. The region of

synchrony bounded by the curve r1 is illustrated in Fig. 3(a) for

three levels of a3=a2. The above critical condition can also be

written in terms of the ratio a3=a2 that gives more convenient way

Effect of PRC Discontinuities on Synchrony
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to visualize the stability region as a function of the level of spike

threshold:

a
0
3w(a

0
3)�:r2~

4(B
0
{B

0
2)

B
0
{3B

0
2z2

: ð9Þ

The stable synchrony region bounded by r2 is illustrated in

Fig. 3(b) as a function of the jump at the right edge at three levels

of the left edge jumps.

Next we find the stability conditions for antisynchrony. Since

V (t{T=2) is discontinuous at t~T=2, the discontinuity comput-

ed as before results in an eigenvalue component that is equal to
2a3C

T
. The other two eigenvalue components are identical to

those derived for the case of synchrony. Combining all the three

components, the total eigenvalue is obtained as

c~
{ a3

2T
(BzB2{2C). The antisynchronous state becomes

stable when this eigenvalue becomes negative, i.e. when

BzB2w2C, or when

B

C
w

B

C

� �
:s1~2{

B2

C
: ð10Þ

For most PRCs that may have jumps, this condition may be

difficult to satisfy because it requires large drops at the edges that

cumulatively exceed the maximum PRC advancement found at

t~T=2. The region falls outside the depicted range of B=C in

Figure 3. Edge effects when spike width is zero. (a) Stable synchrony (shaded region) and the unstable synchrony (white region) for
a3=a2~0:2234 in the plane of B2=C and B=C. Boundary curves for two other levels of a3=a2 are also shown. (b) Same as in (a) but in the plane of
B2=C and a3=a2 for B=C~0. Boundary curves for two other level of B=C are also displayed. These curves are obtained by inverting equation r1 for
a3=a2 . Antisynchrony is unstable in the displayed parameter ranges in (a) and (b). (c) Growth function G(w), in the limit of zero spike width, displaying
unstable synchrony but a stable phase-locked state that is very close to the synchronous state for a parameter value that is in the unstable synchrony
region. (d) One-parameter bifurcation diagram as a function of B2=C.
doi:10.1371/journal.pone.0058922.g003

Effect of PRC Discontinuities on Synchrony
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Fig. 3(a), and thus the depicted range holds an unstable

antisynchronous state. The stability is independent of a3=a2.

2. Non-zero Spike Width and Effect of Frequency
Boundaries of synchrony (r3 and r4) and antisynchrony (s2 and

s3) in the presence of non-zero spike width are derived in this

section. For non-zero W , the non-zero equilibrium and the

synchronous state that were found merging get separated as seen

in Fig. 3(c). The slopes of the spike downstroke and upstroke are

proportional to the spike width, and hence their contributions to

the growth of the phase difference also is proportional to W for

small W . Consequently, the resultant boundaries for small non-

zero W are near those obtained for zero spike width. As in the case

of zero spike width, the PRC jump on the left diminishes the

chances of synchrony, and that on the right promotes the chances

of synchrony. Correspondingly, large PRC jump on the right and

small jump on the left signifies stable synchronous region, and

large jump on the left side and small jump on the right destabilizes

the synchronous state [Fig. 4(a)].

The antisynchronous state was unstable in most of the

parameter space at W=T~0 due to the destabilizing effect of

the voltage discontinuity of V (t{T=2) at t~T=2. With

Figure 4. Edge effects when spike width is non-zero. (a) Stable synchrony (shaded) and stable antisynchrony (hatched) regions in B2=C and
B=C space for small spike width W=T~0:05 at a3=a2~0:2234. The white region holds other non-zero stable phase-locked solutions. (b) Same as in
(a) but for large spike width W=T~0:3. (c) One-parameter bifurcation diagram as a function of B2=C at small spike width and B=C~0:5, and
W=T~0:05. The non-zero phase-locked states are found to be bistable with anti-synchronous state, and are not very close to the synchronous state
as was the case for zero spike width. (d) Growth function at three levels of W=T when B=C~0:25 and B2=C~0:5. When B2 and B are chosen such
that the system is in a synchronous state, increasing spike width eventually makes it unstable, but the stability is maintained until the spike width is
large. (e) One-parameter bifurcation diagram as a function of spike width corresponding to the parameters in (d). The antisynchrony becomes stable
here at W=T~0:13. Note that the stability boundaries and transitions are functions of the ratios W=T , a3=a2 , and B=C. Thus, for example, the
diagram in (a) is valid for any period and spike width as along as W=T~0:05.
doi:10.1371/journal.pone.0058922.g004
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increasing W=T , the upstroke broadens at a lower rate than the

downstroke, and consequently the stabilizing effect of the upstroke

dominates resulting in boundary of the stable antisynchrony

becoming sensitive for W=T . At large W=T , most of the

parameter space is filled with antisynchronous state [Fig. 4(b)].

Unlike the case of zero spike width, the stable near-zero phase-

locked state and the synchronous state are well separated

[Fig. 4(c)], and a bistability between a non-zero phase-locked

state and the antisynchronous state is found for large left PRC

jumps. Increasing the frequency causes bistability between

synchronous and antisynchronous states [Fig. 4(d)], before the

synchrony loses stability [Fig. 4(e)].

Synchrony. As the spike width becomes bigger than zero, the

edge effects that we had to include earlier (when W~0) are

naturally contained in the contributions of the up and downstrokes

of the spike. Apart from these two components, the regime from

the spike minimum to the PRC maximum, and PRC maximum to

the spike threshold provide the other two components to the

integral in Eq. 6. But if the spike minimum occurs after T=2, then

the downstroke contribution extends all the way up to T=2, and

the other three components are contained in the regime twT=2.

When the spike width is small such that 0ƒWv

T

4
, we obtain the

region of stable synchrony as (see Methods)

Figure 5. Effect of skewness on the PRCs that have left side jump (a), and those that have right side jump (b). The left jump PRCs are
parametrized by B=C and the right jump PRCs are parameterized by B2=C. (a) A sample set of PRCs as the skewness A is moved from negative to
positive levels is illustrated in the left column along with one-parameter bifurcation diagrams at two different levels of B=C as the skewness is
increased (W=T~0:05). For positive jump synchrony is mostly unstable, and at large skewness even the antisynchrony is destabilized. But for
negative jump skewness helped stabilize synchrony. On the right parameter planes depicting stability regions in the plane of skewness and jump are
illustrated at different levels of W=T . (b) Same as in (a) but for right side jump PRCs (B=C~0). a3=a2~0:2234:
doi:10.1371/journal.pone.0058922.g005
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B

C
v

B

C

� ��
:r3~

a2x6za3x7

x8

B2

C
{

x9

x8

, if 0ƒWv

T

4
, ð11Þ

where x6~{4T2z12TW{5W 2, and

x7~3T2{10TWz4W 2,

x8~(T{4W )2(a3{4a2){14a2W (T{
22

7
W ), and

x9~3a2W (5W{2T)z2a3 T2{TW{6W 2
� �

. The parameters

T and a2 can be used to further normalize W and a3 respectively.

The region of stable synchrony bounded by r3 is illustrated in

Fig. 4(a) for W=T~0:05 and a3=a2~0:2234.

And when the spike width is large (or the frequency is high) such

that the spike minimum occurs after the PRC peak (
T

4
ƒWv

2T

5
),

the region of stability of synchrony is given by (see Methods).

B

C
v

B

C

� ��
:r4~

8a3W ({Tz2W ){a2x10

a2T2

B2

C

z
2 4a3(T{2W )Wza2x11½ �

a2T2
,

if
T

4
ƒWv

2T

5
:

ð12Þ

where x10~T2{16TWz20W 2, and x11~T2{8TWz10W 2.

The parameters W and a3 can be normalized, respectively with T

and a2. The stable synchrony region bounded by r4 is illustrated

in Fig. 4(b) for W=T~0:3 and a3=a2~0:2234.

Antisynchrony. The effect due to discontinuity of

V (t{T=2) at t~T=2 that existed for zero spike width is now

contained in the V3 and V1 segments that fall on either side of

t~T=2. Along with these two segments, the segment preceding

the spike peak and the segment that follows the spike threshold

contribute to the integral in Eq. 7. When the spike width is small

such that 0ƒWv

T

4
, we obtain the region of stability for

antisynchrony as (see Methods)

B

C
w

B

C

� ��
:s2~

x14
B2

C
zx15

x16
,

if 0ƒWv

T

4
,

ð13Þ

where x14~4a2W (2T{5W ){a3 T2{16W 2
� �

,

x15~3a2W (5W{2T)z2a3 T2{TW{6W 2
� �

, and

x16~a2W (2T{5W )za3 T2{2TWz4W 2
� �

. The stable anti-

synchronous region bounded by s2 is illustrated in Fig. 4(a) at

W=T~0:05 and a3=a2~0:2234 (that corresponds to the HH

model).

When the spike width is large such that
T

4
ƒWv

2T

5
, the spike

downstroke effect lasts from t~T=2 to t~T , and the other three

segments fall in the first half of the period. The corresponding

boundary for stable antisynchrony is more complex than before,

and is given in two regimes of spike width (see Methods). The

stable antisynchrony exists when

B

C
w

B

C

� ��
:s3~

a2T2

x17

B2

C
z

2x18

x17
,

if
T

4
ƒWv

3a2T

2(5a2{4a3)
:

ð14Þ

When Wwx19, we arrive at the region of stable antisynchrony as

B

C
v

B

C

� ��
:s4~

a2T2

x17

B2

C
z

2x18

x17

,

if
3a2T

2(5a2{4a3)
ƒWv

2T

5
:

ð15Þ

At a3=a2~0:2234 the limits for the curves s2 and s3 are given

respectively by 1=4ƒW=Tv0:365 and 0:365ƒW=Tv0:4. At

W=T~0:3 only s2 exists, and the region bounded by it is

illustrated in Fig. 4(b).

3. Effect of PRC Skewness
The location of the PRC peak could indeed affect the onset of

synchrony and antisynchrony. We introduce the skewness by

redefining the two PRC segments of Eq. 1 as below.

Z(t)~

Z1(t)~ Bz
2(C{B)

AzT
t, 0ƒtv

AzT

2
,

Z2(t)~ C{
2(C{B2)

T{A
t{

T

2
{

A

2

� �
,

AzT

2
ƒtvT ,

0
BB@ ð16Þ

where the parameter A is the skewness parameter and could range

from {T when the maximum PRC advancement occurs at zero-

phase to T when the same occurs at phase T . The shapes of the

PRCs are illustrated in two special cases when only the left side

jump is present [Fig. 5(a) left top] or when only the right side jump

is present [Fig. 5(b) left top]. The other panels in the figure present

corresponding transitions of stability as the level of these jumps

and the skewness are altered. The one-parameter bifurcation

diagrams are computed numerically, and the stability boundaries

presented are derived from the expressions obtained by solving the

eigenvalue equation as was done in the previous sections.

For PRCs that have jumps only on the left side an example of

transition of stability between phase-locked states is shown in

Fig. 5(a, left middle) for small spike width. In this illustration the

level of the jump is set at half of the peak PRC level. Synchrony is

unstable for most of the skewness, except in a small window at very

large skewness. For negative skewness the level of Z1 during the

spike downstroke is bigger than that at zero skewness, and thus the

positive eigenvalue component contributed by the downstroke

increases resulting in a loss of stable synchrony. However, at very

large skewness the destabilizing effect of the downstroke can be

countered by the enormously negative eigenvalue contributed by

the spike upstroke in association with the increasing level of Z2

segment, thus giving a thin regime of stable synchrony [Fig. 5(b,

right panel W=T~0:05)]. Increasing W=T increases this regime

because now more length of the PRC segments fall inside the up

and downstroke regimes; the upstroke having a bigger slope

contributes a dominating eigenvalue [Fig. 5(a, right panel

W=T~0:2)]. An example of transition of stability is shown for

negative B=C in Fig. 5(a, left bottom). There is no sudden

transition as B=C goes from positive to negative regime. The

stability curves are continuous. For negative B=C a portion of the
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spike downstroke contributes to stable synchrony due to negative

Z1 segment, and thus stable synchrony can be sustained even for

large negative skewness. In the previous section we saw that it is

possible to make the antisynchronous state stable by increasing the

spike width or frequency. This advantage is now countered by a

positive skewness; Now the downstroke that is responsible for

instability dominates because the entire (half-period shifted) spike

profile encounters an increasing segment Z1. Consequently the

PRC level during the downstroke is higher than that during

upstroke. Thus it is difficult to attain stable antisynchrony for large

skewness [Figs. 5(a, right panels)].

The corresponding results for a right side jump of the PRC are

illustrated in Fig. 5(b). For synchronous and antisynchronous

states, the parameter B2=C behaves qualitatively like {B=C, i.e.

the right side jump is qualitatively equivalent to a left side jump

with the opposite sign, and vice versa [panels in Fig. 5(b)]. This

equivalency seems better at low frequencies or spike widths, i.e.

when W=T is very small. We can indeed determine when this

equivalency is a valid approximation by examining the eigenvalues

Figure 6. Effect on network behavior emerging from different PRC shapes. Modified Wang and Buzsái model neurons are used to compute
PRCs at two parameter sets (a) resulting in a PRC that is nearly symmetric, and another that has very steep rise near small phases. (b) Growth
functions corresponding to the PRCs in (a). (c) Voltage time courses of two coupled model neurons corresponding to the parameter sets of the two
PRCs in (a). (d) Growth function for a third parameter set resulting in a non-zero phase-locked state near synchrony. (e) Spike times (plotted as dots)
of a network of 100 all-to-all coupled model neurons for the three parameter sets corresponding to the curves in (b,d). The non-zero phase-locked
state near synchrony leads to prolonged transients, and a jitter in the spike times in the steady state. #1 : wn~2, Iapp~0:17791 mA/cm2. #2 : wn~9,
Iapp~0:17 mA/cm2 . #3 : wn~8:3, Iapp~0:172536 mA/cm2 . wh is fixed at 5 for all the three sets.

doi:10.1371/journal.pone.0058922.g006
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that define the stability of synchrony and antisynchrony. For ease

of analysis, we examine the case when the skewness is absent

(A~0). The eigenvalue under study is l1 (see Methods), and for

showing the exact equivalency we must show that the dependence

on B (i.e. the coefficient of B) is the same as the dependence on

{B2 (i.e. the negative of the coefficient of B2). In other words, the

sum of the coefficients of these terms must be zero. The sum of the

numerators of these two coefficients is proportional to:

xeq~
2a3

a2

{2 3z2
a3

a2

� �
W

T
z3(5{

4a3

a2

)
W

T

� �2

: Thus the

equivalency is valid when xeq~0, i.e. when

W

T

� �
eq

~
3za

0
3{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
0
3(25a

0
3{24)z9

q
15{12a

0
3

,

where a
0
3~a3=a2. This expression is valid for A=T~0, and similar

expressions could be obtained for non-zero A=T but they become

cumbersome. For a3=a2~0:2234 employed in Fig. 5,

(W=T)eq~0:082. A similar analysis carried out for the anti-

synchronous state would yield the same value. The equivalency is

less accurate at large value of W=T as is also evident from Fig. 5(b,

panel for W=T~0:2). We conclude that negative skewness is in

general favorable for antisynchrony and positive skewness is not.

Synchrony is stable predominantly when the left PRC jump is

negative, or when the right PRC jump is positive. But for

sufficiently positive skewness synchrony can be achieved for any B
and B2, and for sufficiently positive skewness antisynchrony can be

made unstable.

4. Network Simulations
We demonstrate here numerically that a PRC with left jump

causes synchrony lose its stability using the network of identical

modified Wang-Buzsáki model neurons coupled electrically with

all-to-all connectivity such that the current Iele received by ith

neuron is given by

Iele~
1

N{1
gele

XN

j~1

(Vj{Vi),

where N is the number of neurons in the network, and gele is the

strength of electrical coupling. The coupling can be termed weak if

in the synchronized state the frequency of the neurons is not

significantly altered. Each neuron in the network is made to

oscillate by employing an appropriate steady external current such

that it’s spontaneous firing rate is about 5:33 Hz. We test here two

parameter sets: wn~2, Iapp~0:17791 mA/cm2, and wn~9,

Iapp~0:17 mA/cm2. By making the dynamics of the potassium

activation faster, we made the nearly symmetric PRC [curve

marked 1 in Fig. 6(a)] acquire a sharp rise at zero phase [curve

marked 2 in Fig. 6(a)]. The PRC does acquire negative values at

early phases below 0:23 ms, and then rises with a finite slope. But

even if this regime was reset such that the PRC gradually

approached a positive value at zero phase (corresponding to a left

side jump), the results would not differ much. In addition to the

sharp rise near zero phase, making the potassium dynamics faster

also shifted the peak position of the PRC toward left.

From the theory presented thus far, we expect that both these

attributes help destabilize synchrony. The corresponding growth

functions are shown in Fig. 6(b) that clearly reveal that left side

jump together with the leftward tilt of the PRC caused a

destabilization of the synchrony. The antisynchrony remains

unstable. A non-zero phase-locked state has acquired stability.

Actual solving for the time course using two coupled neurons

(N = 2) [Fig. 6(c)] for these two parameter sets verifies this

observation.

A network of 100 neurons are coupled electrically starting from

initial conditions distributed uniformly on the periodic orbit of the

uncoupled neuron, and numerically integrated. Their spike times

are shown in Fig. 6(e, top two panels) corresponding to the two

parameter sets discussed above. The initial conditions constitute

the most inhomogeneous set possible in the network, and the

transients decay slowly but gradually and yield either synchronous

state for the first parameter set, or an asynchronous state for the

second parameter set.

The non-zero phase-locked state is a more sensitive function of

the voltage time course and the PRC shape than the synchronous

and antisynchronous states. This is because the exact level of the

steady state separation between two coupled neurons correspond-

ing to a non-zero phase-locked state is not identical for all

parameter changes, unlike synchrony and antisynchrony. Thus

their stability is also difficult to compute. But we noted earlier that

the case of zero spike width leads to a stable phase-locked state

merging with an unstable synchronous state. It is indeed difficult to

carry out simulations in such a regime, but a stable phase-locked

state can be created near (but not merging with) an unstable

synchronous state. In Fig. 6(d) we have used a third parameter set

to find that both synchrony and antisynchrony are unstable, but a

non-zero phase-locked state very near synchronous state is stable.

Carrying out a similar simulation as before using a 100 neuron

network [Fig. 6(e, bottom)] reveals that an almost-synchrony may

be achieved where the spike times continue to show a small

amount of jitter (proportional to the level of phase-locked state),

but the network exhibits long transients. The dynamics of such a

state depends on a number of factors including how fast a two

neuron subnetwork repels a synchronous state (slope of the growth

function at zero phase), and how fast such a network approaches

the non-zero phase-locked state, and whether there are any other

locked states in the system and their stability.

5. Special PRCs
Flat PRCs. A special case of Y (t) is when the PRC is a flat

horizontal line: B~B2~C. All the eigenvalues corresponding to

synchronous and antisynchronous states become zero under this

assumption. We can also see the emergence of zero eigenvalues

directly from Eqs. 6 and 7. After effecting a transformation of

variables in the definition of G(w), the integral equations

expressing l and c can be written with derivatives of Y (t) which

would become zero under the above assumption. Thus a flat PRC

results in neutrally stable synchronous as well as antisynchronous

states.

Linearly increasing or decreasing PRCs. A special PRC

type that is linearly increasing or decreasing from left to right is

obtained by setting the PRC maximum to the average of the two

jumps:

C~
BzB2

2
ð17Þ

in Eq. 1. First consider stability of synchrony. The two regimes

that were treated earlier (0ƒWv

T

4
and

T

4
ƒWv

2T

5
) merge

into one because the earlier two PRC segments will now become

just one due to the special value C. Some of the components r1, r2,

r3, and r4 (see Methods) will have different values than s1, s2, s3,

and s4 because of altered limits of integration, but their sum will
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become identical to one another. Substituting for C from Eq. 17 in

the eigenvalue components r1, r2, r3, and r4, and computing the

eigenvalue, we get l1 as E(B{B2)(T{2W )(a2x20{a3)=T2 where

x20~
4T{5W

2T{4W
. Solving l1~0 clearly yields the critical curve as:

B~B�~B2. The coefficient of B is positive if a3=a2vx20 which

clearly is the case because it is sufficient for x20 to be bigger than 1
for this relation to hold, but in fact x20§2 in the range

0ƒW=Tv2=5 (because x20 acquires a value of 2 at W=T~0

and 5 at W=T~2=5, and has a positive slope of 3T=½2(T{2W )2�
in between). Thus large negative B results in l1v0 and thus stable

synchrony, and large positive B results in unstable synchrony, and

the curve B~B2 separates the two parameter regions. In

summary, the stable region for synchrony is given by

BvB2, if W§0: ð18Þ

The region of stability did not change with finite spike width

although the eigenvalue expression does acquire a dependence on

W=T because eigenvalue in either case depends on the difference

of the PRC jumps, and the spike width modulates that difference.

Next consider stability of antisynchrony. Consider the case

0vWv
T
4
. Substituting for C from Eq. 17 in the expression for c1

and simplifying, we get c1 as (B2{B)W ½(5a2{a3)(2T{5W )z

15a3W �=½2T2(2T{5W )� which has clearly a negative coefficient

for B. Thus at large negative B, the eigenvalue becomes positive

leading to unstable antisynchrony, and at large positive B the

eigenvalue becomes negative leading to stable antisynchrony. The

critical curve that separates these two regimes is obtained by

solving c1~0 which yields B~B2. Next in the regime
T

4
ƒWv

2T

5
, substituting for C again from Eq. 17 in the

expression for c2, we get the eigenvalue as

(B2{B) 2a3(T{2W )Wza2T(T{4W )z5a2W 2
	 


=(2T2W )

which again has a negative coefficient for B because within the

bracketed expression each term is positive due to the current range

of W . Thus the stability region in the same as above. In summary

the region of stability of antisynchrony is given by

BwB2, if Ww0: ð19Þ

We can see that at W~0, c1 becomes zero independent of B or

B2 leading to neutrally stable antisynchrony at W~0. Note that

the eigenvalue c1 when expanded in Taylor series has a linear

dependence on W at small W :

(B2{B)

2T2
(5a2{a3)Wz

15a3

2T
W 2zO(W 3)

� �
:

Hence as W approaches zero, there is no sudden transition

from stability to neutral stability. Thus for numerical purposes its

stability at W~0 may be considered to follow the condition in Eq.

19. In summary, stable synchrony (Eq. 18) and stable antisyn-

chrony (Eq. 19) exist in complementary parameter regions in

(B,B2) space, and the line B~B2 represents critical state where

both the locked states merge. It is also clear that the stability

regions are independent of spike width and frequency.

Discussion and Conclusions

The PRC and the voltage are not completely independent. The

PRCs are often computed numerically since analytical forms of the

PRCs can only be obtained for very few simple models [3]. The

standard approach is computing the so called adjoint using

averaging technique. In the popular XPPAUT software program

[32] this is computed numerically by using a method that uses

backward integration technique. If the dynamical system under

study exhibits sharp discontinuities such as in adaptive exponential

integrate-and-fire model [25], a similar method was recently

introduced by Ladenbauer et al. [21]. However, for these two

techniques to be employed we must have full knowledge of the

differential equations of all the variables in the system. In other

words the PRC cannot be completely derived from the voltage

time course alone, but is actually derived from the inverse of the

derivative of the voltage, and is thus dependent on not only the

voltage but all other variables and their derivatives computed on

the trajectory.

To compute synchronization properties from experimentally

measured PRCs, the above methods are not applicable because

differential equation models are not known in general. But the

theory of weakly coupled oscillators becomes advantageous if we

note that the only two components that are responsible for

determining the stability of synchrony and antisynchrony are the

shape of the voltage and the shape of the PRC irrespective of all

other variables. This gives us an opportunity to comprehensively

study the role of each of the shape parameters of the voltage and

the PRC on the network behavior without invoking any specific

model system. We parameterized the shapes of both the voltage

and the PRC. The PRC shape is parameterized by discontinuities

and the skewness. And the voltage shape is parametrized by the

spike peak, its minimum, threshold level, spike width and period.

The Hodgkin-Huxley model voltage time course is only used for

the limited purpose of extracting the relationship between the

parameters. The information that is extracted is that the voltage

may be divided into three segments, and a single spike width

parameter W could be used in quantifying both the spike rise and

fall profiles. Obviously, not all the PRC and voltage shapes

spanned by our study are relevant for a particular given model.

But we have presented analytical boundary expressions that can be

used in applying the theory to many experimentally determined

PRCs and voltages (within the purview of our model), and thus our

theory has predictive power. Our study is not the first to

incorporate variable parameters in theoretical models. Chow

and Kopell [26] and Lewis and Rinzel [12] introduced free

parameters of voltage spike width and shape to study the role of

them within the context of mostly leaky integrate-and-fire (LIF)

like models. But not many experimental results resemble PRCs of

the LIF models. Thus we need to parametrize the PRC shapes as

well to extend such theories to wider applicability. Our work is an

attempt in this direction.

We have investigated the role of sharp jumps in the PRC at its

edges on synchronization of electrically coupled neuronal oscilla-

tors. The PRC is modeled using a two-piecewise linear function

with discontinuous jumps at the edges, i.e. phases corresponding to

time 0 and the period T . The temporal relationships between the

voltage segments are empirically derived from the Hodgkin-

Huxley model. But the spike frequency, the spike period, the spike

height parameters, and the level of PRC jumps are all freely

altered. Analytical boundaries for stability of synchrony and

antisynchrony are determined. The main results for small spike

widths and frequencies are given by r3 for synchrony and s2 for

antisynchrony (relations in Eq. 11 and 13). At large levels of W=T ,
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the boundaries are given by r4 for synchrony, and s3 and s4 for

antisynchrony. We have also studied some special cases of the

PRC where its level is either constant, linearly increasing or

decreasing.

A positive jump at the left edge contributes to destabilizing the

synchronous state, whereas a positive jump at the right edge

contributes to its stability. When the depolarizing phase of V (t)
has zero slope (i.e. when a3~0), then only the spike upstroke and

downstroke play role in deciding the stability, and the eigenvalue

for stability is proportional to the difference of the jumps, and

more specifically B{B2; Thus if both edges have equal jumps,

then the synchrony is neutrally stable (but the adjacent unstable

region has stable non-zero phase-locked states near synchrony),

and stability is achieved when the right jump is bigger than the left

jump. This relationship holds even for negative jumps. If the

depolarizing phase of the voltage has finite slope (a3w0), which

usually is the case, then it contributes more favorably to

synchrony. This leads to the curves r1 that have decreasing slopes

with increasing a3=a2 as shown in Fig. 3(a). Large spike width/

frequency (W=Tw0) makes it harder to synchronize, and the

stable region is moved to lower right as in Fig. 4(a,b).

The jumps at the edges do not directly contribute to altering the

stability of antisynchronous state, but they affect the slope of the

PRC segments that are connected to them, and those segments

alter the stability. But the parameter that affects the stability of

antisynchronous state in a sensitive manner is W=T . In the

absence of spike width antisynchrony must be very rare because it

occurs only when the sum of the left and right jumps exceeds twice

the PRC level at t~T=2 (Eq. 10). It is unstable in the parameter

region shown in Fig. 3(a) because the discontinuous jump

associated with the voltage at t~T=2 imparts a positive eigenvalue

component to the stability and it dominates the magnitude of the

negative components from the depolarizing segment of the

voltage. When the spike width is finite, the positive eigenvalue

contribution from the downstroke (due to its less sharp slope)

becomes smaller than the negative eigenvalue contribution from

the upstroke (due to its sharper slope) leading to lessening of the

destabilizing effect. At appropriate level of frequency (or W=T ),

the antisynchrony becomes stable. The overlap between stable

synchrony and stable antisynchrony can become more at higher

frequencies leading to bistability.

Coupled quadratic integrate-and-fire neuron models at different

oscillation frequencies and different spike threshold levels were

studied earlier by Pfeuty et al. [23,24]. Altering the ratio of the

spike reset level and the threshold level, (for example from 0.1 to

10 in their Fig. 8 of [23]), transformed the PRC from a state of

large jump on the left to a large jump on the right resulting in a

transition from stable antisynchrony to unstable antisynchrony.

Since we have special parameters to quantify the PRC jumps, in

our notation, this means that increasing B=B2 from above 1
toward zero should make the antisynchrony unstable. This is

exactly the case in Fig. 4(a) (refer to the first quadrant). Our

boundaries r3 and s2 (Eqs. 11 and 13) also quantify the effect of

spike width and frequency more explicitly.

The classic leaky integrate-and-fire (LIF) neurons display a PRC

(which is et=T=I where T is the period, and I is the applied

current) that is indeed discontinuous at either end, but also

exponential [12,26]. Using the PWL methodology we see that

BvB2 for such a model which ensures stable synchrony (relation

in Eq. 18), but relation in Eq. 19 predicts instability for

antisynchrony. Our results on the role of skewness (Fig. 5) also

indicated that for PRCs that have large positive skewness,

antisynchrony is unstable. If the PRC had a diminished, or no

response, at early phases, then large PRC skewness could reduce

the effectiveness of the spike downstroke (when the spike times are

shifted by half period) and cause the antisynchrony become stable.

The piecewise linear approach has been very successful in

predicting the stability of synchronous and antisynchronous states.

We also note that similar piecewise linear approach when synaptic

excitation or inhibition is employed yields quite successful

predictions of the role of PRC and voltage shapes on synchrony

and antisynchrony [33]. But the non-zero phase-locked states and

their stability may not be accurately predicted by a simple two-

piecewise linear PRC model because of the fact that the electrical

coupling invokes the entire voltage time course. A more elaborate

PRC model is needed to address those states. Also, only the first

order PRCs are included in the analysis. When higher order PRCs

play a significant role in determining the discontinuous jumps,

then the approach to and the stability of the phase-locked states

may also be affected by their shapes. Finally, strong synaptic input

or strong coupling can cause other dynamical solutions that are

beyond the scope of the weakly coupled oscillators, such as n : m

phase-locking that is different from 1 : 1, and dynamic spike order

switches [34]. Near-synchronous or other non-zero phase-locked

solutions could be affected by including the effects of higher-order

PRCs [34]. However, weak coupling may still be accurate in

predicting the stability of synchronous and antisynchronous states.

Methods

1. Eigenvalue for Synchronous State
Case (a). 0ƒWv

T
4
.

Consider the case of the spike downstroke occurring before the

PRC peak, i.e. 0ƒWv
T
4
. The integral in Eq. 6 can be split into

four regimes each of which contains linear segments of Y (t) and

V (t). These four regimes contribute to the following four

eigenvalue components:

r1~
{2

T

ð2W

0

Y1V
0
1(t)dt~

2a2½B(T{2W )z2CW �
T2

,

r2~
{2

T

ðT=2

2W

Y1V
0
2(t)dt~{

a3(T{4W )½B(T{4W )zC(Tz4W )�
T2(2T{5W )

,

r3~
{2

T

ðT{W=2

T=2

Y2V
0
2(t)dt~{

a3(T{W )½B2(T{W )zC(TzW )�
T2(2T{5W )

,

r4~
{2

T

ðT

T{W=2

Y2V
0
3(t)dt~{

(a2{a3)(2B2T{B2WzCW )

T2
:

The combined eigenvalue is the sum of the eigenvalue

components, and is obtained as.

l1~
x1

T2(2T{5W )
Bz

a2x2za3x3

T2(2T{5W )
B2z

C a2x4{a3x5ð Þ
T2(2T{5W )

where
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x1~(T{4W )2(4a2{a3)z14a2W (T{
22

7
W ),

x2~{4T2z12TW{5W 2,

x3~3T2{10TWz4W 2,

x4~3W (2T{5W ),

x5~2(T2{TW{6W 2):

Since Tw4W in the present case, we see that Tw

22

7
W , and

hence T{
22

7
Ww0 leading to x1w0. And utilizing the condition

in Eq. 3, we conclude that the coefficient of B in the eigenvalue

expression is positive, and hence, at any fixed value of B and other

parameters, at large positive B the eigenvalue becomes positive,

and at large negative B, the eigenvalue becomes negative. Hence

the synchronous state is unstable at large positive B, and stable at

large negative B. Also since the dependence on B is linear, the

derivative of l with respect to B is simply the coefficient of B which

is positive. Thus the eigenvalue transitions from a negative to a

positive value as B is increased across any critical curve B�. Such

critical curve is obtained by solving the equation l1~0 for B, and

the stable synchronous region falls below this critical curve. That is

the region of stable synchrony is given by BvB� and is expressed

in Eq.11.

Case (b).
T

4
ƒWv

2T

5
.

Now consider the case of
T

4
ƒWv

2T

5
. The limits of the four

components computed in the previous case are altered because

now the spike minimum occurs after the PRC peak position. The

four eigenvalue components that contribute to the combined

eigenvalue are given below.

s1~
{2

T

ðT=2

0

Y1V
0
1dt~

a2(BzC)

(4W )
,

s2~
{2

T

ð2W

T=2

Y2V
0
1dt~

a2(T{4W )(B2T{4B2W{3CTz4CW )

(4T2W )
,

s3~
{2

T

ðT{W=2

2W

Y2V
0
2dt~{

a3(3B2Wz2CT{3CW )

T2
,

s4~
{2

T

ðT

T{W=2

Y2V
0
3dt~{

(a2{a3)(2B2T{B2WzCW )

T2
:

Using the formula in Eq. 6 for these four components, we get

the total eigenvalue (we term it l2) as.

l2~
Ea2

4W
Bz

8a3(T{2W )za2x10

4T2W
EB2

{E
C 4a3(T{2W )Wza2x11½ �

2T2W

where x10~T2{16TWz20W 2, and x11~T2{8TWz10W 2.

Since the coefficient of B is positive, we directly see that at large

negative B, the synchronous state becomes stable because the

eigenvalue would become negative, and at large positive B it

comes unstable. And the transition across any critical curve B� in

between is governed by the coefficient of B which is positive. And

hence the stable synchronous region lies below the critical curve

that is obtained by solving the equation l2~0: BvB� and is as

written in Eq. 12.

2. Eigenvalue for Antisynchronous State

Case (a). 0ƒWv

T

4
.

Finally we find conditions for stability of antisynchronous state.

As before, first consider the case 0ƒWv

T

4
. The eigenvalue

integral in Eq. 7 can be split into four regimes that have PWL

segments, and the four integrals give rise to the following four

components:

u1~
{2

T

ðT=2{W=2

0

Y1V
0
2dt~{

a3(T{W ) B(TzW )zC(T{W )½ �
T2(2T{5W )

,

u2~
{2

T

ðT=2

T=2{W=2

Y1V
0
3dt~{

(a2{a3) BWz2CT{CWð Þ
T2

,

u3~
{2

T

ðT=2z2W

T=2

Y2V
0
1dt~

2a2 2B2WzC(T{2W )ð Þ
T2

u4~
{2

T

ðT

T=2z2W

Y2V
0
2dt~

{
a3(T{4W ) T(B2zC)z4W (B2{C)½ �

T2(2T{5W )½ � :

Using the formula in Eq. 7 for these four components, we obtain

the total eigenvalue as.
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c1~{
a2W (2T{5W )za3½T(T{2W )z4W 2�

T2(2T{5W )

� �
Bz

x12

T2(2T{5W )
B2z

x13

T2(2T{5W )
,

where

x12~{a3T2z8a2TW{4(5a2{4a3)W 2,

x13~C 2a3(T{3W )(Tz2W )z3a2W ({2Tz5W )½ �:

We clearly see (utilizing the condition in Eq. 4) that the

coefficient of B in the eigenvalue expression is negative, and thus

for large negative B, the eigenvalue becomes positive resulting in

an unstable antisynchronous state, and for large positive B it

becomes negative resulting in a stable antisynchronous state. This

is exactly opposite to what we obtained above for the synchronous

state. And the transition of the eigenvalue as B is increased is such

that it goes from positive to negative (the derivative of c1 with

respect to B is negative). Thus stable antisynchronous state lies

above a critical curve B� which is obtained by solving the equation

c1~0 for B: BwB� which is expressed in Eq. 13.

Case (b).
T

4
ƒWv

2T

5
.

Next consider the case of T
4
ƒWv

2T
5

. The four eigenvalue

components are given by

w1~
{2

T

ð2W{T=2

0

Y1V
0
1dt~{

a2(T{4W )(3BT{4BW{CTz4CW )

(4T2W )
,

w2~
{2

T

ðT=2{W=2

2W{T=2

Y1V
0
2dt~{

a3(2BT{3BWz3CW )

T2
,

w3~
{2

T

ðT=2

T=2{W=2

Y1V
0
3dt~{

(a2{a3) BWz2CT{CWð Þ
T2

,

w4~
{2

T

ðT

T=2

Y2V
0
1dt~

a2(B2zC)

(4W )
:

Using the formula in Eq. 7 for these four components, we obtain

the total eigenvalue as.

c2~{
x17

4T2W

� �
Bz

a2

4W
B2z

Cx18

2T2W
,

where x17~(T{2W ) 3a2(T{ 10
3

W )z8a3W
	 


, and

x18~4a3(T{2W )Wza2(T2{8TWz10W 2). Unlike in the

previous case, the coefficient of B can change sign depending on

the value of a3=a2. We can directly check that within the present

range of W , x17 and consequently, the coefficient of B changes

sign. The coefficient of B is negative if Wvx19 and positive if

Wwx19, where x19~
3a2T

2(5a2{4a3)
. When Wvx19, utilizing

arguments similar to those used in deriving stability conditions

when the coefficient of B is negative (Eq. 13), we get the region of

stable antisynchrony as: BwB� which is given in Eq. 14. When

Wwx19, using arguments similar to those used in deriving stability

conditions when the coefficient of B is positive (Eq. 11), we arrive

at the region of stable antisynchrony as BvB� which is given in

Eq. 15.
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