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INTRODUCTION

Physiologically-	based	pharmacokinetic	(PBPK)	modeling	
is	an	approach	that	utilizes	the	knowledge	of	the	physio-
logical	 and	 biological	 elements	 of	 the	 human	 or	 animal	
body,	 otherwise	 known	 as	 “systems	 data”	 to	 predict	 the	
PKs	 of	 drugs	 when	 used	 in	 conjunction	 with	 relevant	
compound	 data.	 Within	 the	 Simcyp	 Simulator,	 the	 sys-
tems	or	population	data	are	separated	from	the	compound	
data,	but	these	are	mechanistically	combined	via	the	trial	
design	 for	any	simulation	using	 in	vitro	 in	vivo	extrapo-
lation	 (IVIVE)	 techniques.1	 This	 separation	 enables	 the	
assessment	of	the	drug's	PKs	in	different	scenarios	and	to	
extrapolate	across	multiple	populations.	The	focus	of	this	
tutorial	will	be	on	generating	compound	PBPK	models.

The	very	first	important	step	in	developing	a	PBPK	model	
is	to	consider	the	purpose	of	the	model	development	and	its	
context	of	use	(e.g.,	is	it	going	to	be	used	to	predict	plasma	
concentrations,	drug–	drug	interactions,	and/or	exposure	in	
special	and	disease	populations?)	Some	key	considerations	

include	“what	are	the	mechanisms	that	are	important	to	con-
sider,	to	accurately	describe	the	pharmacokinetics/dynamics	
(PK/PD)	associated	with	the	compound/drug,”	“what	input	
data	are	available	to	construct	the	PBPK	model,”	and	“what	
clinical	 data	 are	 available	 to	 verify	 the	 developed	 model?”	
The	answer	to	these	questions	will	determine	how	complex	
the	 model	 can	 be,	 as	 generally	 the	 more	 mechanistic	 the	
model,	the	more	data	are	required	to	build	it.

Using	ondansetron	as	a	case	study,	the	aim	of	this	tutorial	
is	to	give	guidance	on	the	input	parameters	and	model	op-
tions	required	when	developing	PBPK	models	for	compound/
drug	files	within	the	Simcyp	Simulator.	The	input	parameters	
required	 for	 a	 Simcyp	 compound	 file	 are	 arranged	 in	 tabs	
(Figure 1a,	annotation	1),	thus	this	tutorial	will	go	through	
these	parameters	following	the	layout	of	the	different	tabs.

Ondansetron	 is	 a	 serotonin	 5-	HT3	 receptor	 antagonist,	
commonly	given	to	oncology	patients	to	prevent	nausea	and	
vomiting	due	to	chemotherapy.	Given	that	ondansetron	 is	
routinely	 co-	administered	 with	 oncology	 drugs,	 the	 pur-
pose	of	 the	current	PBPK	model	 is	 to	evaluate	 its	 liability	
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for	drug–	drug	interactions	(DDIs),	both	as	a	victim	and	as	a	
perpetrator.	Following	the	best	practice	approach	for	PBPK	
modeling,2	the	tutorial	is	split	into	three	sections:	model	de-
velopment,	model	verification,	and	model	application.

INPUT PARAMETERS REQUIRED 
FOR COMPOUND MODEL 
DEVELOPMENT

Physicochemical and blood binding 
parameters

The	 first	 input	 parameters	 required	 when	 developing	 a	
PBPK	 model	 for	 a	 compound	 are	 the	 physicochemical	

and	blood	binding	parameters.	These	 include	molecular	
weight	(MW),	compound	charge	type,	and	the	related	pKa	
values,	octanol-	buffer	partition	coefficient	(Log	p),	blood-	
to-	plasma	partition	 ratio	 (B:P),	and	 fraction	unbound	 in	
plasma	 (fu).	 These	 parameters	 are	 very	 important	 and	
could	be	influential	in	the	choice	of	model	parameters.

The	 molecular	 weight	 is	 calculated	 from	 the	 drug's	
chemical	structure.	Ondansetron	has	an	MW	of	293.4 g/mol,		
but	 most	 formulations	 are	 available	 either	 as	 the	 anhy-
drous	hydrochloride	salt,	with	an	MW	of	329.8 g/mol	or	the	
hydrochloride	dihydrate	salt,	with	an	MW	of	365.9 g/mol.		
The	MW	input	required	for	the	PBPK	model	is	that	of	the	
free	base	(not	including	any	salt	form),	as	the	free	base	is	
the	moiety	measured	 in	clinical	PK	studies.	Thus,	when	
running	simulations	of	clinical	studies	involving	the	salt,	

F I G U R E  1  The	input	parameters	required	for	a	Simcyp	compound	file	are	arranged	in	tabs	as	shown	in	(a).	The	first	tab	(b)	has	
the	physicochemical	and	blood	binding	parameters	for	the	compound,	some	of	which	can	either	be	user-	input	or	predicted.	For	a	drug	
being	administered	orally,	the	absorption	parameters	for	the	GI	tract	tab	(c)	provides	the	flexibility	to	select	the	absorption	model	to	be	
used,	a	Peff,man	prediction	option	depending	on	what	input	parameters	are	available	and	the	option	to	enter	input	parameters	to	describe	
formulation	effects	when	applicable.	The	distribution	tab	(d)	has	the	input	parameters	and	the	different	model	options	that	can	be	selected	
to	describe	the	drug's	distribution,	whereas	the	elimination	tab	(e)	has	the	model	and	input	options	to	describe	the	drug's	clearance	from	
the	body.	When	a	compound	is	identified	as	a	perpetrator,	the	interaction	tab	(f)	is	used	to	include	input	parameters	in	the	model	to	enable	
the	simulation	of	DDIs	against	either	enzymes	or	transporters.	Separate	entry	boxes	for	the	same	transporters	in	different	organs	are	
considered	in	the	Simulator	to	enable	independent	modeling	of	the	effect	of	the	transporter	in	each	organ.	DDI,	drug-	drug	interactions;	GI,	
gastrointestinal;	Peff,man,	effective	permeability	of	the	compound	in	the	human	jejunum
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a	dose	correction	is	required	to	reflect	the	dose	of	the	par-
ent	compound	administered.

The	pKa	of	a	compound	describes	its	ionization	across	a	
range	of	pH	values,	whereas	the	compound	type	depends	
on	the	charge	of	the	ionizable	site(s)	present	on	the	mol-
ecule.	Each	ionizable	site	is	assessed	separately	to	decide	
whether	 its	pKa	would	be	 relevant	 in	vivo.	Ondansetron	
has	 two	 basic	 ionizable	 sites	 with	 pKa	 values	 of	 7.4	 and	
1.7,	with	no	acidic	 ionizable	 sites	 (product	monograph).	
However,	only	the	nitrogen	on	the	imidazole	ring	with	the	
pKa	of	7.4	is	expected	to	undergo	ionization	at	physiolog-
ical	pH.	As	a	rule	of	thumb,	any	basic	center	with	a	pKa	
≤	4.4,	or	any	acidic	center	with	a	pKa	>	10.4	will	be	neu-
tral	at	physiological	pH	and	may	therefore	not	be	relevant.	
Thus,	the	selected	input	for	its	compound	type	is	mono-
protic	base,	with	a	pKa	of	7.4.

Experimental	 B:P	 of	 0.85,3	 fu	 of	 0.27	 (product	 mono-
graph)	and	Log	D	value	of	2.12	measured	at	pH 7.4,4	were	
available	in	the	literature.	The	Log	D	gave	a	predicted	Log		
p	value	of	2.4	using	the	Simcyp	in-	built	“Prediction	Toolbox”	
(Figure 1b,	annotation	2).	These	were	used	as	input	parame-
ters	in	the	file.	In	addition,	its	main	binding	protein—	human	
serum	albumin5	was	also	defined.	From	the	input	data	of	fu,	
the	selected	binding	protein	and	the	reference	concentration	
of	the	selected	protein	(systems	data),	and	the	affinity	(KD)	
of	the	drug	for	the	binding	protein	are	calculated.	Using	the	
mean	value	for	the	selected	plasma	protein	and	its	associ-
ated	variability	in	the	population	of	interest,	an	individual	
protein	 level	 is	 calculated	 for	each	subject.	This	value,	 to-
gether	 with	 the	 calculated	 affinity	 of	 ondansetron	 for	 the	
protein,	is	used	to	calculate	an	individualized	value	of	fu	for	
each	simulated	subject.	Using	this	approach,	it	is	possible	to	
predict	the	fu	of	a	compound	in	any	population	with	altered	
plasma	protein	concentrations,	assuming	the	affinity	of	the	
compound	does	not	change	between	populations.

Experimental	values	are	preferred	for	physicochemical	
and	blood	binding	parameters.	This	is	particularly	import-
ant	for	compounds	with	either	a	high	Log	p	or	a	small	fu,	
wherein	a	very	small	change	in	these	values	can	result	in	a	
marked	difference	in	its	partitioning	into	tissues	and	hence	
the	predicted	PKs.	Where	these	are	unavailable,	especially	
in	early-	stage	drug	development,	algorithms	for	predicted	

fu	 and	 B:P	 for	 bases	 and	 neutrals	 are	 available	 in	 the	
Simulator;	both	of	which	require	knowledge	of	the	Log	p	
and	pKa	of	the	compound.	The	predicted	fu	for	ondansetron	
is	0.286,	whereas	the	user-	input	value	is	0.27	(Figure 1b,	an-
notation	3),	hence	the	use	of	either	value	will	not	affect	the	
drug's	PKs.	Calculated	values	for	pKa	and	Log	p	can	be	ob-
tained	 from	available	computational	 tools.6	Although	not	
applicable	to	ondansetron,	measured	values	of	B:P	and	fu	at	
different	drug	concentrations	can	be	used	as	user	input	for	
drugs	which	show	nonlinearity	in	binding.

Oral absorption parameters

Features	of	the	different	oral	absorption	models	available	
within	 the	Simulator	 (Figure 1c,	annotation	4)	are	sum-
marized	in	Table 1.	The	choice	of	the	absorption	model	to	
be	used	is	dependent	on	the	purpose	of	the	PBPK	model,	
its	applications,	the	properties	of	the	drug,	and	the	avail-
able	 formulations.	 Oral	 formulations	 of	 ondansetron	
include	 tablets	 and	 solutions,	 available	 as	 ondansetron	
hydrochloride;	immediate	release	(IR)	film-	coated	tablets,	
with	the	dihydrate	of	ondansetron	hydrochloride	as	its	ac-
tive	 ingredient;	 and	 the	 oral	 disintegrating	 tablet	 (ODT)	
formulation	of	the	free	base	form.

Although	the	hydrochloride	tablet	is	moderately	sol-
uble	in	water,	100%	of	the	drug	is	released	from	the	for-
mulation	within	30 min.	The	bioavailability	of	the	oral	
tablet	 formulation	has	been	 shown	 to	be	equivalent	 to	
that	 of	 the	 oral	 solution	 in	 a	 clinical	 study	 conducted	
in	 24	 healthy	 male	 volunteers.7	 Solubility	 data	 for	 the	
IR	 tablet	 has	 also	 been	 shown	 to	 be	 bioequivalent	 to	
the	 solution	 and	 complies	 with	 the	 Biopharmaceutics	
Classification	 System	 (BCS)	 requirements	 of	 “highly	
soluble,”	whereas	the	ODT	disintegrates	on	the	tongue	
within	 30  s	 upon	 administration.8	 Given	 that	 none	 of	
the	available	formulations	are	expected	to	affect	its	oral	
absorption,	a	simplified	model	which	assumes	that	on-
dansetron	 is	 always	 in	 solution	 can	 be	 utilized	 for	 its	
oral	 absorption.	 In	 addition,	 although	 identified	 as	 a	
P-	gp	substrate,9	ondansetron	 is	 rapidly	and	completely	
absorbed	 after	 oral	 administration	 at	 all	 its	 clinical	

T A B L E  1 	 Oral	absorption	models	available	in	the	Simcyp	Simulator

Model

fa and ka Metabolism Gut transporter

Handling 
formulations

User 
defined Predicted Qgut

Enzymes 
distribution Apical Basolateral

First	order √ √ √

ADAM √ √ √ √

M-	ADAM √ √ √ √ √

Abbreviations:	ADAM,	advanced	dissolution,	absorption,	and	metabolism;	fa,	fraction	of	drug	absorbed;	ka,	absorption	rate	constant;	M-	ADAM,	multilayer	gut	
wall	within	ADAM.
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doses,	suggesting	that	P-	gp	has	a	minimal	impact	on	its	
bioavailability.	Hence	gut	transporter	effects	do	not	need	
to	be	considered	in	the	model.

Although	a	simple	first	order	(FO)	model	would	oth-
erwise	be	sufficient	in	describing	the	oral	absorption	of	
ondansetron,	 the	 FO	 model	 is	 limited	 in	 its	 approach,	
as,	given	its	structure,	it	cannot	take	into	consideration	
the	true	physiological	representation	of	the	gastrointes-
tinal	 (GI)	 tract,	 and	 how	 that	 in	 turn	 affects	 drug	 ab-
sorption	and	intestinal	metabolism.	With	the	FO	model,	
both	fraction	of	drug	absorbed	(fa)	and	absorption	rate	
constant	(ka)	values	can	directly	be	entered	by	users.	In	
such	a	case,	Monte	Carlo	 sampling	 is	used	 to	 incorpo-
rate	 variability	 for	 these	 specific	 parameters,	 and	 the	
relevant	 physiological	 covariates	 are	 not	 considered.	
The	advanced	dissolution,	absorption,	and	metabolism	
(ADAM)	model	on	the	other	hand,	divides	the	GI	tract	
into	nine	anatomically	defined	segments,	from	the	stom-
ach	through	the	intestine	to	the	colon.	Drug	absorption	
from	each	segment	is	described	as	a	function	of	release	
from	 the	 formulation,	 dissolution,	 precipitation,	 lumi-
nal	 degradation,	 permeability,	 metabolism,	 transport,	
and	transit	from	one	segment	to	another.10

Given	 the	 more	 physiologically	 relevant	 structure	
and	 mechanistic	 considerations,	 the	 ADAM	 model	 of-
fers	some	benefits	over	the	FO	model	in	modeling	oral	
drug	absorption.	Its	main	advantages	are	the	capability	
to	handle	formulation	effects,	the	ability	to	describe	re-
gional	differences	in	drug	permeability,	metabolism	and	
transport,	and	other	effects	that	cannot	be	modeled	with	
FO	absorption	(such	as	enterohepatic	recirculation).	In	
addition,	the	intake	of	food	prior	to	drug	administration	
is	known	to	alter	the	PKs	of	certain	drugs,	depending	on	
its	physicochemical	properties,	due	to	several	physiolog-
ical	changes.	These	include	an	alteration	in	gastric	pH,	
delay	in	gastric	emptying,	increase	in	splanchnic	blood	
flow,	stimulation	of	bile	flow,	and	physical	or	chemical	
modification	of	the	drug	itself,	depending	on	the	dosage	
form.10	When	a	drug	simulation	is	done	under	fed	state,	
by	selecting	the	“fed	state”	radio	button	in	the	trial	de-
sign	screen,	the	ADAM	model	incorporates	these	physi-
ological	changes	in	the	simulation,	as	these	are	already	
predefined	in	the	Simulator	as	part	of	the	systems	data.

Considering	 the	 aforementioned	 physicochemical	
properties	 of	 ondansetron,	 selecting	 the	 ADAM	 model	
with	“solution”	as	the	formulation	type	would	be	suffi-
cient	to	describe	its	oral	absorption.	For	compounds	with	
known	solubility	issues,	a	solution	ADAM	model	would	
not	be	suitable,	so	alternative	ADAM	models	“solution	
with	precipitation”	or	“suspension”	are	available	in	the	
Simulator,	which	takes	into	consideration,	the	mechan-
ics	of	drug	release	 from	the	 formulation.	Thus,	 the	 re-
quired	absorption	input	parameters	for	the	ondansetron	

ADAM	model	are	those	needed	for	the	prediction	of	the	
fa,	and	those	which	adequately	describe	the	fraction	of	
the	drug	escaping	gut	metabolism	(Fg),	in	each	segment	
of	 the	 intestine	 (Table  1).	 Prediction	 of	 fa	 is	 based	 on	
both	 biological	 system-	dependent	 parameters	 (radius	
of	 the	small	 intestine,	 transit	 through	each	segment	of	
the	small	intestine,	gastrointestinal	pH,	fluid	dynamics,	
etc.)	and	drug-	dependent	parameters	(solubility,	formu-
lation	 related	parameters,	 effective	permeability	of	 the	
compound	in	the	human	jejunum	[Peff,man]	etc.).	In	the	
Simulator,	system-	dependent	parameters	are	part	of	the	
population-	related	 library	 data,	 therefore	 for	 the	 on-
dansetron	compound	file,	the	only	required	compound	
input	for	fa	prediction	is	Peff,man,	because	the	file	is	being	
modeled	as	a	solution.

To	account	 for	 formulation	effects,	 additional	 input	
parameters	 are	 required	 to	 describe	 the	 dissolution	 of	
the	 drug	 in	 the	 GI	 tract,	 including	 intrinsic	 solubility,	
solubilization	 factor,	 pKa,	 particle	 size,	 micelle	 parti-
tion	 (logKm:w),	 effective	 diffusion	 coefficient	 (Deff),	 ef-
fective	 diffusion	 layer	 thickness	 (heff),	 and	 parameters	
describing	 super-	saturation	 and	 precipitation.	 Details	
into	 modeling	 of	 such	 drugs	 are	 outside	 the	 scope	 of	
this	tutorial,	but	readers	are	herein	referred	to	more	rel-
evant	publications	describing	the	modeling	of	complex	
oral	 drug	 formulations.10–	12	 For	 compounds	 with	 poor	
intrinsic	solubility,	it	can	be	extremely	important	to	in-
clude	low	basic	pKa(s)	when	present	to	account	for	drug	
dissolution	at	gastric	pH,	which	is	much	lower	than	the	
physiological	pH	of	7.4.

Prediction of Peff,man

The	 Simulator	 offers	 various	 options	 for	 Peff,man	 predic-
tion	 from	 in	 vitro	 permeability	 or	 physicochemical	 de-
scriptors	because	of	the	experimental	challenges	involved	
in	obtaining	measured	 in	vivo	Peff,man	values	 (e.g.,	using	
the	 Loc-	I-	Gut	 technique).13	 These	 include	 the	 estima-
tion	 of	 Peff,man	 from	 apparent	 permeability	 (Papp)	 values	
derived	in	vitro	in	different	cell	lines	(Caco-	2,	MDCK	II,	
and	 LLC-	PK1);	 based	 on	 available	 Papp–	Peff	 correlations:	
Peff,man=10

(

slope ×
(

log10
(

Papp
))

+ intercept
)

,	 where	 Papp	 is	 in	
units	of	10−6 cm/s	and	Peff,man	is	in	units	of	10−4 cm/s,	and	
the	slope	and	intercept	are	specific	to	the	in	vitro	system	
used.14

The	 permeability	 values	 measured	 in	 one	 laboratory	
for	 compounds	 utilized	 in	 the	 Papp–	Peff	 correlation	 may	
sometimes	differ	from	the	original	values	used	to	establish	
the	correlation.	Thus,	to	account	for	inter-	laboratory	vari-
abilities,	users	 should	calibrate	 the	 in	vitro	permeability	
of	 their	 test	compound	with	those	measured	for	a	series	
of	 reference	compounds	using	 the	same	 in	vitro	system.	
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This	 is	done	using	 the	“Permeability	Calibrator”	 located	
within	the	absorption	screen,	so	that	a	scalar	can	be	cal-
culated	 to	 adjust	 the	 Papp	 value	 for	 the	 test	 compound.	
Alternatively,	if	the	user	has	measured	values	for	several	
compounds	using	their	own	in	vitro	system,	then	a	user-	
defined	correlation	can	be	calculated	and	used	directly	in	
the	Simulator	to	scale	Papp	to	Peff,man.

A	 “passive”	 apparent	 permeability	 derived	 in	 Caco-	2	
cells,	measured	at	an	apical	and	basolateral	pH	of	7.4,	was	
available	 from	the	 literature	 for	ondansetron.15	This	was	
used	as	the	input	parameter	for	Peff,man	prediction	in	the	
PBPK	 model	 (Figure  1c,	 annotation	 5).	 If	 the	 inhibition	
of	any	possible	inherent	transporter	effects	has	not	been	
considered	in	the	in	vitro	assay	(either	with	the	use	of	spe-
cific	 transporter	 inhibitors	or	with	 the	use	of	knock	out	
cell	lines),	then	the	“Passive	and	Active”	option	should	be	
selected	in	the	Simulator.

Other	Peff,man	prediction	methods	available	within	the	
Simulator	are	prediction	from	parallel	artificial	membrane	
permeability	assay	(PAMPA),16	prediction	from	molecular	
descriptors-	Polar	 surface	 area	 (PSA)	 of	 the	 drug	 (square	
Ångströms)	 and	 a	 count	 of	 the	 number	 of	 hydrogen	
bond	 donors	 (HBDs),17	 and	 the	 MechPeff	 model.18	 The	
MechPeff	model	is	based	on	the	knowledge	of	regional	gut	
anatomy	(system	parameters)	and	drug-	specific	physico-
chemical	parameters:	MW,	compound	type,	pKa,	and	Log	
p.	 It	 scales	 the	 passive	 intrinsic	 membrane	 permeability	
(Ptrans,0)	 of	 the	 drug	 to	 a	 passive	 intestinal	 permeability	
(Peff,man),	via	surface	area	scalars	derived	from	knowledge	
of	the	villous	dimensions.

All	 the	 Peff,man	 prediction	 methods	 available	 in	 the	
Simulator	 have	 demonstrated	 the	 ability	 to	 reasonably	
capture	 in	 vivo	 permeability	 for	 a	 range	 of	 compounds,	
especially	 if	 measured	 under	 similar	 experimental	 con-
ditions	 as	 those	 in	 which	 the	 correlations	 were	 derived,	
and	within	the	physicochemical	range	of	the	compounds	
studied.	It	should,	however,	be	noted	that	there	may	be	as-
sociated	uncertainties	when	predicting	the	absorption	of	a	
particular	compound	with	any	prediction	method.

When	 Peff,man	 is	 uncertain,	 this	 can	 be	 adjusted	 or	
optimized	 using	 either	 the	 automated	 sensitivity	 anal-
ysis	 (ASA)	 or	 parameter	 estimation	 tools	 within	 the	
Simulator,	 based	 on	 clinically	 observed	 data,	 such	 as	 fa,	
or	concentration-	time	profiles	following	oral	administra-
tion.	The	 ASA	 tool	 is	 particularly	 important	 where	 con-
fidence	in	any	of	the	required	input	parameters,	such	as	
in	vitro	Papp	or	Log	p	 (required	for	 the	MechPeff	predic-
tion	method)	are	lacking,	as	it	can	be	useful	in	informing	
appropriate	values	for	the	model.	There	is	also	the	option	
to	enter	user	input	global	or	region-	specific	Peff,man	values	
(Figure  1c,	 annotation	 6),	 based	 on	 either	 in	 vitro	 or	 in	
vivo	permeability	data	coupled	with	mechanistic	consid-
erations	of	the	GI	physiology.19

Gut	metabolism

The	intrinsic	capability	of	the	gut	enzymes	to	metabolize	
drug	 molecules	 is	 one	 of	 the	 factors	 that	 determines	 Fg.	
This	is	described	using	the	intrinsic	clearance	of	the	drug	
in	the	gut	(CLint,u,G),	and	is	based	on	the	drug-	specific	met-
abolic	activity	mediated	by	each	enzyme	as	well	as	the	en-
zyme	abundance	at	the	site	of	metabolism.	Metabolism	of	
ondansetron	is	mediated	by	both	CYP3A4	and	CYP2D6,20	
which	are	both	expressed	in	hepatocytes	and	the	gut	en-
terocytes;	hence	ondansetron	is	expected	to	undergo	gut	
metabolism	to	some	extent.

Different	experimental	approaches	can	be	used	to	de-
termine	the	rate	of	intestinal	metabolism	of	ondansetron.	
Metabolism	can	be	measured	in	vitro	in	intestinal	micro-
somes	and	then	used	directly	as	an	input	parameter	in	the	
Simulator.	 Alternatively,	 if	 the	 metabolism	 of	 ondanse-
tron	 is	defined	 to	occur	by	specific	enzymes,	 then	using	
information	about	the	rate	of	metabolism	per	pmol	of	en-
zyme	and	the	abundance	of	the	enzyme	in	different	tissue	
locations	allows	the	rate	of	metabolism	in	each	tissue	to	be	
calculated.	For	ondansetron,	the	latter	approach	was	used.

The	 abundance	 values	 of	 the	 gut	 enzymes	 and	 their	
distribution	along	the	intestine	are	part	of	the	population	
library,	 so	 the	 required	 information	 for	 the	 ondansetron	
model	 is	 the	 metabolic	 activity	 for	 each	 of	 the	 enzymes	
involved	in	its	metabolism.	This	can	be	determined	using	
recombinant	enzyme	systems	or	calculated	based	on	the	
rate	of	metabolism	in	human	liver	microsomes	(HLMs).	
When	derived	using	HLMs,	the	estimated	enzymatic	activ-
ity	is	scaled	down	to	a	metabolic	rate	per	pmol	of	enzyme	
using	the	mean	abundance	of	the	isozyme	in	question	per	
mg	of	liver	microsomal	protein.	This	is	then	scaled	up	to	
give	a	CLint	by	CYP3A4	and	CYP2D6	in	the	gut,	using	the	
intestinal	abundance	of	both	enzymes	in	each	simulated	
individual	assigned	from	the	mean	and	coefficient	of	vari-
ation	 (CV)	 defined	 for	 the	 population.	 This	 approach	 is	
based	on	observations	that	the	enzyme	activities	mediated	
per	unit	of	CYP3A4	are	the	same	in	the	liver	and	the	gut.21

Based	on	the	free	drug	hypothesis,	only	unbound	drug	
molecules	may	undergo	metabolism.22	Thus,	the	fraction	
unbound	in	the	gut	(fuGut),	a	parameter	to	account	for	the	
impact	of	free	fraction	on	first	pass	gut	metabolism	is	re-
quired	 in	 the	 model	 (Figure  1c,	 annotation	 7).	The	 fuGut	
can	have	a	big	impact	on	Fg	and	the	free	interacting	con-
centration	of	the	perpetrator	of	a	DDI	at	the	site	of	metab-
olism.	Experimental	values	of	fuGut	have	been	previously	
reported	 for	 some	 compounds,23	 however,	 accurately	
measuring	 fuGut	 is	 still	 challenging.	 Several	 approaches	
have	therefore	been	used	to	estimate	the	appropriate	fuGut	
value	 for	 use	 in	 a	 PBPK	 model.	 The	 default	 fuGut	 value	
of	one	has	been	shown	to	offer	the	best	prediction	of	Fg	
for	compounds	primarily	metabolized	by	CYP3A4	in	the	
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gut	based	on	previous	reports,14	as	it	gives	the	maximum	
unbound	drug	exposure	 to	 the	gut	enzymes.	Alternative	
approaches	 include	the	use	of	 the	predicted	 fuGut,	which	
uses	 the	 physicochemical	 properties	 of	 the	 drug	 along-
side	 tissue	 composition	 data	 (population	 parameter),	
and	is	estimated	using	the	Rodgers	and	Rowland	method	
for	 tissue-	to-	plasma	 coefficient	 (Kp)	 prediction	 (section	
“Distribution	Parameters”).	The	third	option	is	to	set	the	
fuGut	value	to	be	the	same	as	the	free	fraction	of	the	drug	
in	plasma	or	blood.

It	is	often	advisable	to	perform	an	ASA	to	explore	the	
impact	of	the	uncertainty	around	fuGut	on	the	simulation	
outcome,	particularly	for	compounds	that	either	undergo	
significant	gut	metabolism	during	first	pass	or	act	as	a	DDI	
perpetrator	 for	 a	 gut	 enzyme.	 For	 victim	 drugs,	 higher	
fuGut	values	would	mean	more	unbound	drug	is	available	
for	 metabolism,	 whereas	 for	 perpetrator	 drugs,	 a	 higher	
fuGut	would	mean	more	unbound	drug	 is	available	 to	 in-
hibit	the	gut	enzyme,	thereby	leading	to	higher	DDI	liabil-
ities.	Given	that	ondansetron	is	a	substrate	and	inhibitor	
of	gut	enzymes,	an	ASA	was	done	to	investigate	this.	The	
simulations	showed	that	changing	the	 fuGut	 from	the	de-
fault	of	one	to	the	predicted	value	of	0.03	had	little	effect	
on	the	predicted	Fg,	and,	hence,	maximum	concentration	
(Cmax)	and	time	to	Cmax	(Tmax;	Figure 2).	In	addition,	due	
to	 its	 low	 inhibitory	 potency	 against	 CYP2D6	 and	 3A4	
(see	section	“Interaction	Parameters”),	 the	range	of	 fuGut	

values	had	no	impact	on	the	predicted	DDI.	Thus,	for	the	
ondansetron	PBPK	model,	the	predicted	fuGut	was	selected	
as	the	input	for	the	file.

Distribution parameters

Volume	of	distribution

Volume	of	distribution	at	steady	state	(Vss)	entry	is	needed	
to	describe	the	drug's	distribution	and	hence	adequate	re-
covery	of	 the	drug's	 systemic	concentration	profile.	This	
can	 either	 be	 a	 user	 input	 value,	 derived	 from	 clinical	
studies	with	the	compound	dosed	intravenously,	or	it	can	
be	predicted	within	the	Simulator.	For	the	predicted	op-
tion,	the	Vss	is	calculated	in	the	Simulator	from	Equation 1	
using	 a	 combination	 of	 the	 volumes	 for	 plasma	 (Vp),	
erythrocytes	 (Ve),	and	 individual	 tissues	 (Vt),	along	with	
partitioning	into	blood	cells	(erythrocyte	plasma	partition	
coefficient	[E:P])	and	tissues	(Kp).	The	extent	of	distribu-
tion	to	each	tissue	depends	on	tissue	composition	differ-
ences	and	the	drug	properties.

	Individual	Kp	values	for	any	compound	can	be	obtained	ex-
perimentally.	However,	these	data	are	not	readily	available,	

(1)Vss = Vp + Ve × E: P +

∑

Vt × Kp

F I G U R E  2  Automated	sensitivity	analysis	(ASA)	was	done	to	investigate	the	impact	of	changing	values	of	fuGut	on	(a)	the	predicted	
fraction	escaping	gut	metabolism	(Fg),	(b)	the	predicted	Cmax,	and	(c)	the	predicted	Tmax	values.	The	simulations	showed	that	changing	
the	fuGut	from	(d)	the	predicted	value	of	0.03	to	(e)	the	default	value	of	one	had	little	effect	on	the	predicted	Fg,	and	hence	Cmax	and	Tmax.	
ADAM,	advanced	dissolution,	absorption,	and	metabolism;	Cmax,	maximum	concentration;	fuGut,	fraction	unbound	in	the	gut;	Tmax,	time	to	
maximum	concentration

(a) (b) (c)

(d) (e)
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particularly	for	human	tissues.	Thus,	Kp	values	are	usually	
predicted	using	one	of	the	three	mechanistic	methods	avail-
able	 in	 the	 Simulator	 (Figure  1d,	 annotation	 8),	 which	 in	
turn	is	used	to	estimate	the	Vss	(Equation 1).

Method	1	is	based	on	a	corrected	version	of	the	Poulin	
and	Theil	method	to	better	account	for	drug	partitioning	
between	 the	 different	 neutral	 components	 of	 the	 cell.24	
Method	1,	however,	does	not	account	for	ionization	of	the	
drug	at	 the	pH	of	 the	 tissue	compartment	and,	as	 such,	
does	 not	 take	 into	 consideration	 the	 compound	 type.	
Method	2	 is	based	on	 the	method	published	by	Rodgers	
et	al.25	With	the	addition	of	an	extra	compartment	and	in-
clusion	of	acid	phospholipids	as	cell	components.	Method	
2	accounts	for	binding	of	the	ionized	fraction	of	the	drug	
and	has	been	shown	to	 improve	Vss	predictions	 for	both	
acids	and	bases.	Method	3	is	derived	from	a	combination	
of	the	Fick-	Nernst-	Planck	equation	with	the	Rodgers	and	
Rowland's	 method	 to	 account	 for	 passive	 penetration	 of	
electrolytes	across	 the	cell	membrane,	 together	with	 the	
passive	 penetration	 of	 neutral	 molecules.26	 Subcellular	
distribution	 for	 an	 organelle	 (e.g.,	 lysosome)	 within	 any	
tissue	can	also	be	accounted	for	with	method	3.

For	neutral	compounds,	any	of	the	three	methods	can	
be	used,	although	there	is	a	risk	of	overestimation	of	lipid	
binding	 for	 high	 Log	 p	 compounds	 (Log	 p	>	4),	 result-
ing	 in	Vss	overprediction.	 In	general,	changes	 in	Vss	pre-
dictions	are	more	sensitive	to	compounds	with	high	Log		
p	values.	This	is	because	a	small	change	in	Log	p	will	re-
sult	in	a	more	than	proportionate	change	in	predicted	Vss.	
A	lipid	binding	scalar	option	is	available	within	the	distri-
bution	tab	of	the	Simulator	for	improving	Vss	predictions	
for	neutral	and	acidic	compounds	with	Log	p	>	4.	It	back	
calculates	 the	 maximum	 extent	 of	 cellular	 lipid	 binding	
consistent	with	experimentally	measured	B:P	ratios	for	the	
compound,	which	is	then	used	to	correct	the	predicted	Vss.

Distribution	models

There	 are	 two	 broad	 options	 available	 for	 distribution	
modeling,	either	minimal	PBPK	(mPBPK),	with	or	with-
out	the	single	adjusting	compartment	(SAC),	or	full	PBPK	
(Figure 1d,	annotation	9).	All	three	Vss	prediction	meth-
ods	are	available	for	both	options.	The	mPBPK	model	has	
three	compartments,	predicting	only	the	systemic,	portal	
vein,	 and	 liver	 compartment	 concentrations,	 with	 the	
systemic	 compartment	 reflecting	 the	 measured	 plasma	
concentration.	In	addition	to	its	inhibitory	effect	on	trans-
porters	of	 cations,	 such	as	MATE	and	OCT2	 in	 the	kid-
neys,	ondansetron	is	also	known	to	cross	the	blood	brain	
barrier	 (BBB)	 to	 exert	 its	 pharmacologic	 effect.9	 Hence,	
simulating	either	brain	tissue	concentrations	or	drug	con-
centrations	in	the	kidneys	for	adequate	modeling	of	renal	

transporter	 inhibition	 would	 not	 be	 possible	 with	 the	
mPBPK	model.	For	this	reason,	 the	mPBPK	distribution	
model	is	not	a	suitable	distribution	model	to	be	used	in	the	
development	of	a	fully	mechanistic	file	for	ondansetron.

The	Full	PBPK	distribution	model	on	the	other	hand	
simulates	 the	 concentrations	 in	 various	 organ	 com-
partments:	 blood	 (plasma),	 adipose,	 bones,	 brain,	 gut,	
heart,	kidneys,	 liver,	 lungs,	muscles,	pancreas,	skin,	and	
spleen.	 Interindividual	 variability	 is	 introduced	 through	
a	covariate-	based	structure	 in	predicting	 tissue	volumes,	
considering	 an	 individual's	 specific	 age,	 sex,	 weight,	
and	 height.	 Unlike	 the	 mPBPK	 model,	 it	 permits	 the	
use	 of	 permeability-	limited	 models	 available	 within	 the	
Simulator	 for	 several	 organs	 (liver,	 kidneys,	 brain,	 and	
lungs),	thereby	allowing	modeling	of	active	drug	transport	
to	be	considered.	Distribution	is	assumed	to	be	perfusion-	
limited	unless	any	of	the	permeability-	limited	models	are	
activated.

For	 the	 Full	 PBPK	 model,	 only	 the	 predicted	 Vss	 is	
available	as	input	into	the	model.	If	the	Vss	predicted	from	
the	selected	method	is	not	in	line	with	observed	data,	the	
user	has	 the	option	to	manually	adjust	 the	Vss	using	 the	
“Kp	scalar”	(Figure 1d,	annotation	10),	which	can	be	used	
to	equally	scale	all	predicted	Kp	values	to	adjust	the	pre-
dicted	Vss	from	any	of	the	selected	methods	if	required.	In	
addition,	if	a	drug	is	known	to	have	high	partitioning	to	a	
specific	tissue,	based	on	preclinical	data,	for	instance,	the	
tissue:plasma	partition	coefficient	padlock	for	that	tissue	
can	be	opened	and	the	tissue	Kp	manually	adjusted.

The	full	PBPK	option	with	method	2	predicted	Vss	was	
chosen	for	 the	ondansetron	file.	Although	the	method	1	
predicted	 Vss	 gave	 a	 value	 of	 1.8  L/kg,	 which	 is	 close	 to	
the	weighted	mean	observed	value	of	2.1 L/kg,27–	29	it	can-
not	be	used	when	permeability-	limited	distribution	is	re-
quired,	in	addition	to	the	fact	that	binding	of	ondansetron	
as	a	base	to	acid	phospholipids	will	not	be	considered.	A	
Kp	scalar	of	0.63	was	included	in	the	model	to	adjust	the	
method	2	predicted	Vss	of	3.2 L/kg.	Without	the	Kp	scalar,	
the	method	2	predicted	Vss	resulted	in	a	slight	overpredic-
tion	of	ondansetron's	observed	Vss.

Elimination parameters

As	mentioned	earlier,	the	purpose	of	the	PBPK	model	is	
an	important	consideration	when	deciding	what	input	pa-
rameters	 are	 required	 to	 describe	 the	 elimination	 of	 the	
compound.	In	this	example,	the	ondansetron	PBPK	model	
is	being	developed	to	simulate	both	substrate	(victim)	and	
inhibitor	(perpetrator)	DDIs.	There	are	three	elimination	
options	 within	 the	 Simcyp	 Simulator:	 in	 vivo	 clearance,	
whole	 organ	 metabolic	 clearance,	 and	 enzyme	 kinet-
ics	(Figure 1e,	annotation	11).	Only	the	enzyme	kinetics	
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option	 is	 suitable	 for	 developing	 a	 substrate	 file.	 This	 is	
because	 it	 assigns	 drug	 clearance	 to	 different	 enzymes	
and	 transporters,	 thereby	enabling	 the	evaluation	of	po-
tential	 DDIs.	 It	 is	 also	 the	 required	 option	 for	 modeling	
drugs	that	demonstrate	nonlinear	PKs,	due	to	inhibition	
or	induction	of	their	own	metabolism	(auto-	inhibition	or	
auto-	induction,	respectively).

The	 input	 parameters	 for	 enzyme	 kinetics,	 either	 as	
CLint	or	Vmax/Km,	can	be	obtained	from	in	vitro	assays	car-
ried	out	in	tissue	subcellular	fractions,	the	choice	of	which	
depends	 on	 the	 type	 of	 metabolism	 the	 drug	 undergoes	
and	where	the	enzymes	responsible	for	these	reside.	The	
Vmax	 (maximum	 rate	 of	 the	 enzymatic	 reaction)	 and	 Km	
(concentration	of	the	substrate	which	permits	the	enzyme	
to	achieve	half	Vmax)	inputs	are	preferable	to	enable	mod-
eling	of	enzyme	saturation.	The	unbound	fraction	of	the	
drug	 in	 the	 incubation	 system	 (fu,mic	 or	 fu,inc)	 is	 also	 re-
quired,	which	can	either	be	measured	in	vitro	or	predicted	
from	physicochemical	properties.

In	 vitro	 kinetic	 data	 derived	 using	 both	 recombinant	
enzymes	and	HLMs	were	available	in	the	literature	for	on-
dansetron,	which	confirmed	the	involvement	of	CYP1A2,	
2D6,	and	3A4	in	its	elimination	in	vivo.20	Input	values	of	
intrinsic	clearances	are	scaled	up	in	the	Simulator	using	
an	 IVIVE	 approach,	 which	 requires	 population	 parame-
ters	of	enzyme	abundance,	microsomal	protein	per	gram	
of	 liver	(MPPGL)	and	liver	weight,30	which	are	all	avail-
able	 as	 part	 of	 the	 system	 parameters	 in	 the	 Simulator.	
The	 specifics	 of	 how	 these	 are	 incorporated	 into	 the	
well-	stirred	liver	model	to	predict	hepatic	clearance	and,	
hence,	 fraction	 escaping	 hepatic	 clearance	 (Fh),	 while	
accounting	 for	 interindividual	 variability	 have	 been	 de-
scribed	previously.31

When	 used	 in	 the	 PBPK	 model,	 the	 in	 vitro	 derived	
input	parameters	for	the	different	ondansetron	metabolic	
elimination	routes	obtained	 from	HLMs32	predicted	a	 in	
vivo	intravenous	clearance	(CLiv)	of	6.7 L/h,	which	under-
predicted	the	weighted	mean	CLiv	value	of	28.4 L/h.27–	29	
The	 misprediction	 of	 in	 vivo	 hepatic	 clearance	 when	 in	
vitro	 derived	 kinetic	 parameters	 are	 used	 is	 one	 of	 the	
challenges	 of	 IVIVE	 in	 PBPK	 modeling.	Thus,	 the	 facil-
ity	 to	 derive	 enzyme	 kinetic	 parameters	 from	 clinically	
derived	 in	 vivo	 clearance	 values	 is	 available	 within	 the	
Simulator	using	the	reverse	translational	tool	(RTT).

The	RTT,	which	is	accessed	via	the	elimination	screen	
(Figure  1e,	 annotation	 12),	 enables	 the	 estimation	 of	 in	
vitro	CLint	values	from	an	in	vivo	clearance	and	renal	clear-
ance	(where	applicable)	using	a	reverse	of	the	well-	stirred	
liver	model,	for	compounds	metabolized	by	CYPs	and/or	
UGTs.	 It	 uses	 either	 information	 from	 an	 in	 vitro	 study	
about	the	percentage	hepatic	metabolism	(%	Hep	Met),	or	
the	in	vivo	fraction	metabolized	(fm)	via	different	enzyme	
pathways,	 either	 obtained	 from	 a	 clinical	 DDI	 study	 or	

from	a	human	mass	balance	study.33	The	RTT	also	allows	
the	use	of	 in	vivo	clearance	from	an	oral	study	(CLpo)	 if	
CLiv	 is	 unavailable,	 but	 for	 this,	 additional	 information	
about	 the	 fa	 and	 Fg	 of	 the	 compound	 is	 required.	When	
CLpo	 is	selected,	only	 the	%	Hep	Met	CL	input	 	option	 is	
available.

The	use	of	probe	inhibitors	within	the	Dixon	study	en-
abled	an	estimation	of	the	percentage	of	the	total	hepatic	
metabolism	mediated	by	each	enzyme,	which	were	given	
as	23%,	9%,	and	36%,	respectively,	for	CYP1A2,	2D6,	and	
3A4.20	This	information	as	well	as	the	CLiv	of	28.4 L/h	and	
the	observed	renal	clearance	of	0.9 L/h34	were	utilized	in	
the	RTT	to	derive	more	relevant	in	vitro	kinetic	parame-
ters	 for	 the	model	(Table 2).	The	remaining	32%	hepatic	
metabolism	 that	 was	 unaccounted	 for	 was	 assigned	 as	
“additional	HLM	clearance”	in	the	model.

When	 a	 PBPK	 model	 for	 a	 compound	 is	 developed	
using	 only	 in	 vitro	 data,	 it	 is	 regarded	 as	 a	 “bottom-	up”	
PBPK	model.	 If	only	clinical	data	 forms	the	basis	of	 the	
model	 development,	 it	 is	 referred	 to	 as	 a	 “top-	down”	
PBPK	 model.	 A	 “middle-	out”	 approach	 is	 that	 which	
combines	prior	in	vitro	information	in	analyzing	clinical	
effects	 to	 determine	 unknown	 or	 uncertain	 parameters	
in	the	model.35	The	ondansetron	model	is	an	example	of	
a	middle-	out	PBPK	model	because	the	physchem	inputs	
were	all	derived	in	vitro,	and	the	in	vitro	derived	fraction	
metabolized	 via	 different	 enzyme	 pathways	 was	 used	 to	
obtain	 in	 vivo	 relevant	 elimination	 input	 parameters	
(Figure 3).35

Transporter parameters

Several	approaches	are	used	to	assess	the	necessity	of	in-
cluding	 transporters	 in	a	PBPK	model.	 If	nonlinear	PKs	
of	 a	 compound	 are	 observed	 in	 vivo,	 which	 cannot	 be	
explained	by	low	solubility,	saturation	of	metabolism,	or	
nonlinear	 protein	 binding,	 or	 other	 causes,	 then	 trans-
porters	are	likely	to	be	involved.	In	addition,	observation	
of	a	significant	DDI	with	a	known	transporter	 inhibitor,	
either	in	vitro	or	in	vivo,	is	another	indication	for	includ-
ing	transporter	kinetics	in	the	compound	file,	using	either	
CLint,	or	Jmax	and	Km	as	input	parameters.	Suitable	in	vitro	
systems	that	can	be	used	to	derive	these	input	parameters	
have	been	discussed	previously,	depending	on	the	trans-
porter	of	interest.36	In	certain	cases,	modeling	of	in	vitro	
transport	 data	 are	 often	 required	 to	 obtain	 appropriate	
input	values	for	use	in	PBPK	models.37

As	 mentioned	 previously,	 ondansetron	 is	 a	 P-	gp	 sub-
strate	and	to	be	able	 to	 include	this	 in	 the	PBPK	model,	
experiments	 performed	 in	 the	 apical-	to-	basolateral	 and/
or	 basolateral-	to-	apical	 transport	 direction	 across	 cell	
monolayers	 grown	 on	 transwells,	 at	 an	 in	 vivo	 relevant	
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T A B L E  2 	 Input	parameters	used	in	the	ondansetron	PBPK	model

Parameter Value Method/reference

Molecular	weight	(g/mol) 293.4 Pubchem

Log	p 2.4 Pubchem

Compound	type Monoprotic	base

pKa 7.4 Product	Monograph	2016

B:P 0.85 3

fu 0.27 Product	Monograph	2016

Main	plasma	binding	protein Human	serum	albumin 5

Absorption	model ADAM

fu,gut 0.037 Predicted

Peff,man	(10−4 cm/s) 2.03 Predicted

Permeability Predicted	from	Caco-	2

Apical:basolateral	pH 7.4:7.4

Papp(A-	B)	(10−6 cm/s) 18.3 15

Distribution	model Full	PBPK	model

Vss	(L/kg) 2.1 Method	2	predicted

Kp	scalar 0.63 Optimized	to	Vss	from	meta-	analysis

Elimination Enzyme	kinetics

Enzyme CYP2D6

Pathway Pathway	1

CLint	(μl/min/pmol) 0.54 Optimized20

Enzyme CYP3A4

Pathway Pathway	1

CLint	(μl/min/pmol) 0.13 Optimized20

Enzyme CYP1A2

Pathway Pathway	1

CLint	(μl/min/pmol) 0.24 Optimized20

Additional	clearance HLM

CLint	(HLM)	(μl/min/mg	protein) 14.4 RTT

CLR	(L/h) 0.9 34

Interaction	parameters

Enzyme CYP2D6

Ki	(μM) 29 44

fu,mic 0.96 Simcyp	predicted

Enzyme CYP3A4

Ki	(μM) 31 44

fu,mic 0.96 Simcyp	predicted

Transporter Kidney	SLC22A2-	OCT2

Ki	(μM) 3.85 45

Transporter Kidney	SLC47A-	MATE

Ki	(μM) 0.0385 45

Abbreviations:	ADAM,	advanced	dissolution,	absorption,	and	metabolism;	B:P,	blood-	to-	plasma	partition	ratio;	CLint,	intrinsic	clearance	of	the	drug;	CLR,	renal	
clearance;	fu,	fraction	unbound	in	plasma;	fu,gut,	fraction	unbound	in	the	gut	(no	plasma	included);	fu,mic,	unbound	fraction	of	the	drug	in	the	microsome;	HLM,	
human	liver	microsome;	Ki,	inhibition	constant;	Kp,	tissue-	to-	plasma	coefficient;	Papp,	apparent	permeability;	PBPK,	physiologically-	based	pharmacokinetic;	
Peff,man,	effective	permeability	of	the	compound	in	the	human	jejunum;	pKa,	negative	log	of	the	acid	dissociation	constant;	Vss,	volume	of	distribution	at	steady	
state.
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concentration	range	are	required	for	estimating	Jmax	and	
Km	 parameters.	 However,	 as	 mentioned	 previously,	 the	
P-	gp	efflux	activity	in	the	gut	does	not	affect	the	oral	bio-
availability	of	ondansetron	and	was	therefore	not	included	
in	the	model.8	However,	the	ondansetron	exposure	in	the	
cerebrospinal	fluid	(CSF)	of	the	brain	was	only	recovered	
after	a	10-	fold	reduction	of	the	passive	permeability	(data	
not	 shown),	 thereby	 suggesting	 the	 importance	 of	 the	
P-	gp	efflux	activity	at	the	BBB	on	the	drug's	PKs	and	phar-
macodynamics	(PDs).

The	 current	 ondansetron	 model	 has	 been	 developed	
for	its	ability	to	inhibit	MATEs	and	OCT2	present	in	the	
kidneys	(section	“PBPK	Model	Verification”).	Given	that	
these	 transporters	 share	 specificity	 with	 the	 liver	 OCT1	
and	MATE1,	it	is	not	surprising	that	ondansetron	has	also	
been	identified	as	a	substrate	of	OCT1.38	Thus,	the	avail-
ability	of	reliable	in	vitro	data	would	also	allow	the	inter-
action	 with	 OCT1	 to	 be	 incorporated	 in	 a	 refined	 PBPK	
model.

When	modeling	transporter	 function,	 the	permeabil-
ity	limited	models	for	the	respective	organ(s)	need	to	be	
activated.	The	overall	effect	of	a	transporter	depends	on	
its	activity	as	well	as	the	passive	permeability	of	the	drug	
into	 the	 organ.	 Drugs	 with	 high	 passive	 diffusion	 tend	
to	 have	 less	 marked	 effect	 of	 transporters	 on	 their	 dis-
tribution.	 It	 is	 therefore	 important	 to	have	 robust	 input	

data	for	the	passive	permeability	of	the	compound	in	the	
organ	of	 interest	 (CLPD	 in	 the	 liver,	kidneys,	 lungs,	and	
brain	or	Peff,man	in	the	gut),	in	addition	to	the	transporter	
kinetics.39

Interaction parameters

Interaction	 parameters	 are	 required	 in	 the	 development	
of	the	PBPK	model,	when	the	compound	has	been	shown,	
either	in	vitro	or	in	vivo	to	inhibit	or	induce	any	of	the	en-
zymes	or	transporters	involved	in	drug	elimination	and/
or	distribution.	The	compound	thus	has	the	potential	to	be	
a	“perpetrator”	of	DDIs.	When	the	perpetrator	affects	its	
own	metabolism	(auto-	inhibition	and/or	auto-	induction),	
incorporating	 the	 interaction	 parameters	 alongside	
the	 kinetics	 of	 its	 elimination	 (section	 “Elimination	
Parameters”)	is	required	to	accurately	predict	its	PK	pro-
files,	specifically	for	multiple	dosing.	The	magnitude	of	the	
predicted	interaction	depends	not	only	on	the	interaction	
parameters,	but	also	on	the	model	choice	for	different	or-
gans.	This	is	because	the	operating/interacting	concentra-
tion	of	the	perpetrator	in	the	organ(s)	of	interest	could	be	
different	depending	on	the	selected	model	structure	and	
components	incorporated	in	the	model	(e.g.,	the	use	of	a	
first	order	absorption	model	instead	of	the	ADAM	model).

F I G U R E  3  Workflow	of	ondansetron	model	development.	The	model	was	initially	developed	using	a	bottom-	up	approach,	
incorporating	physicochemical,	in	vitro	permeability,	and	in	vitro	metabolism	data.	However,	this	base	model	underpredicted	the	reported	
clinical	CLiv	and	was	refined	using	the	RTT	tool	with	CLiv	and	the	in	vitro	derived	percentage	of	hepatic	metabolism	as	inputs.	The	
optimized	model	was	verified	with	clinical	studies	in	which	ondansetron	was	administered	as	single	doses	both	i.v.	and	orally	as	well	as	to	
a	phenotyped	CYP2D6	population.	The	model	was	further	verified	as	a	CYP3A4	substrate	with	a	clinical	DDI	with	rifampicin,	as	well	as	an	
inhibitor	of	OCT2	and	MATE	transporters	with	a	clinical	DDI	with	metformin.	The	verified	model	can	be	further	applied	in	exploring	other	
“what-	if”	scenarios.	CLiv,	intravenous	clearance;	DDI,	drug-	drug	interaction;	Hep	Met,	hepatic	metabolism;	MD,	multiple	dose;	RTT,	reverse	
translational	tool;	SD,	single	dose
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There	are	four	main	options	available	in	the	Simulator	
for	 modeling	 the	 effect	 of	 the	 altered	 activities	 of	 var-
ious	 drug-	metabolizing	 enzymes	 and	 transporters	 by	
the	 perpetrator.	 These	 include	 competitive	 inhibition,	
mechanism-	based	 inhibition	 (MBI),40	 induction,41	 and	
suppression.42	 Competitive	 inhibition	 of	 all	 enzyme	
and	 transporter	 moieties	 available	 in	 the	 Simulator	 can	
be	 modeled,	 whereas	 only	 induction/suppression	 of	
CYPs,	UGTs,	and	transporters	can	be	modeled	using	the	
Simulator,	 in	 a	 concentration	 and	 time-	dependent	 man-
ner.	MBI	can	only	currently	be	considered	for	CYPs.	For	
transporters,	relevant	PBPK	input	parameters	may	differ	
between	tissues	for	the	same	probe	substrate	and	inhibi-
tor	due	to	differences	in	membrane	concentrations	of	the	
drug	and	 its	mechanism	of	 interaction	with	 the	binding	
site(s)	of	the	transporter.	Therefore,	separate	entry	boxes	
for	 the	same	transporters	 in	different	organs	are	consid-
ered	in	the	Simulator	(Figure 1f,	annotation	13)	to	enable	
independent	modeling	of	the	effect	of	 the	transporter	 in	
each	organ.

Static	 and/or	 dynamic	 PBPK	 models	 for	 DDI	 predic-
tions	 are	 recommended	 by	 regulatory	 authorities,36,43	
and	these	two	modes	are	available	within	the	Simulator,	
identified	as	“PKPD	Parameters”	for	static	predictions	and	
“PKPD	Profiles”	for	dynamic	predictions	(Figure 1a,	an-
notation	14).	The	static	mode	enables	steady-	state	calcula-
tions	of	in	vivo	clearance	for	the	substrate,	in	the	presence	
or	 absence	 of	 the	 “inhibitor”;	 while	 accounting	 for	 the	
fraction	of	the	drug	metabolized	by	multiple	“inhibited”	
pathways,	and	“inhibition”	of	first	pass	metabolism	in	the	
gut	 wall.	 It,	 however,	 cannot	 consider	 transporter	 DDIs.	
In	 the	 dynamic	 mode,	 the	 time	 variance	 of	 the	 relevant	
interacting	concentrations	of	 the	 inhibitor	and	substrate	
concentrations	are	considered.

In	 an	 in	 vitro	 assay,	 ondansetron	 competitively	 in-
hibited	 the	 CYP2D6-	mediated	 O-	demethylation	 of	
dextromethorphan	as	well	as	the	CYP3A4-	mediated	me-
tabolism	of	cyclosporin	in	HLMs.44	The	inhibition	con-
stant	 (Ki)	 values	 of	 29	 and	 31	μM	 against	 CYP2D6	 and	
CYP3A4,	respectively,	were	estimated,	which	were	used	
alongside	a	predicted	fu,mic	value	of	0.96	as	input	values	
for	 use	 in	 the	 Simulator.	 These	 interaction	 parameters	
when	included	in	the	PBPK	model	can	be	used	to	predict	
clinical	 DDIs	 between	 ondansetron	 and	 other	 CYP2D6	
and	 CYP3A4	 substrates.	 Similarly,	 unbound	 inhibition	
constants	(Ki,u)	of	3.85	and	0.035	μM	against	OCT2	and	
MATE	 transporters,	 respectively,	 were	 obtained	 from	
an	in	vitro	study	in	HEK-	293	cells	with	metformin	as	a	
probe.45	These	values	were	included	in	the	ondansetron	
PBPK	 model	 with	 an	 fu,inc	 of	 one	 for	 the	 inhibition	 of	
renal	OCT2	and	MATE	transporters	only,	due	to	lack	of	
information	 on	 ondansetron	 as	 an	 inhibitor	 of	 hepatic	
transporters.

PBPK MODEL VERIFICATION

The	 final	 input	 parameters	 used	 in	 the	 ondansetron	
compound	file,	which	were	selected	based	on	the	model	
options	that	needed	to	be	considered	to	achieve	the	objec-
tive	of	the	model	development,	and	on	the	availability	of	
reliable	 data	 are	 summarized	 in	 Table  2	 below.	 A	 sche-
matic	of	the	workflow	for	the	file	development	is	shown	
in	 Figure  3.	 Simulations	 using	 these	 parameters	 against	
clinical	 studies	 is	 the	 next	 step	 to	 assess	 the	 model	 per-
formance	 and	 hence	 verify	 the	 developed	 PBPK	 model.	
Recovery	of	the	clinical	exposure	of	the	drug,	after	single	
and/or	 multiple	 doses	 administered	 both	 i.v.	 and	 orally,	
is	utilized	as	a	means	of	ensuring	that	the	absorption,	dis-
tribution,	 and	 elimination	 processes	 are	 well-	described.	
Characteristics	of	the	virtual	subjects	for	the	simulations	
are	 matched	 closely	 to	 the	 clinical	 studies	 (i.e.,	 number	
of	 subjects,	 age	 range,	and	gender	 ratios)	are	 replicated.	
Multiple	trials	of	the	study	design	(usually	10)	are	selected	
to	ensure	the	participants	used	in	the	actual	clinical	study	
are	represented	in	the	simulated	population.

A	 clinical	 study	 in	 which	 ondansetron	 was	 admin-
istered	as	a	4 mg	i.v.	dose	to	five	male	and	seven	female	
healthy	 volunteers,46	 and	 another	 study	 in	 which	 an	
8 mg	dose	of	ondansetron	was	administered	orally	under	
both	fasted	and	fed	conditions	to	12	healthy	male	volun-
teers7	was	simulated	and	used	to	verify	the	input	param-
eters	used	 in	 the	model	development	(Figure 4a–	c).	The	
predicted	 results	 of	 all	 the	 simulated	 individuals	 can	 be	
viewed	 in	 an	 Excel	 workbook,	 by	 preselecting	 via	 the	
outputs	tab	(Figure 1a,	annotation	15),	the	output	sheets	
which	correspond	to	the	model	selection(s),	prior	to	run-
ning	the	simulation.	These	include,	but	are	not	limited	to,	
concentration	time	profiles	(with	or	without	percentiles)	
as	well	as	 tables	and	charts	of	 the	summary	statistics	of	
the	 different	 PK	 parameters.	 As	 shown	 in	 Figure  4,	 the	
simulated	concentration	time	profiles	were	all	in	reason-
able	agreement	with	the	observed	data,	given	that	all	the	
observed	 data	 points	 were	 within	 the	 5th	 and	 95th	 per-
centiles	of	the	simulated	data,	and	the	observed	values	of	
reported	PK	parameters	were	within	the	range	of	the	pre-
dicted	values.

For	 substrate	 drugs,	 clinical	 DDIs	 with	 a	 known	 and	
verified	inhibitor,	or	genotype	studies	(for	enzymes	with	
known	genetic	polymorphisms)	can	be	used	to	verify	the	
kinetic	inputs	used	to	define	their	elimination	as	well	as	
the	estimated	fm.	A	clinical	study	carried	out	in	CYP2D6	
phenotyped	 individuals	after	 i.v.	 administration	of	8 mg	
ondansetron	 hydrochloride	 dihydrate	 (equivalent	 to	
6.4 mg	of	the	free	base)47	was	reasonably	recovered	by	the	
PBPK	 model.	There	 was	 a	 5%	 reduction	 in	 ondansetron	
clearance	in	CYP2D6	poor	metabolizers	(PMs)	compared	
to	extensive	metabolizers	(EMs)	predicted	by	the	model,	
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which	 is	 in	 line	 with	 the	 4%	 reduction	 obtained	 in	 the	
study,	 resulting	 in	 a	 marginal	 increase	 in	 ondansetron	
area	 under	 the	 curve	 (AUC)	 in	 CYP2D6	 PMs	 compared	
to	EMs	(Table 3).	This	also	verifies	the	low	in	vivo	 fm	of	
9%	assigned	to	CYP2D6	(Figure 3).	There	was	no	clinical	
study	between	ondansetron	and	a	known	CYP3A4	inhib-
itor	available,	thus	the	37%	fm	CYP3A4	was	verified	using	
a	clinical	DDI	with	rifampicin,	which	is	a	known	CYP3A4	
inducer.48	The	model	predicted	a	58%	(trial	range	54–	63%)	
increase	 in	 ondansetron	 clearance	 due	 to	 induction	 of	
CYP3A4	 enzyme	 activity,	 which	 is	 in	 line	 with	 the	 65%	
(45–	76%)	 increase	 in	 clearance	 observed	 in	 the	 clinical	
study	(Figure 4d	and	Table 3).

Verification	 of	 a	 drug	 using	 clinical	 DDI	 studies	 not	
only	enables	the	assessment	of	the	 fm	(with	regard	to	its	
role	as	a	substrate),	but	also	the	assessment	of	the	inter-
action	parameters	in	the	model	(for	its	role	as	a	perpetra-
tor).36	Although	interaction	parameters	 for	CYP2D6	and	
CYP3A4,	as	well	as	OCT2	and	MATE	transporters	in	the	
kidneys	were	 included	 in	 the	PBPK	model,	only	a	clini-
cal	DDI	in	Chinese	healthy	volunteers	between	ondanse-
tron	and	metformin	was	available.49	This	study	was	used	
to	verify	the	inhibition	constants	against	the	renal	OCT2	
and	MATE	transporters	included	in	the	model.	Results	of	
the	clinical	DDIs	with	ondansetron,	either	as	substrate	or	
perpetrator	are	summarized	in	Table 3.	The	predictive	per-
formance	of	the	model	in	recovering	any	DDI	is	assessed	
using	predicted	over	observed	AUC	and	Cmax	ratios,	which	
is	expected	to	lie	between	0.8	and	1.25,	or	meet	other	pre-
defined	criteria	previously	described.50	As	 shown	by	 the	
results,	all	the	simulations	met	these	criteria.

All	 the	simulations	that	were	carried	out	 to	verify	 the	
ondansetron	 file	 were	 done	 using	 the	 healthy	 volunteer	
population30	within	the	Simcyp	Simulator	version	20,	ex-
cept	the	DDI	with	metformin,	wherein	the	Chinese	healthy	
volunteer	 population51	 was	 used.	 These	 population	 files	
contain	all	the	systems	data	referred	to	in	this	paper.

DISCUSSION, LIMITATIONS, AND 
FURTHER APPLICATIONS OF THE 
MODEL

The	current	ondansetron	PBPK	model	has	been	developed	
as	a	substrate	of	CYP2D6,	CYP1A2,	and	CYP3A4;	and	an	

inhibitor	of	CYP2D6	and	CYP3A4	as	well	as	renal	OCT2	
and	MATE	transporters,	to	enable	the	prediction	of	clini-
cal	 DDIs	 with	 drugs	 co-	administered	 with	 ondansetron.	
Adequate	verification	of	a	PBPK	model	is	often	limited	by	
what	 clinical	 data	 are	 available.	 In	 such	 scenarios,	 pro-
spective	simulations,	sometimes	utilizing	the	ASA	toolkit,	
can	 help	 to	 explore	 various	 “what	 if	 scenarios”	 to	 gain	
confidence	in	the	model's	input	parameters.

For	the	current	model,	a	local	sensitivity	analysis	(LSA)	
approach	was	used	to	inform	the	choice	of	the	fu,Gut	input	
used	in	the	model.	Other	areas	within	these	can	be	utilized	
in	model	development	have	been	briefly	mentioned,	such	
as	in	understanding	the	impact	of	different	Log	p	values	
on	the	predicted	PKs	of	a	compound.	For	either	of	these	
examples,	an	understanding	of	the	PK	parameter(s)	that	
would	 be	 most	 affected	 by	 the	 model	 input	 is	 required.	
Alternatively,	a	global	sensitivity	analysis	(GSA)	approach	
can	be	used	in	the	first	instance	to	identify	and	then	rank	
the	 most	 influential	 model	 parameters	 that	 could	 affect	
the	model	outputs.52	An	LSA	can	then	be	carried	out	as	a	
second	step	when	specific	parameters	have	been	identified	
to	obtain	initial	estimates	for	the	model,	as	LSA	evaluates	
the	model	parameters’	impact	on	a	specified	output	by	al-
tering	one	parameter	at	a	time	or	a	few	simultaneously.

Exploratory	simulations	coupled	with	sensitivity	anal-
ysis	can	also	be	used	to	look	at	further	applications	of	the	
developed	PBPK	model.	With	regard	 to	CYP	enzymes,	a	
DDI	 with	 a	 potent	 CYP3A4	 inhibitor	 like	 ketoconazole	
can	 be	 simulated	 to	 explore	 what	 the	 clinical	 impact	
will	be	if	ondansetron,	with	an	fm	CYP3A4	of	37%	is	co-	
administered	 with	 drugs	 that	 are	 potent	 CYP3A4	 inhib-
itors.	The	 clinical	 study	 in	 CYP2D6	 PMs	 has	 shown	 the	
minimal	impact	it	has	in	ondansetron's	metabolism.	The	
same	might	not	be	the	case	for	CYP1A2	with	an	fm	of	21%,	
so	either	a	DDI	with	a	potent	CYP1A2	inhibitor	or	a	look	
at	the	impact	of	smoking	on	the	clearance	of	ondansetron	
can	be	explored.	Given	that	interaction	parameters	against	
CYP2D6	and	CYP3A4	are	already	included	in	the	model,	
an	 exploratory	 simulation	 with	 ASA	 was	 carried	 out	 to	
assess	 the	 impact	 when	 ondansetron	 is	 co-	administered	
with	a	potent	CYP3A4	and/or	CYP2D6	substrate.	The	sim-
ulations	showed	that	 the	unbound	input	Kis	of	27.9	and	
29.9 μM	against	CYP2D6	and	CYP3A4,	respectively,	were	
not	 very	 potent,	 and	 at	 least	 a	 100-	fold	 reduction	 in	 Kis	
would	be	required	to	bring	about	a	significant	decrease	in	

F I G U R E  4  Simulated	and	observed	(open	circles)	mean	plasma	concentration–	time	profiles	of	ondansetron	after	(a)	single	dose	of	
4 mg	administered	i.v.	(10	trials	×	12	HVs,	32–	57	years,	0.58	women)46;	(b)	single	dose	of	8 mg	administered	orally	under	fasted	and	(c)	
fed	states	(10	trials	×	12	male	HVs,	18–	40	years)7;	and	(d)	single	dose	of	8 mg	administered	orally	before	and	after	the	administration	of	
multiple	doses	of	600	mg	rifampicin	for	5	days	(10	trials	×	10 HVs,	21–	41	years,	0.8	women)48;	as	performance	verification	of	the	developed	
ondansetron	PBPK	model.	The	dark	lines	represent	the	mean	plasma	concentration–	time	profiles,	the	gray	lines	represent	the	predictions	
from	individual	trials,	whereas	the	dashed	lines	represent	the	5th	and	95th	percentiles.	The	dashed	lines	in	d	represent	the	predictions	after	
the	administration	of	rifampicin.	HVs,	healthy	volunteers



818 |   EZURUIKE et al.

intrinsic	clearance	both	 in	 the	gut	and	 in	 the	 liver	 (data	
not	shown).

Although	 ondansetron	 has	 been	 identified	 as	 both	 a	
transporter	 substrate	 and	 inhibitor,	 the	 absence	 of	 rele-
vant	input	data	to	fully	develop	the	PBPK	model	as	either	
an	 OCT	 and/or	 a	 P-	gp	 substrate	 means	 that	 prospective	
DDIs	with	potent	inhibitors	of	either	of	those	transporters	
cannot	be	explored	and	the	extent	of	the	impact	of	these	
transporters	on	ondansetron's	distribution	is	currently	not	
being	considered.	Polymorphism	of	the	ABCB1	gene	that	
encodes	 for	 P-	gp	 has	 been	 shown	 to	 reduce	 the	 central	
nervous	 system	 (CNS)	 penetration	 of	 ondansetron,	 and	
hence	 its	 efficacy,	 despite	 adequate	 systemic	 concentra-
tions.9	 P-	gp	 limits	 the	 brain	 permeation	 of	 ondansetron	
and	therefore	DDI	with	P-	gp	could	 impact	 the	PD	effect	
of	the	drug.

It	has	also	been	shown	that	 the	number	of	 inactive	
OCT1	alleles	is	linked	to	higher	ondansetron	serum	con-
centrations	and	fewer	episodes	of	vomiting	in	oncology	
patients.53	If	included	in	the	PBPK	model,	it	may	mech-
anistically	 account	 for	 the	 observed	 interindividual	
variability	 associated	 with	 the	 drug.	 Nonetheless,	 the	
current	 file	 can	 be	 used	 to	 simulate	 prospective	 DDIs	
with	 other	 substrates	 of	 the	 renal	 OCT2	 and	 MATE	
transporters.

Another	important	application	of	the	ondansetron	file	
would	be	its	use	in	other	populations.	The	current	model	
was	 developed	 using	 a	 healthy	 volunteer	 population.	
However,	simulations	using	a	disease	population,	such	as	
the	Sim-	Cancer	population	available	in	the	Simcyp	library,	
or	any	of	the	cirrhosis	or	renal-	impaired	populations	can	
assess	the	impact	of	the	physiological	changes	due	to	dis-
ease	on	the	drug's	PKs.	Finally,	although	not	incorporated	
in	this	model,	there	is	also	the	possibility	to	link	the	sim-
ulated	PK	parameters	to	a	PD	model	using	any	of	the	PD	
options	available	within	the	Simulator	that	best	describes	
ondansetron's	mechanism	of	action.	In	this	way,	the	impact	
of	a	change	in	PKs,	either	due	to	drug	dosing	in	a	diseased	
population,	 or	 because	 of	 DDIs	 when	 co-	administered	
with	another	drug	can	be	immediately	assessed.

The	use	of	PBPK	models	as	part	of	regulatory	submis-
sions	 for	 drug	 approvals	 has	 grown	 considerably	 in	 the	
last	decade,	with	simulations	involving	enzyme-	mediated	
clinical	DDIs	identified	as	the	area	with	the	highest	appli-
cation	(~60%).54	Confidence	in	the	prospective	predictions	
of	both	CYP	and	non-	CYP	mediated	DDIs	has	increased	
as	more	robust	data	required	to	build	these	models	have	
become	 available.	 It	 is	 envisaged	 that	 as	 research	 into	
other	areas	of	application	progress,	an	increase	in	submis-
sions	of	PBPK	models	predicting	the	impact	of	transporter	
mediated	DDIs,	food	effects,	and	drug	exposure	in	special	
populations,	such	as	patients	with	hepatic	or	renal	impair-
ment,	pediatrics,	and	pregnant	women	are	to	be	expected.T
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CONCLUSIONS

Pharmaceutical	 companies	 are	 increasingly	 using	 PBPK	
models	 in	 regulatory	 submissions	 for	 drugs	 in	 develop-
ment,	as	well	as	academic	groups	for	exploratory	research	
projects.	Currently,	there	are	over	1300	Simcyp	Simulator	
licenses	being	used	by	academic	groups	in	their	teaching	
and/or	research,	in	addition	to	another	300	being	used	by	
pharmaceutical	companies	and	regulatory	bodies.	Over	the	
years,	the	utility	and	complexity	of	the	Simcyp	population-	
based	Simulator	has	significantly	expanded,	with	 the	ad-
dition	 of	 more	 mechanistic	 models	 to	 explore	 various	
“what-	if”	 questions	 for	 these	 compounds.	 This	 tutorial	
is	therefore	a	useful	 introductory	resource	to	PBPK	com-
pound	model	development	for	anyone	being	introduced	to	
the	Simulator	or	PBPK	modeling	for	the	first	time.

Although	the	development	of	PBPK	platforms,	such	as	
the	Simcyp	Simulator,	has	been	criticized	in	some	quar-
ters	because	the	platform	does	not	have	an	“open-	source	
code,”	it	is	important	to	also	consider	the	ongoing	debate	
regarding	the	separation	of	the	model	from	the	platform	
and	 their	 individual	 “qualification”,55	 as	 well	 as	 regula-
tory	perspectives	on	model	“credulity”56,57	when	consid-
ering	the	pros	and	cons	of	different	platforms.	As	shown	
in	this	tutorial,	there	are	many	established	generic	mod-
els	which	are	implemented	in	platforms	such	as	Simcyp	
(and	can	be	modified	as	needed	by	the	user).	Recent	sta-
tistics	 on	 PBPK	 publications58	 show	 that	 the	 research	
using	 PBPK	 modeling	 (applications)	 has	 overtaken	 the	
research	 into	 PBPK	 itself	 (exploring	 algorithms).	 We	
hope	this	tutorial	will	help	the	former	group	in	further-
ing	their	efforts,	while	we	try	to	keep	up	with	the	pace	of	
novel	development	in	the	latter	category	and	enable	them	
to	be	rolled	into	the	platform	when	possible	and	deemed	
necessary.
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