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ABSTRACT
Background: The Global Nutrition Target of reducing low birthweight (LBW) by ≥30% between 2012 and 2025 has led

to renewed interest in producing accurate, population-based, national LBW estimates. Low- and middle-income countries

rely on household surveys for birthweight data. These data are frequently incomplete and exhibit strong “heaping.”

Standard survey adjustment methods produce estimates with residual bias. The global database used to report against

the LBW Global Nutrition Target adjusts survey data using a new MINORMIX (multiple imputation followed by normal

mixture) approach: 1) multiple imputation to address missing birthweights, followed by 2) use of a 2-component normal

mixture model to account for heaping of birthweights.

Objectives: To evaluate the performance of the MINORMIX birthweight adjustment approach and alternative methods

against gold-standard measured birthweights in rural Nepal.

Methods: As part of a community-randomized trial in rural Nepal, we measured “gold-standard” birthweights at birth

and returned 1–24 mo later to collect maternally reported birthweights using standard survey methods. We compared

estimates of LBW from maternally reported data derived using: 1) the new MINORMAX approach; 2) the previously

used Blanc–Wardlaw adjustment; or 3) no adjustment for missingness or heaping against our gold standard. We also

assessed the independent contribution of multiple imputation and curve fitting to LBW adjustment.

Results: Our gold standard found 27.7% of newborns were LBW. The unadjusted LBW estimate based on maternal

report with simulated missing birthweights was 14.5% (95% CI: 11.6, 18.0%). Application of the Blanc–Wardlaw

adjustment increased the LBW estimate to 20.6%. The MINORMIX approach produced an estimate of 26.4% (95%

CI: 23.5, 29.3%) LBW, closest to and with bounds encompassing the measured point estimate.

Conclusions: In a rural Nepal validation dataset, the MINORMIX method generated a more accurate LBW estimate

than the previously applied adjustment method. This supports the use of the MINORMIX method to produce estimates

for tracking the LBW Global Nutrition Target. J Nutr 2022;152:872–879.

Keywords: low birthweight, survey, validation, multiple imputation, low- and middle-income country

Introduction

Low birthweight (LBW) is closely associated with a higher
risk of neonatal death as well as cognitive and developmental
impairment and long-term health problems in adulthood (1–
3). The term LBW (birthweight <2500 g) encompasses both
newborns born preterm (birth <37 complete weeks of gesta-
tion) and those who are small for gestational age (birthweights
<10th centile of a sex-specific birthweight-for-gestational-
age reference population) but not necessarily preterm (4, 5).
Although gestational age information is routinely documented

in most high-income countries, this remains challenging in many
low- and middle-income settings (6). As a result, LBW remains
an important indicator of newborn health globally. In 2012,
all WHO member states endorsed the Global Nutrition Target
to reduce LBW by ≥30% between 2012 and 2025, renewing
interest in producing population-based LBW estimates at the
country level. The joint WHO and UNICEF global database
of LBW estimates tracks progress towards the target. Whereas
crude survey data in low- and middle-income countries (LMIC)
underestimate LBW prevalence, this database uses the recently
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developed MINORMIX method to better adjust survey-derived
estimates to reflect the true prevalence of LBW (J Krasevec et al.,
unpublished results, 2020).

Population-based household surveys, like the Demographic
and Health Surveys (DHS) and the Multiple Indicator Cluster
Surveys (MICS), are the primary source of birthweight data
in most LMIC. These surveys capture birthweight data either
through reviewing official records (e.g., birthcards) or, when not
available, by maternal report (7). However, birthweight data
are not available for nearly one-third of newborns globally,
and as many as two-thirds of newborns in Western Africa (8,
9). This is because many births still occur at home (8–10)
and newborns delivered in facilities might not be consistently
weighed or have incomplete records (7). Mothers delivering in
facilities and their offspring’s health might not be representative
of the whole population, which can bias estimates when they
are overrepresented in the sample of birthweights (2). Even
mothers of newborns weighed at birth can be unable to produce
a birthweight record or recall birthweight accurately at the time
of the survey, which could be administered ≤5 y after a birth
(7, 11–14). As a result, birthweight data are often missing,
inaccurate, or imprecise, and often “heaped” or rounded to
multiples of 100 or 500 g.

Using birthweight data from 88 DHS datasets, Blanc and
Wardlaw (15) developed a method to adjust survey-based LBW
estimates to account for heaping and missing birthweights,
based on perceived birth size. This correction was used to adjust
household survey-based LBW estimates in the UNICEF global
database starting in 2004 (2). However, there has been growing
concern around residual bias in LBW estimates generated using
this approach.

The Lancet Low Birthweight Investigator Group, comprised
of members from UNICEF, WHO, the London School of
Hygiene and Tropical Medicine, and the Johns Hopkins
Bloomberg School of Public Health, recently developed a
new approach to adjust estimates of LBW calculated from
household survey data for use in the global database to track
the LBW Global Nutrition Target (16). Extending previous
research describing the distribution of birthweight derived
from a variety of large datasets, this group developed an
approach involving 3 steps (16). First, the quality of survey
datasets is evaluated against a set of criteria; only surveys
meeting the quality criteria are used to estimate LBW. Second,
multiple imputation (MI) is used to impute missing birthweights
using covariates available in the dataset. Third, to address
the problem of heaping of birthweights, a mixture model
comprising 2 normal distributions is fitted to the data from
which the proportion of births with a birthweight <2500
g can be estimated. The Working Group explored fitting 1-
, 2-, and 3-component normal mixture models using >200
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DHS datasets and identified the 2-component normal mixture
model as the preferred method for generating LBW estimates
(16). The MI followed by normal mixture model approach has
been abbreviated to MINORMIX. The approach was developed
using high-quality birthweight data from the United States.
However, the method has not been validated in an LMIC
population due to the lack of a gold-standard comparator.

In this article, we evaluate the MINORMIX approach
described above using a household survey dataset of maternal
reports of birthweight against that of gold-standard paired
measured birthweights collected as part of a large community-
randomized trial in rural Nepal. We also assess the performance
of the MINORMIX method relative to alternative LBW
estimation methods, including 1) the crude unadjusted estimate
as would be reported in a DHS report, and 2) the Blanc
and Wardlaw method used in the previous global database, to
gauge whether the MINORMIX approach offers a substantial
improvement over existing methods. Finally, we assess the
relative contribution of the 2 components of the MINORMIX
method to the overall performance of the approach, specifically
1) MI of missing birthweights, and 2) fitting a normal model to
account for heaping.

Methods
Study setting
The study was carried out in the rural district of Sarlahi, Nepal. This
district is in the terai region (plains) along the border with Bihar, India.
A little more than one-third of women aged ≥15 y can read and write
(17). Over one-third of its predominantly Hindu residents are aged <15
y, and ∼15% of married women reported having been younger than 15
y at the time of their first marriage (17).

Ethical approval
The parent trial and the substudy both received ethical approval from
the Johns Hopkins Bloomberg School of Public Health Institutional
Review Board, Baltimore, MD, USA. Local approval was received from
the Tribhuvan University Institute of Medicine, Kathmandu, Nepal,
for the parent trial and from the Nepal Health Research Council,
Kathmandu, Nepal, for the substudy.

Parent trial
A randomized community-based trial, conducted from November 2010
to January 2017, examined the impact of the use of sunflower seed
oil in full-body newborn massage on neonatal deaths and infections
(registered at clinicaltrials.gov as NCT01177111). Locally resident
female project workers visited married women aged 15–35 y at home
every 5 wk to identify new pregnancies; pregnancies in women outside
this age range were identified informally. Women who consented to
participate were followed through delivery. Study staff visited as soon
as possible after delivery, typically within 48 h, but visits conducted ≤72
h after birth were included in our substudy. At the first visit after birth,
workers recorded the median of 3 measures of the baby’s weight using a
digital scale graduated to 10 g (Tanita BD-585) in addition to other data
on the circumstances of the birth. These data serve as our gold-standard
measure of each study subject’s true birthweight. The date, time of birth,
and weight of the newborn were also provided to the mother/caretaker
on a small card.

Substudy
We selected mother/child pairs from the parent trial for 1 additional
follow-up visit with the aim to interview roughly the same numbers of
mothers at each 1, 3, 6, 9, 12, 18, or 24 mo after birth. Mother/child
pairs were excluded from this follow-up interview if they were part of
a nonsingleton birth. Surveyed pairs were subsequently dropped from
the dataset when simulating missing birthweights if 1) weight data were
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collected >72 h after birth, 2) covariates required for the analysis were
missing, or 3) the mother had previously been included in the study for
another birth. Pairs were excluded from the final analysis if measured
birthweight data were unavailable. Study staff requested participation
in the homes of selected mothers, administered oral consent in Nepali or
Maithili (a local language), and obtained a signature or thumbprint for
those who agreed to participate. Specific to this analysis, mothers were
asked standard questions from the DHS or MICS including birthweight,
perceived birth size (categorized as very large, larger than average,
average, smaller than average, and very small), and whether they had
a written record of their child’s birthweight. If mothers reported a
written record of the birthweight, outside of the record provided as part
of the trial (e.g., hospital birth record), the recorded birthweight was
captured in line with the approach used in national surveys. These birth
record and maternally recalled data serve as our measure of birthweight
collected using standard household survey methods and are referred to
as “maternally reported” birthweight data throughout the article.

Household survey birthweight data and simulated
missingness
In the 2011 Nepal DHS, 67.3% of birthweights were missing for rural
households. However, in our substudy, 95.1% of mothers reported
a birthweight. Because the objective of our study was to assess the
validity of the MINORMIX approach in a typical LMIC survey dataset,
we aimed to produce a survey dataset that simulated the missingness
commonly observed in national household surveys. We developed an
approach to simulate missingness in our trial dataset reflecting the
patterns of missingness observed in the 2011 Nepal DHS dataset.

First, we assessed the covariates associated with missing birthweight
data in the 2011 Nepal DHS. We hypothesized a priori that missing
birthweight in the 2011 Nepal DHS may be associated with whether
the mother had ≥4 antenatal care (ANC) visits, birth order of the child,
birth size, child sex, singleton/multiple birth, maternal height, maternal
BMI, maternal smoking status, birth interval, maternal education,
maternal age, and household wealth. We restricted the 2011 Nepal DHS
dataset to only households in rural areas to ensure comparability with
our study population. We reconstructed the wealth quintile variable to
reflect the distribution of wealth in rural households. We then conducted
a logistic regression using individual sampling weights to account for
differential probability in selection to investigate the association of
missing birthweight with the above variables (17, 18). Supplemental
Table 1 presents the odds of missing birthweight by the 12 a priori
selected characteristics of the mother or birth, both individually and
adjusting for the other variables. The odds of missing birthweight
were associated with birth size, single compared with multiple births,
parity, having ≥4 ANC visits, wealth quintile, and maternal education.
However, single compared with multiple birth was not included when
adjusting the study dataset because this was an exclusion criterion in
our substudy.

Based on the results of the patterns of missingness in rural house-
holds from the 2011 Nepal DHS dataset, we removed birthweights in
the trial dataset to simulate the missingness in the Nepal 2011 DHS. We
simulated the missingness in our dataset by applying the associations
observed in the 2011 Nepal DHS to calculate the predicted probability
of each respondent in the trial dataset not reporting a birthweight
based on their characteristics and characteristics of the birth. Using
computer-generated random numbers and the predicted probability of
missingness, ∼63% of maternally reported birthweights were then set
to missing. Accounting for the initial 4.9% missing birthweights, we
generated a dataset of reported birthweights similar in missingness to
the 2011 Nepal DHS. The resulting patterns of birthweight missingness
for the 5 associated variables in the simulated dataset compared with the
Nepal 2011 DHS are presented in Supplemental Table 2. This dataset
with simulated missing birthweights was used for the primary analysis
of performance of the LBW adjustment methods.

Birthweight data quality assessment
All datasets included in the UNICEF/WHO LBW database must meet 3
criteria for minimum level of data quality (16). These criteria include:

1) a minimum sample size of ≥200 birthweights available in the
dataset, 2) a minimum of ≥30% of births having a birthweight, and
3) no indication of an implausible distribution and/or severe heaping
of the birthweights defined as a) ≤55% of all birthweights falling
on the 3 most frequent birthweights, b) ≤10% of all birthweights
weighing ≥4500 g, and c) ≤5% of births on tail ends of 500 g and
5000 g. We assessed the maternally reported and simulated missing
birthweight data quality against the UNICEF/WHO LBW database
inclusion criteria to gauge the comparability of the data used in the
validation exercise (16).

Methods for estimating LBW using household survey
data
We applied the MINORMIX approach, a 2-component normal mixture
model fit to a dataset with multiply imputed missing birthweight, to
the maternally reported dataset with simulated missing birthweights to
estimate LBW. We also estimated LBW from the maternally reported
dataset with simulated missing birthweights using existing methods,
including 1) a crude, unadjusted proportion, and 2) the Blanc–Wardlaw
method. We compared the LBW estimates generated using each method
with those from our dataset of measured (gold-standard) birthweights.

The MINORMIX approach applies 2 steps. First, an MI procedure
is used to impute missing birthweights in the dataset. The MI was
conducted with 5 repetitions using the variables associated with
birthweight identified by the Working Group regression analysis of
88 post-2000 DHS datasets (16). These variables included: perceived
birth size, sex of the child, maternal height, maternal BMI, and parity;
singleton/multiple birth was not used because being a multiple birth was
an exclusion criterion for our substudy. Second, a 2-component normal
mixture model is fit to the dataset inclusive of imputed birthweights.
The distribution of birthweights is assumed to be composed of 2
subpopulations: 1) a primary normal distribution that accounts for most
birthweights, and 2) a secondary normal distribution that captures the
smallest newborns in the left tail of the distribution (19). Combining
these 2 curves, the area under the overall function with a cut point at
2500 g equals the proportion of LBW newborns.

Common alternative methods for estimating LBW include pre-
senting unadjusted estimates and application of the Blanc–Wardlaw
method. Currently, DHS reports include LBW estimates based on a
crude, unadjusted estimate of the proportion of birthweights <2500
g. The previous global database for tracking LBW used the Blanc–
Wardlaw approach to adjust survey-derived birthweight data. The
Blanc–Wardlaw approach is a 2-step adjustment procedure (15). First,
to account for heaping of birthweights on 100- or 500-g increments,
the Blanc–Wardlaw approach reclassifies 25% of births reported as
exactly 2500 g as LBW. Second, to account for missing birthweights,
babies without reported birthweight data are classified as low or normal
birthweight based on reported birth size and the distribution of LBW
within each perceived birth size category. For example, in a given
survey, if 60% of children reported to be “very small” had a reported
birthweight <2500 g, then 60% of children missing birthweight data
and reported to be “very small” would be classified as LBW.

We further assessed the relative contribution of MI (to account
for missing birthweights) and curve fitting (to address heaping) on
the accuracy of LBW estimates produced through the MINORMIX
method. We compared the estimates of LBW generated using MI alone
by calculating LBW with no heaping adjustment following the MI of
missing birthweights. We also compared the heaping adjustment alone
by fitting 1- and 2-component normal curves to the simulated missing
dataset without imputing missing birthweights prior to estimation. All
analyses were performed using Stata version 14.0 (StataCorp).

Results

In total, 1528 mothers consented to participate and were
interviewed as part of the substudy (Figure 1). Twenty-nine
participants were excluded—birth assessment >72 h after birth
(n = 3), twin delivery improperly included in the substudy
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FIGURE 1 Flowchart for participant selection.

(n = 1), repeat participation due to inclusion of >1 child
per mother (n = 11), or missing covariates (n = 14). The
final dataset for generating the dataset with simulated missing
birthweights included 1499 mother/child pairs. Only 74 (4.9%)
children were missing maternally reported birthweights, where
the mother reported the child was not weighed (n = 21), was
uncertain if the child was weighed (n = 6), or was weighed but
could not provide a numerical weight (n = 47). Of the 1499
mothers who were asked if they had a card with a birthweight
record, only 22 (1.5%) presented cards provided by a facility.
To mimic circumstances of a DHS or MICS data collection, we
used birthweights recorded on these facility cards in our dataset
of maternally reported birthweights. Of the 1499 pairs included
in the simulated missingness analysis, 16 (1.1%) children
were missing a gold-standard digital weight measurement
within 72 h of birth for reasons including death before
measurement (n = 14), parental refusal of weight measurement
(n = 1), and missing weight measurement (n = 1). These
children were excluded from the comparison of LBW estimation
methods.

The mean measured birthweight was 2724.3 ± 433.9 g for
newborns weighed within 72 h of birth. Based on measured
weight, 27.7% had birthweights <2500 g. Birthweight based on
maternal report 1–24 mo after birth was higher on average,
with a mean of 2884.6 ± 607.0 g and only 17.1% (95% CI:
15.2, 19.2%) of newborns classified as LBW. Figure 2 displays
a histogram of the measured and reported birthweight datasets.
The measured birthweights appear to be generally normally

distributed with a left tail that diverges somewhat from the
normal curve. Strong heaping is evident in the histogram of
reported birthweights with 71.4% of all birthweights being
multiples of 500 g, of which 19.1% were exactly 2500 g
(Table 1). Applying the Working Group’s birthweight data
quality criteria to the simulated missing dataset confirmed
substantial heaping because 60.6% of the reported birthweights
fell on 2500, 3000, and 3500 g. Heaping was still evident in the
MI dataset, although significantly reduced compared with either
the maternally reported or simulated missing dataset.

Figure 3 compares LBW estimates generated using MI-
NORMIX, the Blanc–Wardlaw approach, and crude estimate
applied to the simulated missing birthweight dataset against
the measured gold-standard data. The crude (unadjusted)
LBW prevalence, meant to mimic estimates presented in a
DHS report, was nearly 50% lower than the measured gold-
standard estimate of 27.7%. The estimated proportion LBW
after applying the Blanc–Wardlaw method was 20.6%, which
captured only three-quarters of the true LBW prevalence.
The MINORMIX LBW estimate of 26.4% (95% CI: 23.5,
29.3%) was notably closer to the measured LBW value, and
the confidence bounds encompassed the measured LBW point
estimate of 27.7%.

We compared the estimates of LBW generated through
MI and curve-fitting, independently and jointly (Table 2).
Whereas each of the adjustment methods brought the LBW
estimate closer to our true measured LBW proportion of 27.7%,
combining the MI and heaping adjustment methods resulted in
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FIGURE 2 Measured and reported birthweights (n = 1483) with fitted normal curve.

the closest estimates to our gold standard. Adjusting for heaping
without MI, fitting a single normal curve and a 2-component
mixture model increased the LBW estimate to 24.0% (95% CI:
20.9, 27.1%) and 25.6% (95% CI: 22.4, 28.8%), respectively.
MI alone increased the LBW estimate to 23.6% (95% CI: 20.0,
27.0%). MI and fitting a 1-component normal curve estimated
LBW at 27.1% (95% CI: 23.1, 31.2%), slightly closer to the
gold-standard estimate than the MINORMIX approach. The
2-component mixture model was unable to identify 2 separate
subpopulations when fit to both the simulated missing and some
of the MI datasets as evidenced by the small variance around
the second component of these mixture models (Supplemental
Table 3).

Discussion

Existing methods to account for heaping and missing birth-
weight data from household surveys are insufficient and result in
underestimation of the prevalence of LBW, leading to inaccurate
information for global monitoring and program planning. To
address biased LBW estimates, the Lancet Low Birthweight
Investigator Group proposed MI of missing birthweights
and fitting a 2-component normal curve to birthweight data
(MINORMIX) as the most accurate and parsimonious method
to adjust LBW estimates derived from household survey data
(16). To validate the MINORMIX approach in an LMIC
population, we compared estimates of LBW calculated by

applying the MINORMIX approach to a household survey
dataset against gold-standard measured birthweight in rural
Nepal. Our dataset was unique because it contained paired
gold-standard measured birthweight and maternally reported
birthweights for individual children, allowing for a direct
comparison within the study population. In our birthweight
dataset, which exhibited very strong heaping and relied almost
exclusively on maternal reports rather than birth cards, the
MINORMIX approach produced valid estimates of LBW in
the study population, generating an estimate of LBW that
encompassed the gold-standard measured proportion LBW. It
also produced more accurate LBW estimates than previous
methods, including crude estimates and the Blanc–Wardlaw
method.

The crude LBW estimates currently reported by major
household survey programs (e.g., DHS) are likely biased in
that they do not account for missing birthweights, nor do they
adjust for birthweight heaping. Using our dataset of reported
birthweights simulated to represent patterns of missingness in
the 2011 Nepal DHS, the crude LBW estimate of 14.5% (95%
CI: 11.6, 18.0%) captured barely half the true proportion of
LBW based on the gold-standard measured LBW of 27.7% in
the same group of births. The crude LBW estimate was similar
to those reported in the rural population in the 2011 (12.5%)
and 2016 (12.9%) Nepal DHS reports (17, 20). With many
country survey reports likely underestimating LBW prevalence
by not accounting for biases, policies and programs might not
be commensurate with the issue’s true magnitude. A recent

TABLE 1 Assessment of household survey birthweight data quality1

Reported

Reported with
simulated

missingness

Reported with simulated
missingness and multiple

imputations

UNICEF LBW database quality criteria
1) Total number of births 1499 1483 1483
2) Percentage of births with a birthweight 95.1 32.0 100
3) Heaping criteria

a) Percentage of all birthweights falling on the 3 most frequent birthweights 58.0 60.6 19.6
b) Percentage of birthweights ≥4500 g 2.1 1.3 0.8
c) Percentage of birthweights on tail ends of 500 g and 5000 g 0.1 0.0 0.0

Additional quality indicators
Percentage of birthweights weighing exactly 2500 g 19.1 18.7 6.1
Percentage on 500s 71.4 71.6 23.1

1LBW, low birthweight.
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FIGURE 3 Comparison of low birthweight estimates generated from gold-standard measured birthweight compared with 3 methods for
adjusting reported birthweight dataset with simulated missingness, including (A) no adjustment reflecting the reported value in a DHS, (B) the
Blanc–Wardlaw method as applied in the previous global database, and (C) the MINORMIX method used for the current global database released
in 2019 (16). DHS, Demographic and Health Survey; MINORMIX, multiple imputation followed by normal mixture.

application of the MINORMIX method to 226 survey datasets
in 86 LMIC estimated that the average LBW prevalence was
∼35% greater than unadjusted survey estimates (J Krasevec
et al., unpublished results, 2020). Our analysis results suggest
that the new method does a better job of estimating the true
prevalence of LBW than the previous Blanc–Wardlaw method
and supports the findings associated with its application.

The previous methods to adjust LBW estimates in the global
database (2), as developed by Blanc and Wardlaw (15), might
not entirely correct for biased reporting of LBW in surveys. In
this analysis, the Blanc–Wardlaw adjusted estimate was 25%
lower than the measured LBW prevalence. The Blanc–Wardlaw
approach applies an adjustment for heaped birthweights based
on an averaged pattern of reported birthweights (15). However,
heaping can be highly variable, and the resulting Blanc–
Wardlaw-adjusted LBW estimate is particularly sensitive to this
variation (21). Additionally, the method relies on a consistent
perception of birth size within a study population. Studies

have assessed the relation of birthweight and perceived birth
size within DHS datasets and found that mean birthweight
generally decreased with decreasing birth size, consistent with
our findings (results not shown here) (11, 12, 14, 22). However,
mothers’ perception of birth size can be affected by various
neighborhood and regional factors specific to a setting that
shape a reference for how mothers assess their child’s size
(23).

We explored the relative contribution of both adjusting
for missing birthweights and adjusting for heaping through
the MINORMIX approach. We found that the MI alone
brought the LBW estimate closer to the gold standard. Fitting
a normal mixture model alone also yielded an estimate
closer to the gold-standard estimate. However, combining MI
and fitting a normal mixture model yielded point estimates
closest to the real value with good precision, supporting the
MINORMIX method employed in the current global database
(8, 16).

TABLE 2 Low birthweight point estimates (%) calculated using 3 methods to adjust for heaping on reported birthweight data with
simulated missingness (n = 1483) with and without imputation for missing birthweights

Adjustment for heaping:

No adjustment for
heaping

One-component normal
curve

Two-component normal
mixture model

Adjustment for missing birthweight: % (95% CI) % (95% CI) % (95% CI)

No imputation for missing birthweights 14.51 (11.6, 18.0) 24.02 (20.9, 27.1) 25.62 (22.4, 28.8)
Missing birthweights imputed with multiple imputation (r = 5) 23.53 (20.0, 27.0) 27.14 (23.1, 31.2) 26.44 (23.5, 29.3)

1No adjustment for heaping or missing birthweight.
2Adjusted for heaping, no adjustment for missing birthweight.
3Adjusted for missing birthweights, no adjustment for heaping.
4Adjusted for missing birthweights and heaping.
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Wilcox and colleagues described birthweight as having
a Gaussian distribution comprised of 2 subpopulations: a
“predominant” subpopulation with a Gaussian distribution
that encompasses most birthweights, and a “residual” subpop-
ulation made up primarily of LBW newborns (24, 25). Other
analyses have found that birthweight data can be fitted using
normal mixture models and the number of components may
vary (19, 26). The 2-component mixture model had trouble
identifying subpopulations in our study, as evidenced by the
small variance around the mixture model’s second component.
The 1-component normal curve point estimate was slightly
closer to the gold-standard estimate. This might have been due
at least in part to the inclusion of only singleton births in
our study and the exclusion of 14 children who died before
birthweights were obtained. Both multiple births and early
neonatal deaths are more likely to have LBWs (27, 28). Their
exclusion from this study might mean that the left tail of the
distribution in our study population is less skewed than would
exist in a population representative of all births, contributing to
the inability to distinguish 2 populations in the reported birth
dataset.

Our study used accurate and calibrated scales of research
quality to minimize measurement error and produced a similar
measured birthweight distribution pattern observed in prior
high-quality studies (19, 24, 26). A limitation of using these
measurements as our gold standard is that newborns were
weighed ≤72 h after birth. In these first hours of life, newborns
generally lose weight before growth and weight gain are
observed. However, we intended to validate these methods
rather than provide an estimate of prevalence. Our study
population also had a relatively high proportion of LBW
newborns, and we excluded multiple births and early neonatal
deaths, tempering the generalizability of our validation of these
methods.

A much higher proportion of mothers in our study reported
a birthweight at follow-up than seen in standard household
surveys in Nepal. In the case of home births, mothers likely
recalled the birthweight measured during the parent trial
because this would have been the only birthweight provided to
them. Children delivered in a facility might have been weighed
at the facility and during the parent trial participation. In the
latter case, we assumed the mother was reporting the weight
measurement provided to them during the parent trial. It is not
uncommon for a high proportion of birthweights to be missing
in large household surveys (9). We removed a relatively high
percentage of birthweights to mimic the missingness patterns in
rural households in the 2011 Nepal DHS dataset. Birthweights
were removed based on observed patterns of missingness, which
included covariates also included the MI approach, ensuring the
missing at random assumption underlying the MI approach was
met (29) and that our dataset closely resembled the birthweight
data that would be collected through a standard household
survey.

Additionally, considering that most birthweights in our
dataset were recalled by mothers rather than transcribed from
birth cards, which resulted in strong heaping, our dataset might
represent a relatively extreme case of birthweights that would
require adjustment. Although strong heaping was evident in the
maternally reported birthweight dataset, we removed >60%
of birthweights to simulate missingness in the Nepal 2011
DHS. MI was unlikely to impute missing values on multiples
of 100 or 500 g, resulting in an approximately two-thirds
reduction in indicators of heaping severity compared with the
near-complete maternal dataset. As a result, removing heaped

birthweights prior to imputation and curve-fitting might have
improved the curve fitting approach’s performance. Assessment
of these methods using other validation datasets would improve
our understanding of their performance in populations with
different birthweight distributions.

In conclusion, LBW estimates in survey reports, and the
previous methods employed in the global database to adjust
LBW estimates to address heaping and missing birthweights,
result in underreporting of LBW. Our validation exercise
suggests the new MINORMIX method employed in the current
global database developed by the Lancet Low Birthweight
Investigator Group produces more accurate LBW estimates. The
2-component normal mixture model with MI method generated
LBW estimates more accurate than the Blanc–Wardlaw method
when applied to this rural Nepal validation dataset with high
LBW prevalence, a large degree of heaped birthweights derived
primarily from maternal recall, and a high proportion of
missing birthweights. Although the MINORMIX approach was
developed using high-quality data from the United States, the
method performs significantly better than alternatives when
applied as intended to maternally reported birthweight data
collected through household surveys in an LMIC. Applying
these methods to adjust for biased birthweight estimates can be
more complex than the presentation of crude estimates based
on those with reported birthweights only. However, given the
significant burden of LBW on population health, the consistent
production of more accurate LBW estimates for stakeholders
warrants the increased complexity. This validation exercise
supports the use of the MINORMIX approach to produce
more accurate estimates for reporting against the LBW Global
Nutrition Target and ensure valid data for global monitoring
and response.
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