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Simple Summary: Clear cell renal cell carcinoma is a type of kidney cancer which comprises the
majority of all renal cell carcinomas. Many efforts have been made to identify biomarkers which could
help healthcare professionals better treat this kind of cancer. With extensive public data available, we
conducted a machine learning study to determine a gene signature that could indicate patient survival
with high accuracy. Through the min-Redundancy and Max-Relevance algorithm we generated
a signature of 13 genes highly correlated with patient outcomes. These findings reveal potential
strategies for personalized medicine in the clinical practice.

Abstract: Patients with clear cell renal cell carcinoma (ccRCC) have poor survival outcomes, especially
if it has metastasized. It is of paramount importance to identify biomarkers in genomic data that
could help predict the aggressiveness of ccRCC and its resistance to drugs. Thus, we conducted a
study with the aims of evaluating gene signatures and proposing a novel one with higher predictive
power and generalization in comparison to the former signatures. Using ccRCC cohorts of the
Cancer Genome Atlas (TCGA-KIRC) and International Cancer Genome Consortium (ICGC-RECA),
we evaluated linear survival models of Cox regression with 14 signatures and six methods of feature
selection, and performed functional analysis and differential gene expression approaches. In this
study, we established a 13-gene signature (AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4,
LIMCH1, LINC01732, OTX1, SAA1, SEMA3G, ZIC2) whose expression levels are able to predict
distinct outcomes of patients with ccRCC. Moreover, we performed a comparison between our
signature and others from the literature. The best-performing gene signature was achieved using the
ensemble method Min-Redundancy and Max-Relevance (mRMR). This signature comprises unique
features in comparison to the others, such as generalization through different cohorts and being
functionally enriched in significant pathways: Urothelial Carcinoma, Chronic Kidney disease, and
Transitional cell carcinoma, Nephrolithiasis. From the 13 genes in our signature, eight are known
to be correlated with ccRCC patient survival and four are immune-related. Our model showed a
performance of 0.82 using the Receiver Operator Characteristic (ROC) Area Under Curve (AUC)
metric and it generalized well between the cohorts. Our findings revealed two clusters of genes with
high expression (SAA1, OTX1, ZIC2, LINC01732, GNB3 and IL4) and low expression (AL353637.1, AR,
HHLA2, LIMCH1, SEMA3G, DPP6, and FOXJ1) which are both correlated with poor prognosis. This
signature can potentially be used in clinical practice to support patient treatment care and follow-up.
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1. Introduction

Renal cell carcinoma (RCC) occurs in the renal cortex or the renal tubular epithelial
cell. The molecular subtypes of renal cancers are clear cell RCC (ccRCC), papillary RCC
(pRCC), and chromophobe RCC (ChRCC). RCC accounts for more than 90% of cancers in
the kidney [1], of which 80–90% are ccRCC [2], and more than 30% of patients with ccRCC
experience metastasis [3]. In 2020, the worldwide mortality rate from kidney cancer was an
estimated 179,368 cases International Agency for Research on Cancer (IARC). The American
Cancer Society estimated a prevalence of 76,080 new cases of kidney cancer for 2021 in
the United States (48,780 in men and 27,300 in women), and an estimated mortality rate of
13,780 people (8790 men and 4990 women) [4]. Depending on the stage at diagnosis, the five-
year survival rates of RCC in the US are the following: 93% for localized disease (stage I),
72.5% for regional disease (stage II/III, local lymph node involvement), and only 12% for
late-stage (stage IV metastatic) [5]. The poor survival outcomes of metastatic patients with
ccRCC reveal the importance of seeking new and robust biomarkers of prognosis, and of
preventing the progression of non-metastatic tumors.

The challenges of artificial intelligence (AI) applications to cancer care are driven by
the translation of models with clinical validity, utility, and usability into feasible clinical
treatment [6]. In the field of precision medicine applied to cancer, feature selection is useful
in detecting the most important traits and molecular profiles for predicting the survival
risks of a patient′s outcome through a given gene set. A gene signature is a set of genes
whose expression pattern in a specific cell type and condition can provide a biomarker for
diagnosis, prognosis, or therapeutic responses in cancer patients [7]. The gene signatures
can be defined by the pattern of the Single Nucleotide Variant (SNV) mutational profile; the
copy number of alterations (CNA); the methylation levels; or the expression of messenger
or other RNA types. Genes involved in the biological processes of many tumors might be
overexpressed or inhibited, signaling a better or worse prognosis for the patient [8]. While
most of the studies used only mRNA data to build their signatures, microRNA and/or
clinical data can be explored as relevant features to build a predictive signature [9–14].

Nowadays, the scientific community is still searching for new biomarkers for ccRCC,
and feature selection methods using survival analysis provide a robust exploratory method-
ology before experimental validations. Survival analysis is a field of statistics that predicts
the time until an event of interest happens in many domains [15]. The most commonly
used method for survival analysis is the Cox Regression model [16]. The Cox model is
semi-parametric, that is, the distribution of the event of interest is unknown. In addition,
Cox models are widely used for censored data, i.e., when the event is not observed during
the study period due to loss to follow-up, study termination, or the patient’s death by
other causes. Regularized Cox models provide suitable predictions for high-dimensional
data using penalty functions with the main regularizers Lasso-Cox, Ridge-Cox, and Elastic
net-Cox [15]. Ensemble learning methods are committees of machine learning models, in
other words, they combine the majority of the votes for each model in an ensemble or they
adjust the weighted vote of each model. Moreover, this approach results in a more robust,
efficient, and stable model compared to singular models. In this work, we applied Cox
models and ensemble methods using gene expression to predict the overall survival (OS)
after diagnosis of ccRCC.

Lasso-Cox regression generated most of the reviewed gene signatures for
ccRCC [9,10,13,17–19]. All the studies reviewed in this work use the TCGA-KIRC dataset to
train and validate the results. Fewer studies validated their results with other datasets such
as GEO database [2,10,13], ICGC-RECA [2,11], and data from Fudan University Shanghai
Cancer Center (FUSCC). The most common methodologies used to discover and validate
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gene signatures were differentially expression analysis (DEA), and gene set enrichment
analysis (GSEA). Only one study compared its methodology to three other biomarker
signatures from our literature selection [9]. In addition, there was a lack of comparisons
between the gene signatures. As far we know, our study presents the most comprehensive
comparison between gene signatures, including ensemble methods, machine learning, and
feature selection.

This study aims to specify a gene signature based on the state-of-the-art algorithms
of feature selection methods, and to be able to predict the survival risk of ccRCC patients.
Moreover, this study compares the novel signatures obtained by these feature selection
methods, and other previously published gene signatures. The best-performing gene
signature was achieved using the mutual-information-based ensemble method of min-
Redundancy and Max-Relevance (mRMR) [20]. Specifically, the mRMR is an ensemble-
based method to select a minimal set of features with a maximum prediction performance.
The flowchart shown in Figure 1 displays a summarized view of the discovery process for
the novel mRMR gene signature of ccRCC.
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Figure 1. Flowchart of the current study to obtain a gene signature based on mutual information,
Minimum Redundancy Maximum Relevance (mRMR). The datasets are indicated by the cylinder,
white rectangles represent a step of the analysis, and the blue rectangles indicate the resulting figures
and tables. TCGA-KIRC and ICGC-RECA are datasets of ccRCC.

2. Materials and Methods
2.1. Literature Search Using PubMed

A literature search for gene signatures was conducted using PubMed to select studies
from 2015 to 2020 (Figure A1), given that the search was carried out in January 2021, from
this date, we performed the analyses and wrote the manuscript. The majority of papers
were published in the last five years since 2020, therefore we excluded the period of 2008 to
2014. The PubMed query of terms comprised the following: (renal OR kidney) AND (clear
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cell) AND (cancer) AND (prognosis OR survival OR outcomes) AND (regression) AND
(gene signature).

The search query resulted in 77 papers, and we adopted the following as inclusion
criteria: original articles on human ccRCC about survival prognosis or tumor staging classi-
fication. The exclusion criteria consisted of the following: reviews, editorials, conferences,
or abstracts; studies about other RCC subtypes, such as pRCC, ChRCC, or Sarcomatoid
renal cell carcinoma; and studies that evaluated genes based on their corresponding patient
prognoses depending on chosen treatment, on biomarkers predicting treatment resistance,
or on tolerance to renal allograft. Ultimately, we adopted 14 gene signatures with a total of
221 unique genes (Table A1).

2.2. Data

From a bottom-up perspective, this work is data-driven by the gene expression and
survival data of the larger public dataset of ccRCC (n = 530), The Cancer Genome Atlas
Consortium of Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) [21,22]. For external data
validation, in order to corroborate the findings within our novel gene signature, we used
the dataset of ccRCC samples (n = 91) from the International Cancer Genome Consortium
(ICGC-RECA) [23,24].

2.3. Data Pre-Processing

Data pre-processing was undertaken to select the genes from both TCGA-KIRC
(n = 60,489) and ICGC-RECA (n = 49,221) cohorts to obtain a consensus nomenclature
for the genes in the signatures, and to map the latter with the HGNC Symbol and the
Ensembl identifiers. The reference genomes used for the TCGA-KIRC and ICGC-RECA
databases are the GRCh38 and the GRCh37 genomes, respectively. Despite this distinction,
both reference genome versions are highly concordant [25].

For both datasets, we used unprocessed raw count data, and to reduce the batch-effect
of datasets, we evaluated the following normalization methods: (1) scaling to the range
interval between zero and one; (2) variance stabilizing transformation with DESeq2 [26];
and (3) Box-Cox normalization with Caret R package [27] (v. 6.0–90). The chosen method
was Box-Cox transformation, with the higher correlation R = 0.97 between the median of
each gene expression of datasets (Figure A2).

2.4. Feature Selection with Bioinformatics Analyses and Machine Learning

From a top-down perspective, in order to guide our feature selection, we performed
two differential expression analyses of RNA-Seq with DESeq2 [26]. The first analysis was to
compare solid normal tissue (NT) samples (n = 71) versus primary solid tumor (TP) samples
(n = 530) using the absolute log2 fold-change (LFC) >3 and p-value adjusted (FDR) <0.01,
from which we obtained 1775 genes that were under- and over-expressed. The LFC of each
gene expression is the ratio of the mean normalized by log2 in the two groups of samples.
The second analysis was to compare the non-metastatic (M0) samples (n = 422) against
metastatic (M1) samples (n = 78); then using absolute LFC over 2 and p-value adjusted
(FDR) <0.01, we obtained 156 altered genes.

To optimize the right candidates to their ideal biomarker genes, we also included
221 genes from the literature, and selected 1259 tissue-specific genes of Kidney Cortex tissue
with significant expression quantitative trait locus (eQTL) obtained from the Genotype-
Tissue Expression (GTEx) Project [28,29]. The feature selection methods and supervised
Cox regression models were then trained by gene expressions of 3284 pre-selected genes,
the overall survival (OS) days since the diagnosis, and the OS status (deceased or living) of
TCGA-KIRC patients.

Inspired by the methodology of [30], we produced the new gene signatures using
6 feature selection methods divided into two main categories:
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1. Filtering methods of feature importance: Extreme Gradient Boosting (XGBoost), Gen-
eralized Boosted Regression Model (GBM), and Recursive Partitioning for Survival
Trees (Rpart).

2. Wrapper methods: Minimum Redundancy Maximum Relevance (mRMR); Recursive
Feature Elimination (RFE); and Boruta.

For the filtering methods, we selected the 30 most important genes for patient survival.
We chose the number of 30 genes based on this being the average number of genes in
signatures referenced in the literature. The wrapper methods selected the most important
genes based on the best performing metrics of models without predefining the number
of genes on signatures. The new gene signatures generated by each feature selection are
presented in Table A2.

We evaluated the signatures using Machine Learning analyses of eight linear survival
models with optimized auto-tuning hyper-parameters: Extreme Gradient Boosting (XG-
Boost), Cox Model with gradient boosting (GLMBoost), Generalized Boosted Regression
Model (GBM), Cox Proportional Hazards Regression Model (CoxPH), Gradient Boost-
ing with Regression Trees (Blackboost), and the three models Penalized Cox Regression
(glmnet) [31]–LASSO, ElasticNet and Ridge regression. Each model calculates the fitted
coefficient for each gene.

The mRMR method applies mutual information to select features that maximize
the statistical dependency on the joint distribution of the target variable of supervised
learning [20,32]. The maximum relevance for the feature set S, given the mutual information
of gene gi in k-classes, is:

maxD(S, k), D =
1
|S| ∑

gi∈S
I(gi, k) (1)

The minimum redundancy in the feature subset condition is given by the sample
vectors of all genes gi, gj:

minR(S, k), D =
1
|S2| ∑

gi ,gj∈S
I(gi, k) (2)

This work uses the implementation of the R package mRMRe [33] (v. 2.1.2) available
in CRAN on expression data. The target features consisted of the overall survival days
and overall survival status. We set an ensemble of 5 executions filtering 20 genes per run,
resulting in a set of 64 unique genes as relevant features. Finally, we performed a forward
search feature selection with variable ranking based on mutual information difference of
the most representative genes with respect to AJCC Staging, resulting in a 13-gene signature
(Figure A3).

The framework of Tidyverse in R (v. 4.1.1) was used for pre-processing, and the
framework mlr3 (Machine Learning in R) [34] carried out the evaluation of the metrics of
feature selection and model benchmark. All of the code for the experiments was written in
R. For the multicollinearity analysis, we built the visualization with corrplot [35] (v. 0.92),
and we assessed the degree of collinearity among independent variables. None of the genes
had Variance Inflation Factors > 5 (Figure A4). Additionally, no correlations greater than or
equal to 0.7 were found between the genes (Figure A5). For the Variable Ranking Based on
Mutual Information Difference, we used the R package varrank [36] (v. 0.4).

2.5. Model Evaluation and Statistical Analysis

The concordance C-index is a commonly used metric, but is not a proper strategy
to predict the t-year risk of an event [37]. Therefore, to evaluate the performance of each
survival model, we applied the measure of the area under the time-dependent ROC curve
(AUC Uno) [38]. For internal validation, we used AUC Uno of 10 years on 3-fold cross-
validation of TCGA-KIRC in 100 repetitions. For external validation, we used AUC Uno
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of 7-years by training with TCGA-KIRC and predicting the ICGC-RECA dataset using
100 repetitions through censored regression models. We restrict the 10-year prediction for
TCGA-KIRC to exclude outliers in the long tail of the density plot of the patient’s overall
survival. For the ICGC-RECA dataset, we decided to maintain a 7-year prediction in order
to include all samples, and limit the time prediction to the range of distribution of this
dataset for external validation (Figure A6). The sensitivity (SE) and the specificity (SP)
describe the distinguishing risk of patients to be deceased by time t from those who will be
alive, with values ranging from 0 to 1, where 1 corresponds to the best model performance,
and 0.5 represents a random prediction. The evaluation was performed with the R package
survAUC [39] (v. 1.0–5).

The Kaplan–Meier analysis is the main visualization graph used to distinguish be-
tween high-risk, moderate, and low-risk patients. The p-value was calculated by the
log-rank test using the survminer [40] (v. 0.4.9) R package and by comparing the predicted
survival distributions of groups′ high, moderate, and low risk.

The enrichment analysis was performed using the 13-gene signature on the curated
database of DisGeNET [41] (v7.0) with gene-disease associations (GDAs) filtering by
FDR (<0.05).

The flowchart was created using diagrams.net. The figures were implemented in
R 4.1.1 using the following packages: VennDiagram [42] (v. 1.7.1); the ggplot2 (v. 3.3.5)
for Volcano plots, Heatmap and Boxplots; GOplot [43] (v. 1.0.2) for the circular visual-
ization of mRMR genes and sets of genes; FactoMineR [44] (v. 2.4) and factoextra [45]
(v. 1.0.7) for the principal component analysis (PCA); survival [46] (v. 3.2–11) and ggstat-
splot [43] (v. 0.9.0) for the Aalen′s additive cox regression; clusterProfiler [47] (v. 4.2.1)
and disgenet2r [41] (v. 0.99) for the enrichment analysis with a Heatmap-like functional
classification; survminer [40] (v. 0.4.9) and finalfit [48] (v. 1.0.4) for the survival curves
and the Forest plot for Cox proportional hazards model; and pheatmap [49] (v. 1.0.12) for
the Heatmap with Hierarchical clustering of RNA-seq expression and clinical annotation
with dendrograms.

3. Results
3.1. Clinical Characteristics of the ccRCC Cohorts

To produce our gene signature, we used the TCGA-KIRC (n = 530) and ICGC-RECA
(n = 91) samples of RNASeq data of ccRCC. The characteristics of both cohorts for training
and validation datasets are summarized in Table 1. The clinical characteristics with their
respective p-value tests indicate that there is no significant distinction in the distributions
between both datasets, except for Neoplasm.

Table 1. Study Characteristics of TCGA-KIRC and ICGC-RECA cohort with the clinical characteristics:
age, gender, tumor grade, metastasis, and staging by the American Joint Committee on Cancer (AJCC).

Clinical Characteristics
Training Cohort

TCGA-KIRC
(n = 530) 1

Validation
Cohort

ICGC-RECA
(n = 91)

p Value 2

Overall survival (days) Mean (SD) 1343.2 (976.6) 1511.6 (634.6) 0.113

Overall survival status,
n./total n. (%) Alive 359/530 (67.7) 61/91 (67.0) 0.991

Deceased 171/530 (32.3) 30/91 (33.0)

Age, years Mean (SD) 60.5 (12.0) 60.5 (10.0) 0.99

Gender, n./total n. (%) Female 183/530 (34.5) 39/91 (42.9) 0.158
Male 347/530 (65.5) 52/91 (57.1)
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Table 1. Cont.

Clinical Characteristics
Training Cohort

TCGA-KIRC
(n = 530) 1

Validation
Cohort

ICGC-RECA
(n = 91)

p Value 2

AJCC stage, n./Total (%) T1 270/530 (50.9) 54/91 (59.3) 0.343
T2 70/530 (13.2) 13/91 (14.3)
T3 179/530 (33.8) 22/91 (24.2)
T4 11/530 (2.1) 2/91 (2.2)

Neoplasm, n. (%) N0 79 (86.8) 239 (45.1) <0.001
N1 2 (2.2) 16 (3.0)
NX 10 (11.0) 275 (51.9)

Metastasis, n. (%) M0 422/528 (79.9) 81/91 (89.0) 0.081
M1 78/528 (14.8) 9/91 (9.9)
MX 28/528 (5.3) 1/91 (1.1)

1 The metastasis values do not sum up to heading totals because of missing data. 2 The statistical tests for age
and overall survival days are performed by Wilcoxon rank-sum test, and all other comparisons are by Fisher’s
exact test.

3.2. mMRM Gene Selection

The mRMR executed a supervised gene selection of 3304 genes with four clinical
features: overall survival (OS) days, OS status, age and sex. To identify the most represen-
tative genes of the signature related to Stage AJCC, we performed a forward search feature
selection Variable Ranking Based on Mutual Information Difference, resulting in a 13-gene
signature (AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4, LIMCH1, LINC01732, OTX1,
SAA1, SEMA3G, ZIC2–Figure A3) able to predict distinct outcomes (high, moderate, and
low survival risk) of patients with ccRCC. To select the best independent predictors genes
for survival risk, it is important to avoid multicollinearity; therefore, we assessed the degree
of collinearity among independent variables. None of the genes had Variance Inflation
Factors > 5 (Figure A4). Additionally, no correlations greater than 0.70 were found between
the genes (Figure A5).

We visualized the composition of filtered genes with a Venn diagram (Figure 2a) with
the intersection sizes of genes and the original sets of genes. In particular, most of the
mRMR genes (n = 7) were obtained from the differential gene expression analysis (DEA)
comparing normal tissues versus primary tumor samples (Figure 2b), with a larger number
of upregulated genes, including the mRMR genes HHLA2, LINC01732, SAA1, AL353637.1,
and ZIC2. The downregulated mRMR genes for normal versus tumor samples are DPP6
and FOXJ1. The DEA of comparing non-metastatic versus metastatic samples (Figure 2c)
identified less differentiated genes (n = 2), with the upregulated genes OTX1 and ZIC2.
The genes selected with mRMR on TCGA-KIRC samples are presented in Figure A7 with
a circular visualization of the relationship between genes and their original sets of DEA,
genes from GTEx portal of expression quantitative trait loci (eQTLs) in Kidney Cortex, and
gene signatures from the literature.

3.3. Performance of the Feature Selection Models for Internal and External Validations

To compare our mRMR signature with six feature selection methods (Recursive Fea-
ture Elimination, Boruta, Rpart, GBM and XGBoost for Survival) and 14 signatures pub-
lished, we performed a benchmark using eight survival models of cox survival regressions
(XGBoost, GLMBoost, Gbm, CoxPH, Blackboost, Ridge, Elastic Net, and Lasso). The bench-
mark results are shown in Figure 3a with the performance of 100 repetitions of predictions
with Area Under the Curve (AUC) Receiving Operator Characteristics (ROC) Uno evaluat-
ing the 20 gene signatures using 3-fold cross-validation of TCGA-KIRC dataset. We can
observe that the model Lasso-Cox regression of glmnet had the best mean AUC, 0.81, in
internal validation for mRMR. The minimal set of genes with best performance to predict
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TCGA-KIRC as internal validation is: AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4,
LIMCH1, OTX1, SAA1, and ZIC2.
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Figure 2. Selected genes through mRMR. (a) Venn diagram of prefiltered gene sets. A total of
3284 prefiltered genes is given by the sets of DEA between non-metastatic versus metastatic (156),
normal tissues versus primary tumor (1775), genes from literature (221), significant eQTLs genes
(1259), and 124 genes overlapping in two or three intersections of sets. (b) Volcano plot of DEA
comparing normal tissues versus primary tumor samples of TCGA-KIRC. In green, we see the
downregulated genes of normal tissues versus primary tumors (DPP6 and FOXJ1). In red, we see
the upregulated genes (HHLA2, LINC01732, SAA1, AL353637.1, and ZIC2). In gray, we see the non
significant genes with low fold change. (c) Volcano plot of DEA comparing non-metastatic versus
metastatic samples. In red, we see the upregulated genes (OTX1 and ZIC2).

Figure 3b shows the boxplot of the results of external validation in 100 random repeats.
The upper plot also displays the mean of the adjusted p-value of the log-rank test of survival
risk. Please note that the only signature that has a significant adjusted p-value (p < 0.05) is
the mRMR. The lower plot displays the AUC metric of each survival prediction, and the
number displayed on boxplots is the average value of all repeats. Please note that the best
mean of AUC is 0.71 for the mRMR signature. The minimal set of genes for training with
samples of TCGA-KIRC and predicting the survival risk of samples of ICGC-RECA is AR,
AL353637.1, FOXJ1, HHLA2, SEMA3G, and LINC01732.

In Figure 4, we display the Kaplan–Meier curves and a principal component analysis
(PCA) of two random predictions of internal and external validations.

For internal validation of the mRMR gene signature, we performed 3-fold cross-
validation with AUC assessed on TCGA-KIRC with time-dependent intervals of seven
years. Figure 4a shows a prediction of a random 33% sampling from TCGA-KIRC after
training the regression model with 66% of the samples. The Kaplan–Meier curves (Figure 4a)
are evaluated by the p-values of the log-rank test, indicating the separation between patients
with high, moderate, and low risk. Figure 4a displays a PCA with the same predicted
samples using only the expression of mRMR genes. Please note that only one patient was
deceased in the low-risk group, and there is a visible separation between the low-risk and
high-risk groups of patients on the x-axis of the PCA.

For external validation, we trained the model with the TCGA-KIRC dataset and
predicted all the samples of ICGC-RECA. Analogously, in Figure 4c, a model trained
with TCGA-KIRC data predicts ICGC-RECA samples in separated survival curves risks
(p < 0.05) and AUC of 0.66. In Figure 4d, we performed a PCA with mRMR gene on
the same previously predicted samples of ICGC-RECA, and the x-axis also separates the
centroids of the risk clusters.
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3.4. Biological Interpretation: Gene Contributions for Survival Risk and Enrichment Analysis

To shed light on the ability of each gene to predict ccRCC risk, we performed an
additive regression, plotting the genes’ coefficients with time-varying and covariate effects.
Similar to the forest plot of hazard ratio regression (Figure A8), Figure 5 shows the estimated
coefficients of the increasing curves for the following significant high expression genes
with a high risk of death: FOXJ1, OTX1, and IL4. On the other hand, the decreasing curves
indicate that the high expression of the following genes is related to the low risk of death:
AL353637.1, DPP6, HHLA2, and LIMCH1. A common classical representation of these
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covariate effects is the Hazard ratio in Figure 5 of the forest plot for the Cox proportional
hazards model.
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higher risk (red), lower risk (green), and moderate risk (orange). (b) A dimension reduction of
genes from the mRMR signature, using principal components analysis. (c) The survival curves
were predicted by validating the ICGC-RECA dataset. (d) The principal components analysis of the
ICGC-RECA dataset with genes of mRMR signature.

We confirmed the genes’ contributions to survival risk by checking protein expression
according to cancer stage using the UALCAN dataset of ccRCC from Clinical Proteomic
Tumor Analysis Consortium (CPTAC). As a result, the gene expression by overall survival
is corroborated with the levels of protein expression and the cancer stage. In CPTAC-ccRCC,
the protein expression of genes AR, GNB3, HHLA2, LIMCH1, and SAA1 had statistical
significance in some comparisons of normal samples and cancer stage (Figure A9a–e) [50].
In particular, HHLA2 protein expression in samples of Stage 1 was higher than in stage 4,
but normal tissue had a lower protein expression than any tumor stage (Figure A9c). This
protein expression shift is compatible with our results in Figure 5 of the decreasing curve
for HHLA2, and is in accordance with the TCGA-KIRC RNASeq data, since the higher
expression of HHLA2 demonstrates a better prognosis (Figure A9c).
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We verified patient survival curves by comparing the low/medium versus high
expression of TCGA-KIRC data on UALCAN portal [51]. The above results correspond
with the OS patients with low/medium versus high expression, available on the effect of
expression level of patient survival. We noticed that patients with a poor prognosis had low
expression of AR, DPP6, HHLA2, LIMCH1 and SEMA3G. Additionally, poor prognoses of
patients can be identified with high expressions of FOXJ1, GNB3, OTX1, SAA1, and ZIC2.

Furthermore, in accordance with the above results, performing a Heatmap with
hierarchical clustering combining RNA-Seq of patients from TCGA-KIRC and ICGC-RECA
(Figure A10), we verified that the cluster of genes SAA1, OTX1, ZIC2, LINC01732, GNB3,
and IL4, with high expression, is correlated with Stage T3 AJCC, metastasis, and poor
prognoses. Likewise, the cluster of genes AL353637.1, AR, HHLA2, LIMCH1, SEMA3G,
DPP6, and FOXJ1, with low expression, is correlated with poor prognoses.

To clarify the relationship between the genes and other kidney pathologies, we checked
the statistical significance of multiple diseases associated with the enriched genes in the
signature. Figure 6 shows a subset of 11 genes from within the signature, and most genes
are related to Neoplasms, except for AL353637.1, LINC01732, and DPP6. Nevertheless,
genes DPP6 and AR are enriched to clear-cell metastatic RCC diseases. We identified six
genes enriched to kidney diseases and ccRCC (AR, DPP6, GNB3, IL4, SAA1, SEMA3G).
Other enriched genes we found (AR, GNB3, HHLA2 and IL4) were related to transitional
cell carcinoma of the bladder (also known as Urothelial carcinoma). GNB3 and IL4 are
both enriched in kidney diseases, transitional cell carcinoma, and neoplasm metastasis.
This enrichment analysis also confirms the results of benchmark and comparisons to the
literature, indicating the importance of the selected mRMR genes in predicting ccRCC
survival risk.
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4. Discussion

From our 13-gene signature, a subset of eight genes had been reported previously in
distinct signatures for ccRCC, including other recent signatures that were not compared in
our benchmark: AR [19,51], SEMA3G [19,52,53], LIMCH1 [9], DPP6 [54,55], FOXJ1 [56,57],
ZIC2 [11], IL4 [19,58–60], and OTX1 [12]. The concordance of this work with published sig-
natures strengthens the validity of our methodology to obtain a ccRCC survival signature.

FOXJ1, IL4, HHLA2, and SEMA3G are immune-related genes [19,52,53], corroborating
the high immunogenicity of ccRCC. Forkhead Box J1 (FOXJ1) is a transcription factor, and
a member of the FOX family, involved in ciliogenesis. Its defective expression is associated
with some inflammatory [61] and autoimmune [62,63] diseases. FOXJ1 has previously
been identified as a prognostic marker of RCC, where its expression was reported to be
upregulated [57]. Moreover, it has been reported to be upregulated in bladder cancer [64],
hepatocellular carcinoma [65] and colorectal cancer [66]. Conversely, its low expression
has been reported to be correlated with gastric cancer [67], ependymoma and choroid
plexus tumors [68]. AL353637.1 is a pseudogene nearby the gene FOXB2, also belongs
to the FOX family of FOXJ1 [56], and contains a variant (rs115747230) associated with
chronic kidney disease [69]. Interleukin 4 (IL4) is a cytokine that induces differentiation of
T cells and is present in the tumor environment of many cancers. The expression of IL4
in the tumor microenvironment can improve tumor growth and the blockade of IL4 can
delay the growth [70] and can also improve immunotherapies (in mice models) such as
CpG ODN or anti-OX40 AB [71]. Polymorphisms of the IL4 gene have been associated
with many cancers [72]. HERV-H LTR-Associating 2 (HHLA2, also known as B7-H7) is a
member of the B7-family of immune checkpoint molecules, known to perform an inhibitory
activity in human CD4+ and CD8+ T cells by binding to their receptors [73,74]. It is
known to have limited expression in normal tissues and to be highly expressed in cervical
adenocarcinoma [75], pancreatic and ampullary cancers [76], also widely expressed in
different subtypes of human lung cancer [73,77]. The 5-year survival rate of patients with
gastric cancer was significantly higher in patients with HHLA2 highly expressed [78]. In
particular, the overexpression of HHLA2 in patients after surgery was identified to promote
ccRCC progression when compared to normal adjacent tissue [79], which corresponds
with our results regarding HHLA2 expression. The knockdown of HHLA2 decreased the
expression of genes related to the cell cycle, as well as the ability of the cells to migrate and
invade [79]. SEMA3G belongs to the family of class-3 semaphorins, and studies indicate that
this gene is linked to kidney diseases [80,81], suggesting important roles with neuropilin
and plexin families in the etiology of cancer [82], and it is also an inhibitor of glioma
progression by competing with VEGF for receptor NRP1 [83]. In single-cell RNA-seq study
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of kidney with transplant biopsy, SEMA3G activates an angiogenic program [84]. Patients
with high expression of SEMA3G and AR have better prognoses according to the survival
analysis of UALCAN RNASeq data [51]. The presence of immune-related genes in our
signature strengthens the approach of focusing on the genes from the immune system to
build a prognostic signature [19,85]. Our findings reinforce that HHLA2 is an important
immune-related biomarker of ccRCC.

The genes AR, OTX1, and ZIC2 are transcription factors. In particular, Androgen
Receptor (AR) is a transcription factor whose activity is highly critical to prostate cancer
evolution [86]. The expression of AR-V7, its isoform, which is encoded by splice variant
7 in circulating tumor cells of prostate cancer, was reported to be associated with drug
resistance [87]. AR interacts with VHL to modulate the metastasis of ccRCC [88], and AR
inhibition can attenuate RCC progression [89]. The epigenetic control of AR co-regulates
lysine-specific histone demethylase 1 (LSD1) in kidney cancer development, and the LSD1
inhibitor can reduce growth of kidney cancer cells [90]. Additionally, AR could suppress
ccRCC cell progression by increasing the expression of circRNA circHIAT1 [91]. In addition,
in vitro research and in vivo mouse model studies indicate that AR mediates lncRNA-
TANAR signals that might play a crucial role in ccRCC progression and metastasis [92].
The studies above indicate that AR might be a promising drug target for treatment of ccRCC.
OTX1 is a protein-coding gene of the bicoid sub-family of homeodomain-containing tran-
scription factors, involved in differentiation of young neurons of the deeper cortical layers,
and in proliferative zones of the neocortex [93]. OTX1 is related to breast cancer, medul-
loblastomas, colorectal cancer, hepatocellular carcinoma and bladder cancer [12]. The zinc
finger of the cerebellum 2 (ZIC2) is a transcription factor with an important role in neural
development and mutations of ZIC2, which could lead to brain malformations [94,95].
ZIC2 is an oncogenic with overexpression correlated with progression of epithelial ovarian
tumors [96]. In breast cancer, low expression of ZIC2 has been correlated with poor out-
comes and acts as a tumor suppressor by regulating STAT3 [97]. ZIC2 also upregulates
gene RUNX2 and promotes ccRCC progression through inhibition of tumor suppressor
NOLC1 [98].

Lim and Calponin Homology Domains 1 (LIMCH1) is an actin-stress-fiber-associated
protein, a gene encoding zinc-binding protein, and is known to negatively regulate cell-
spreading and migration [99]. It has been reported to be downregulated in malignant
lung tissue [100] and upregulated in breast cancer [101]. LIMCH1 is upregulated with a
strong association to poor prognoses, representing a potential biomarker for cervical cancer
treatment [102]. According to survival analysis of the Human Protein Atlas [103], LIMCH1
is also a prognostic gene, whose high expression is associated with favorable outcomes in
renal cancer [104].

Dipeptidyl Peptidase Like 6 (DPP6) is a type II membrane glycoprotein known to
regulate potassium channels and is mainly expressed in the central nervous system [105].
The methylation of CG sites in the DPP6 promoter was reported to be in greater numbers
in tumor samples compared to normal samples from pancreatic ductal carcinoma; thus,
the hypermethylation of DPP6 promoter is associated with poor overall survival [106].
The hypermethylation of DPP6 was associated with high-grade tumor in ccRCC [55].
Additionally, high expression of DPP6 was reported to be correlated with good prognoses
in patients with breast cancer [107].

Guanine Nucleotide Binding Protein Beta Polypeptide 3 (GNB3) is involved in various
transmembrane signaling systems such as in GTPase activity. Some studies associate the
polymorphism GNB3-C825T with cholangiocarcinoma [108] and thyroid carcinoma [109],
but another study discarded a relationship with the risk for breast cancer [110].

Serum Amyloid A 1 (SAA1) is an acute-phase protein mainly produced by hepatocytes
in response to infection, tissue injury and malignancy. SAA1 modulates neutrophil function
in the context of cancer [111]. SAA1 gene expression in patients with RCC is associated
with poor prognosis [112]. According to survival analysis of Human Protein Atlas [103],
SAA1 is also a prognostic gene with high expression for unfavorable outcomes in renal
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cancer [113]. Moreover, multiple mutation variants of SAA1 have been identified in patients
with RCC [114].

LINC01732 is affiliated with the long non-coding RNAs (lncRNAs) class. To the best of
our knowledge, there are no publications regarding LINC01732 at this time. Nevertheless,
increasing evidence suggests that lncRNAs play critical roles in tumor development of
RCC [115]. Further research could be executed to understand other lncRNAs, including
LINC01732.

Since alterations in expression of different genes from the same pathway have higher
impacts on gene function, we performed an enrichment analysis and identified the path-
ways of urothelial carcinoma, chronic kidney disease, and transitional cell carcinoma,
nephrolithiasis. Although the concurrence of RCC and urothelial carcinoma is clinically
rare [116], previous studies reported the identification of clear cell tumors in general blad-
der carcinomas [117,118]. On nephrolithiasis, studies have whoen that kidney stones are
associated with increased papillary RCC risk but not clear-cell RCC risk [119].

We compared our signature in a benchmark with fourteen other signatures already
published in the literature. All of the gene signatures compared in this work use TCGA as
their main training set to build their models. The studies reviewed have AUC-ROC between
0.568 to 0.884 with possible values ranging from 0 to 1, and the number of genes in each
signature range from 3 to 66. Some studies use a different number of patients due to the
distinct filtering approaches that the authors adopted, in addition to the updates of versions
of TCGA-KIRC clinical data. The least absolute shrinkage and selection operator (Lasso-
Cox) was the most-used model approach to build the signatures [9,10,13,17–19,120,121], but
network-based models with protein–protein interaction (PPI), aside from being an elegant
approach for retrieving information from data, can also be used for this purpose [122,123].

This work consists of a pure in silico and data-driven study, and other analyses could
be corroborated in the future with in vitro or in vivo experiments [124]. In future works,
we will expand the machine learning approach presented in this work to find potential
cancer biomarkers using multiples levels of biological data available in TCGA by analyzing
and integrating data of long non-coding RNAs (lncRNAs), methylation, single-nucleotide
variants (SNV), and copy number variants (CNV).

5. Conclusions

Our main goal was to compare distinct gene signatures from the literature and generate
new gene signatures using feature selection methods. We contributed by providing a
list of new genes, some of them not previously reported as biomarkers for ccRCC. The
gene signature created by the mRMR method achieved a score of 0.82 with AUC, being
the best performer. We identified two clusters of genes with high expression (SAA1,
OTX1, ZIC2, LINC01732, GNB3 and IL4) and low expression (AL353637.1, AR, HHLA2,
LIMCH1, SEMA3G, DPP6, and FOXJ1) that were correlated with poor prognosis. We
validated our 13-gene signature for ccRCC and confirmed our results with the literature,
and by comparing each cancer stage of ccRCC with CPTAC and the survival effects of gene
expression of individual genes in TCGA. We believe that further studies on the involvement
of these genes in renal carcinogenic processes could improve our understanding of cancer
biology. After experimental validations, new possible applications in clinical practices can
benefit from the biomarker found with machine learning and feature selection.
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Abbreviations

AJCC American Joint Committee on Cancer
TCGA The Cancer Genome Atlas
ICGC International Cancer Genome Consortium
KIRC Kidney Renal Clear Cell Carcinoma
RECA Renal Cell Cancer
ccRCC clear cell Renal cell carcinoma
mRMR Minimum Redundancy Maximum Relevance
AUC Area Under the Curve
ROC Receiving Operator Characteristics
PCA Principal Component Analysis
RFE Recursive Feature Elimination
GBM Generalized Boosted Regression Model
Rpart Recursive Partitioning and Regression Trees
XGBoost eXtreme Gradient Boosting
CoxPH Cox proportional hazards regression model

Appendix A

Table A1. Gene signatures of ccRCC after exclusion criteria. The PubMed query was conducted in
January 2021 using the terms: (renal OR kidney) AND (clear cell) AND (cancer) AND (prognosis OR
survival OR outcomes) AND (gene signature AND regression), and filtering the years of 2015 to 2020.

Title and Code in Figure 3 Gene Signature

Prognostic gene signature identification using causal structure
learning: applications in kidney cancer [122]

Code: Ha.2014.CaInfo

ETV5, CREB3L1, GMPS, RBM15, SEPT6, TTL, ARID1A, ERCC5,
TFG, FLT3, SLC34A2, FAM46C, PER1, DDB2, NACA, MLLT10,

HMGA1, TCF12, RUNX1, CANT1, REL, ZNF331, JAZF1,
ASPSCR1, PLAG1, NOTCH1, TAL2, ERCC2, SMARCA4,

DNMT3A, HOXA11, GNAS, CHEK2, HLF, GNAQ, ETV6, SET,
KIF5B, TRRAP, CDKN2C, VHL, RPL22, CHN1, STAT3, CDK4,

CD274, KTN1, CYLD, BRD3, TRIM33

https://github.com/terrematte/gene_signature
https://npad.ufrn.br
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Table A1. Cont.

Title and Code in Figure 3 Gene Signature

A Five-Gene Signature Predicts Prognosis in Patients with
Kidney Renal Clear Cell Carcinoma [8]

Code: Zhan.2015.CMMM
CKAP4, ISPD, MAN2A2, OTOF, SLC40A1

A four-gene signature predicts survival in clear-cell renal-cell
carcinoma [120]

Code: Dai.2016.Oncotarget
PTEN, PIK3C2A, ITPA, BCL3

Identification and validation of an eight-gene expression
signature for predicting high Fuhrman grade renal cell

carcinoma [17]
Code: Wan.2017.IJCancer

ATOH8, ATP1A3, C10orf4, C17orf79, CHMP4C, CNGA1, EDA,
FBXL3, GMDS, ISL2, KISS1, KLF2, MYADML2, NCRNA00116,
OAZ1, ODZ3, PLA2G15, PPP1R1A, RAB40A, RRAS, SPOCK1,

SQSTM1, TXNDC16, VAMP3

Comprehensive assessment gene signatures for clear cell renal
cell carcinoma prognosis [9]
Code: Chang.2018.Medicine

INTS8, GTPBP2, ANK3, SLC16A12, LIMCH1, Hsa-mir-374a

A five-gene signature may predict sunitinib sensitivity and
serve as prognostic biomarkers for renal cell carcinoma [123]

Code: YuanLeiChen.2018.JCP
BIRC5, CD44, MUC1, TF, CCL5

A Gene Signature of Survival Prediction for Kidney Renal Cell
Carcinoma by Multi-Omic Data Analysis [18]

Code: Hu.2019.IJMS
BID, CCNF, DLX4, FAM72D, PYCR1, RUNX1, TRIP13

Prognostic value of a gene signature in clear cell renal cell
carcinoma [10]

Code: LiangChen.2018.JCP
CENPW, FOXM1, NUF2

Identification of a 5-Gene Signature Predicting Progression and
Prognosis of Clear Cell Renal Cell Carcinoma [12]

Code: Pan.2019.MSM

OTX1, FOXE1, FAM83A, HMGA2, KRT6A, DPYSL5, ANXA8,
MATN4, ROS1, CSMD3, MAGEC3, AMER2, CPLX2, PI3,

KRT13, ERVV-2, ERVFRDE1, ANKFN1, VTN, NFE4, ZNF114

Construction and Validation of a 9-Gene Signature for
Predicting Prognosis in Stage III Clear Cell Renal Cell

Carcinoma [13]
Code: Wu.2019.FrontiersOnco

ATP6V1C2, PCSK1N, PREX1, ANK3, HLA-DRA, SELENBP1,
TYRP1, GABRA2, SERPINA5

Construction and validation of a seven-gene signature for
predicting overall survival in patients with kidney renal clear
cell carcinoma via an integrated bioinformatics analysis [11]

Code: Jiang.2020.ACS

PODXL, SLC16A12, ZIC2, ATP2B3, KRT75, C20orf141, CHGA

A 14 immune-related gene signature predicts clinical outcomes
of kidney renal clear cell carcinoma [19]

Code: Zou.2020.PeerJ

TXLNA, SEMA3G, AR, BID, IL20RB, CCR10, BMP8A, SEMA3A,
CCL7, GDF1, KLRC2, LHB, FGF17, IL4

A seven-gene signature model predicts overall survival in
kidney renal clear cell carcinoma [2]

Code: LingChen.2020.Hereditas
APOLD1, C9orf66, G6PC, PPP1R1A, CNN1G, TIMP1, TUBB2B

Identification of gene signature for treatment response to guide
precision oncology in clear-cell renal cell carcinoma [121]

Code: DCosta.2020.SciReports

ANGPT4, EDN1, VEGFA, ESM1, FLT1, KDR, CD34, PECAM1,
NOTCH1, EDNRB, STIM2, FYN, VWF, GJA1, MCF2L, PPM1F,

PTPRB, HEY1, ETS1, EXOC3L2, TBXA2R, TCF4, S1PR1,
SLC9A3R2, NES, NFATC1, NOS3, PDE2A, CORO1A, CCR5,
CXCR3, PTK2B, WAS, CD72, IL16, FYB1, FASLG, FERMT3,

FOXP3, XCL2, CD3E, CD7, LAX1, CD38, LCP1, LCP2, ITK, LAT,
LCK, GRK2, CCL4, CCL5, CD2, PRF1, TIGIT, GZMA, GZMB,

CD8A, CTLA4, EOMES, PDCD1, PYHIN1, SLA2, LTA,
PSMB8, PSMB9



Cancers 2022, 14, 2111 17 of 28

Table A2. New gene signatures of ccRCC obtained by state-of-art machine learning for feature
selection methods: Recursive Feature Elimination, Boruta, Rpart, GBM and XGBoost for Survival.

Code Method N. Genes Gene Signature

GBM
Filtering with Generalized

Boosted Regression Models for
Cox Proportional Hazard

30

AC084117.1, CRHBP, LINC00973, ITPKA, IGFN1, C14orf37, OTX1,
LINC02446, HOTTIP, NEIL3, ZIC5, CCDC154, IL4, AC008663.1,

FER1L4, DUSP5P1, AL078604.2, KRT6A, SPATC1L, RTL1, LINC01597,
CRABP1, RASGRP3, C3orf85, AL034399.1, TRIM4, LINC00475,

ADAMTS14, DPP6

Rpart Filtering with Recursive
partitioning for survival trees 30

TROAP, KIF18B, AURKB, LINC00973, AC003092.1, G6PC, ZNF181,
MYBL2, FOXM1, NUF2, POU4F1, APOM, AR, NPHS1, AC018638.2,
MERTK, AC098679.1, AL353637.1, IYD, C17orf80, SLC12A3, CDCA2,

LINC02362, SRD5A3, EIF3F, AC138393.1, MCC, WFIKKN1,
ALDOB, APOL5

XGBoost Filtering with
XGBoost for Survival Analysis 30

LINC00973, LINC01271, CHAT, SPIC, AL355796.1, DLK1, ZIC5,
LINC01700, ENTPD6, ATOH8, C14orf37, WNT7B, THEG,

AC084117.1, ADA2, DCSTAMP, AL450311.2, A3GALT2, CNTNAP3B,
TBC1D27, BIRC7, LINC00943, LINC01529, OR4C6, FAM47E, BCL3,

AC105118.1, AL359736.1, SLC44A3, LINP1

Boruta Wrapper Boruta with XGBoost for
Survival Data 43

Age, ZIC2, CHAT, AMH, OTX1, BARX1, TROAP, CKAP4, ITPKA,
NUF2, KRT75, KIF18B, SLC18A3, AL355796.1, RPL10P19, LINC02154,
LINC00973, IL4, HOTAIRM1, Z84485.1, LINC02362, CASP9, CCNF,
RTL1, BID, CHGA, RANBP3L, ZIC5, SLC16A12, SPATC1L, CD44,

KRI1, RUFY4, AC073324.1, AC091812.1, AC156455.1, AGAP6,
AC128685.1, SEMA3G, IGFN1, KLRC2, ANXA8, AURKB

RFE Wrapper with Recursive Feature
Elimination 89

A3GALT2, AC006450.2, AC073324.1, AC093520.1, AC103925.1,
AC120498.6, AC128685.1, AC156455.1, ADAMTS14, AL355796.1,

AL592494.1, AL606519.1, AMH, ANK3, ANXA8, AP000697.1,
AP001029.1, AURKB, BARX1, BIRC5, C20orf141, CCNF, CDC42P2,

CENPW, CHAT, CHGA, CKAP4, CRHBP, DLX4, DMRT3, DUSP5P1,
G6PC, GOLGA6L2, GOLGA6L7P, HAMP, HAO1, HOTAIRM1, HP,
IGFN1, IGHJ3P, IL20RB, IL4, ISL2, ITPKA, KIF18B, KLRC2, KRT75,

KRT78, LINC00051, LINC00460, LINC00524, LINC00896, LINC00973,
LINC01234, LINC01501, LINC01655, LINC01700, LINC01956,
LINC02154, LINC02362, NEIL3, NFE4, NUF2, OTX1, PAEP,

PGLYRP2, PI3, PITX1, PLG, PTPRB, RALYL, RPL10P19, RTL1, SAA1,
SAA2, SAA4, SIM2, SLC16A12, SLC18A3, TGM3, TRIP13, TROAP,

VSX1, WFDC10B, Z84485.1, ZIC2, ZIC5, ZPLD1

mRMR Ensemble of Min-redundancy and
Max-relevance with survival data 65 AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4,

LIMCH1,LINC01732, OTX1, SAA1, SEMA3G, ZIC2
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Figure A1. Number of papers published on PubMed by year on query performed in January 2021. 
Initially, in green, the gene signatures published in the period of 2015 to 2020 were selected to be 
compared. After the exclusion criteria, we obtained the 14 gene signatures. 
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Initially, in green, the gene signatures published in the period of 2015 to 2020 were selected to be
compared. After the exclusion criteria, we obtained the 14 gene signatures.
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Figure A2. Scatter plot of median of gene expression comparing TCGA-KIRC and ICGC-RECA 
gene expression. (a) Raw counts. (b) log2(count + 1) normalization. (c) Variance-stabilizing 
transformation with DESeq2. (d) Box-Cox transformation. (e) Scaling between zero and one (with 
Caret R package and ‘range’ method). (f) Scaling between zero and one (with BBmisc R package 
and ‘range’ method).  

Figure A2. Scatter plot of median of gene expression comparing TCGA-KIRC and ICGC-RECA gene
expression. (a) Raw counts. (b) log2(count + 1) normalization. (c) Variance-stabilizing transformation
with DESeq2. (d) Box-Cox transformation. (e) Scaling between zero and one (with Caret R package
and ‘range’ method). (f) Scaling between zero and one (with BBmisc R package and ‘range’ method).
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Figure A3. Variable ranking based on mutual information of 10 most important genes of mRMR 
13-gene signature of ccRCC. The most representative genes with respect to AJCC Staging of TCGA 
dataset. 

 
Figure A4. Collinearity analysis with variance inflation factors 13-gene signature of ccRCC. None 
of genes had variance inflation factors ≥ 5, indicating no collinearity or redundancy on the 
signature. 
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Figure A5. Correlation analysis between genes of mRMR 13-gene signature of ccRCC. No strong 
correlation between genes ≥ 0.70 was found, including the clinical data of age, overall survival 
status and AJCC staging. 

 
Figure A6. Density plot of the distribution of overall patient survival in TCGA-KIRC and ICGC-
RECA. The dotted line indicates the mean of distributions, and the solid lines indicate the time 
prediction used for internal and external validations. We restrict the 10-year prediction for TCGA-
KIRC to exclude outliers in the long tail of the density plot of the patient’s overall survival. For the 
ICGC-RECA dataset, we decided to maintain a 7-year prediction in order to include all samples, 
and limit the time prediction to the range of distribution of this dataset for external validation. 
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Figure A6. Density plot of the distribution of overall patient survival in TCGA-KIRC and ICGC-
RECA. The dotted line indicates the mean of distributions, and the solid lines indicate the time
prediction used for internal and external validations. We restrict the 10-year prediction for TCGA-
KIRC to exclude outliers in the long tail of the density plot of the patient’s overall survival. For the
ICGC-RECA dataset, we decided to maintain a 7-year prediction in order to include all samples, and
limit the time prediction to the range of distribution of this dataset for external validation.
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Figure A7. Circular diagram of mRMR gene signature and the source of genes DEA, genes from 
GTEx portal of expression quantitative trait loci (eQTLs) in Kidney Cortex, and gene signatures 
from the literature.  
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Figure A8. Forest plot for Cox proportional hazards model displaying the significative genes
(AL353637.1, DPP6, FOXJ1, HHLA2, and SAA1). The statistical significance between comparisons is
given by * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001.
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Figure A9. Analysis performed using UALCAN portal with data of ccRCC from Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) [50], available at http://ualcan.path.uab.edu/ 
(accessed on 1 March 2022). Z-values represent standard deviations from the median across 
samples for the given cancer type of ccRCC. The statistical significance between comparisons is 
given by * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001. (a) Comparison of protein 
expression by cancer stages of AR gene. (b) Comparison of protein expression by cancer stages of 
GNB3. (c) Comparison of protein expression by cancer stages of HHLA2. (d) Comparison of 
protein expression by cancer stages of LIMCH1. (e) Comparison of protein expression by cancer 
stages of SAA1. 

Figure A9. Analysis performed using UALCAN portal with data of ccRCC from Clinical Proteomic
Tumor Analysis Consortium (CPTAC) [50], available at http://ualcan.path.uab.edu/ (accessed on
1 March 2022). Z-values represent standard deviations from the median across samples for the given
cancer type of ccRCC. The statistical significance between comparisons is given by * p-value < 0.05,
** p-value < 0.01, and *** p-value < 0.001. (a) Comparison of protein expression by cancer stages of
AR gene. (b) Comparison of protein expression by cancer stages of GNB3. (c) Comparison of protein
expression by cancer stages of HHLA2. (d) Comparison of protein expression by cancer stages of
LIMCH1. (e) Comparison of protein expression by cancer stages of SAA1.

http://ualcan.path.uab.edu/
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Figure A10. Heatmap with hierarchical clustering combining RNA-seq expression of patients on 
TCGA-KIRC and ICGC-RECA. Columns are genes of the mRMR signature. Rows indicate RNA-
seq expression of 590 patients of TCGA-KIRC and ICGC-RECA. Data of patients with distant 
metastasis that cannot be assessed (MX) were removed in order to clarify the clustering. 
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Figure A10. Heatmap with hierarchical clustering combining RNA-seq expression of patients on
TCGA-KIRC and ICGC-RECA. Columns are genes of the mRMR signature. Rows indicate RNA-seq
expression of 590 patients of TCGA-KIRC and ICGC-RECA. Data of patients with distant metastasis
that cannot be assessed (MX) were removed in order to clarify the clustering.
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