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joint action of excitatory and inhibitory pathways, in a spiking 
neural network undergoing DA modulation of both spike-timing 
dependent synaptic plasticity (DA–STDP) and neuronal excitability 
(DA-modulated post-synaptic facilitation, DA–PSF).

Our model accounts for the following key features of DA 
responses. First, DA neurons display phasic activation in response 
to unexpected primary rewards (unconditioned stimuli, US), such 
as food or water (Schultz and Romo, 1990; Schultz, 1998). Second, 
these neurons display phasic responses to reliably reward-predicting 
stimuli (conditioned stimuli, CS), yet do not respond to US (or CS) 
which are themselves predicted by earlier stimuli (Ljungberg et al., 
1992). Third, reward-related DA responses reappear if a previously 
predictable reward occurs unexpectedly (Ljungberg et al., 1992). 
Fourth, DA neurons display a brief dip in activity at precisely the 
time of an expected reward, if that reward is omitted (Ljungberg 
et al., 1991). Finally, as contingencies in the environment change 
DA responses will shift to the time of the earliest reward-predicting 
CS (Ljungberg et al., 1992; Schultz, 1998; Pan et al., 2005).

The model is depicted in Figure 1. Parallel pathways from 
peripheral sensory neurons (SEN) transmit signals to DA neu-
rons either via PFC and striatum (STR) with 100 ms latency, or 
without latency via an intermediate group of excitatory neurons 
(INT) assumed to be within a fast relay such as the sub-thalamic 
nucleus (STN) or superior colliculus (Redgrave and Gurney, 2006). 
STR neurons project inhibitory synapses to DA neurons, such that 
a balance between STR and INT activities controls DA output. 
This balance is maintained by DA modulation of synaptic plasticity 
(DA–STDP) in PFC → STR and SEN → INT pathways. The model 
also includes DA modulation of neuronal excitability (DA–PSF) 
in STR neurons and stimulus-specific temporally extended PFC 

1 IntroductIon
The mammalian dopamine (DA) system is implicated in a wide 
range of cognitive functions. Dopaminergic neurons have been 
shown to reliably respond to external stimuli both within task learn-
ing contexts (Schultz and Romo, 1990; Ljungberg et al., 1991, 1992; 
Pan et al., 2005), as well as outside of any specific task (Hyland 
et al., 2002). During conditioning, phasic DA responses appear 
to encode predictions about future events, either via an explicit 
reward prediction-error signal (Schultz, 1998, 2007; Sutton and 
Barto, 1998; Pan et al., 2005), or by a more generic signal for learn-
ing action-perception contingencies (Redgrave and Gurney, 2006; 
Redgrave et al., 2008). Most computational approaches to mod-
eling DA responses during learning have focused on the “temporal 
difference” algorithm (Sutton and Barto, 1998; Pan et al., 2005, 
2008; Hazy et al., 2010) which computes expected reward using an 
explicit temporal discount (Sutton and Barto, 1998). In contrast 
to these “top-down” approaches, “bottom-up” approaches seek to 
understand phasic DA responses by appeal to known features of 
neuroanatomy and physiology. For example, “dual-path” models 
(Brown et al., 1999; Tan and Bullock, 2008) investigate interac-
tions between complementary excitatory and inhibitory pathways 
converging on DA neurons. These models involve spiking neural 
networks but do not rely on the precisely timed spiking activity 
patterns observed in prefrontal cortex (PFC) and striatum during 
reinforcement learning (Schultz, 1992; Durstewitz et al., 2000). 
By contrast, the model of Izhikevich (2007) does leverage precise 
spike timing but is unable to account for a full range DA responses 
(Schultz and Romo, 1990; Schultz, 1998). To advance the “bottom-
up” approach, we describe and analyze a model of DA activity in 
which phasic prediction-error signals are generated through the 
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responses to sensory input. Note that we do not model either the 
SEN → PFC pathway or recurrent connectivity within the PFC; 
rather, stimulus-specific PFC responses to sensory input are repre-
sented by pre-computed temporally extended (1 s) activity patterns 
drawn from the same distribution as random background activity 
(Section 2.2).

Our model combines features from two previous classes of 
model, extending both. It shares with previous “dual-path” mod-
els (Brown et al., 1999; Tan and Bullock, 2008) the architecture of 
complementary excitatory and inhibitory pathways converging on 
DA neurons. However, unlike these models we show that adaptive 
DA responses can be generated in the presence of substantial back-
ground activity, thereby addressing the so-called “credit assignment” 
problem (Sutton and Barto, 1998). Our model accomplishes this 
by sharing with another model (Izhikevich, 2007) the DA–STDP 
mechanism, according to which synapse-specific “eligibility traces” 
enable selective modulation of stimulus-related synapses. However, 
Izhikevich’s model demonstrates only the US → CS shift in DA 
responses, and not the other key features described previously. In 
summary, by augmenting a dual-path model with DA–STDP, DA–
PSF, and stimulus-specific temporally extended PFC responses, our 
model accounts for a broad range of adaptive DA responses in gen-
eral conditions involving background neuronal activity. The model 
therefore provides an integrated account of DA neuromodulation 
and prediction-error signaling in the cortico-basal loop.

2 MaterIals and Methods
2.1 spIkIng network Model
Our model (Figure 1) consists of five groups of regular spiking 
(RS) neurons1, implemented using the phenomenological model of 
Izhikevich (2003) and integrated by the Euler method with a time-
step of 1 ms. Our implementation was written in C and extends 
that of Izhikevich (2007).

Each neuron is modeled by two difference equations

 ′ = + + − +v v v u I0 04 5 1402.  (1)

 
′ = −u a bv u( )  (2)

where v is the membrane potential of a neuron and u is an abstract 
membrane recovery variable. Neurons are reset after spiking, 
according to:
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I represents the total current input to each neuron; parameters 
a, b, c, and d define the type of neuron modeled. In our model, all 
neurons are RS having parameters a = 0.02, b = 0.2, c = −65, and 
d = 8 (Izhikevich, 2003).

The input I is computed as the linear summation of all active 
afferent synaptic weights (v) in the model network, plus a term 
(j) which represents external synaptic input:

 
I t tj ij spike

i

N

= −( ) +∑v d j  (4)

Here, v
ij
 is the strength of the synapse connecting neuron i to 

neuron j, d is the Dirac delta function, and t
spike

 is the time of the 
last spike of neuron i. The external input term (j) is calculated for 
each j as a random current drawn from the uniform distribution

 j jU ( . , . )− ∈6 5 6 5 mA ( )  (5)

which is sufficient to causes neurons to fire irregular spike trains 
at 1–5 Hz without external stimulation (Softky and Koch, 1993).

Spikes are delivered to their post-synaptic targets after axonal 
conductance delay (L), uniformly distributed for all pairs of con-
nected neurons in the range:

 L U L∼ ∈( , ) ( )1 10  ms Z  (6)

The network architecture and associated inter-cluster connectiv-
ity patterns are depicted in Figure 1. There is no intra-cluster con-
nectivity. For all projections types, post-synaptic neurons receive 

Figure 1 | The model network is separated into short and long-latency 
channels. Input to the long-latency channel is delayed by 100 ms with respect to 
stimulus onset, representing upstream transmission delays to cortex. Each 
sub-group consists of 100 neurons (except PFC which contains 1000), with all 
neurons receiving input from 100 of their pre-synaptic afferents. Connectivity 
patterns are as depicted in I (sparse), II (parallel), and III (all-to-all). In the sparse 

PFC–STR pathway, afferent to each STR neuron are selected randomly from PFC 
modulation of STDP in both PFC → STR and SEN → INT pathways (filled circles), 
as well as post-synaptic facilitation of STR neurons (filled square) is enabled by 
DA release. DA output therefore controls, and is controlled by, a precisely timed 
balance of excitatory and inhibitory influences on DA neurons, resulting from DA 
modulation of synaptic efficacy and neuronal excitability at STR and INT neurons.

1We omit detailed inter-group heterogeneity of neuron types (e.g., Medium spiny 
neurons in STR are modeled in the same way as pyramidal neurons in PFC) as 
this provides a significant reduction in computational overhead. Future work will 
address the issue of heterogeneity more fully (see Section 4.6).
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The SEN neurons respond to stimuli via a transient increase in 
the external current input to each affected neuron. Specifically, over 
the stimulation period of 10 ms, j is increased by a constant 0.2 mA:

 j j→ + < < +( )0 2 10. mA for mst t tstim stim  (7)

which ensures that SEN neurons responding to a stimulus display a 
brief increase in their firing rate, but do not exhibit any particular 
spike ordering.

By contrast, PFC neurons respond to stimuli by exhibiting 
stimulus-specific spatio-temporal (polychronous) spike patterns, 
but without any increase in firing rate (see Figure 2). We pre-
calculate a separate n × m matrix (C) of instantaneous currents 
for each stimulus (US/CS), where n = 500 (half the neurons in 
PFC) and m = 1000 (duration in ms of the PFC representation). 
During presentation of a stimulus, the external synaptic input j 
to the affected neurons is replaced by the input specified by the 
corresponding matrix C. Entries for each matrix are drawn from 
the same distribution as the external input (equation 5), ensuring 
that firing rates remain unchanged. We recognize that cortical 
neurons often fire between 5 and 20 Hz in task-related contexts 
(Funahashi et al., 1989), however we chose to keep firing rate 
constant in our model in order to ensure that the influence of 
PFC responses on DA neurons are due to spike-timing patterns 
rather than firing rate changes (see Section 4.3). The impact of 
PFC firing rate transitions on DA responses will be investigated 
in future work; see Section 4.6.

2.3 synaptIc plastIcIty
Synaptic plasticity is modeled as in Izhikevich (2007) in which 
STDP modifies a variable (g) that affects the derivative of synap-
tic strength. The variable g therefore implements an “eligibility 
trace” (Sutton and Barto, 1998) at each synapse, enabling synaptic 

exactly 100 randomly selected afferent connections from neurons in 
their associated pre-synaptic cluster. An exception to this uniform 
selection rule are connections in the SEN → INT pathway, which 
are separated into two distinct groups. Here, pre-synaptic neurons 
are selected randomly from either US- or CS-specific SEN neurons 
exclusively, such that functional anatomy in SEN is reflected in INT. 
In the PFC → STR pathway, where there are 10 times as many pre-
synaptic neurons as post-synaptic targets, the uniform connectivity 
rule results in each PFC neuron having just 10 efferents to the SEN 
neurons´ 100  afferents, reflecting sparse connectivity.

Prefrontal cortex and SEN neurons project axons to plastic 
(modifiable) synapses at STR and INT neurons respectively, with 
strengths limited to within the range v = [0, 10] mA (see Section 
2.3). All other synapses in the network are non-plastic (INT → DA, 
v = 0.6 mA; STR → DA, v = 1 mA). We assume that synaptic 
dynamics do not play a role in the proposed mechanism and model 
pre-synaptic spikes as inducing instantaneous potentials at their 
post-synaptic targets (after axonal conductance delay).

2.2 stIMulatIon
Stimuli are presented as distinct patterns of current input to half 
the neurons in each of the two input groups, SEN and PFC, at 
times t

sim
 and t

sim
 + 0.1 s, respectively. t

sim
 is the time at which a stim-

ulus (either US or CS) impinges at the periphery and t
sim

 + 0.1 s is 
the time at which the associated neural signal arrives at the PFC 
(i.e., after upstream transmission delay). Stimulation of SEN neu-
rons occurs at stimulus onset and is transient (10 ms). Stimulus-
specific activation of PFC neurons is delayed by 100 ms to simulate 
a longer latency in transmission to the cortex as compared to the 
short-latency (INT) pathway. PFC responses are sustained for 
1 s representing self-sustained, recurrent excitation in the PFC 
rather than a continuation of the external stimulus (see below).
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Figure 2 | Prefrontal cortex activity patterns. Stimulus-specific activities are 
shown by the shaded regions. (A) The same CS–US pair is presented at t = 1 s 
and t = 4 s. After a latency of 100 ms, injection of random currents into 
CS-associated PFC neurons (red) is replaced with CS-specific input. After a 
500-ms ISI, US-specific input replaces random currents in US-associated neurons 
(blue). Both stimuli last for 1 s, after which random currents are reinstated. 
Stimulus-specific patterns are derived from the same probability distribution as 
the random currents (see Section 2) evoking spiking activity patterns which are 
statistically indistinguishable from background activity. (B) The superimposition of 

two US responses highlights how stimulus-specific activity is near-identical over 
repeated presentations. Here, a subset of the two CS–US responses in (A) are 
aligned with respect to CS onset and are displayed as dots (spikes are coincident) 
and open circles (spikes appear in only one response). The prevalence of dots 
reveals how activity patterns are near-identical only during the 1 s stimulus period. 
Also, because any individual neuron is equally likely to fire outside this period as 
within it (yellow dots), such activity cannot provide the temporal substrate for 
stimulus-specific reinforcement learning. In contrast, a polychronous group 
(green dots) occurs only at a specific time during stimulation.
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synaptic plasticity to occur at a slow rate at all times. Whenever 
DA neurons are phasically activated the increased firing of these 
neurons causes the value of a to transiently increase to between 
2 and 3 μM.

2.5 dopaMIne Modulated post-synaptIc facIlItatIon
The DA–PSF (post-synaptic facilitation) mechanism enables DA 
responses to modulate the excitability of STR neurons on a mil-
lisecond timescale. Specifically, a modulates the parameter b in 
equation (2), which governs the rate of increase of the membrane 
potential. The modulation takes place according to:

 b = +0 01 0 192. .a  (11)

Under background DA activity, b remains at just under 0.2 which 
facilitates low-frequency spiking of STR neurons. However, imme-
diately following phasic DA activation the value of b can rise to 
over 0.25, resulting in a transient burst in activity in STR neu-
rons. Figure 3 (top) shows the effect of DA–PSF on STR neurons 
immediately following an unexpected reward (US), illustrating this 
mechanism.

3 results
We describe three experiments. Each experiment involves two 
stimuli: a CS and an US. Each stimulus is presented to the net-
work as a distinct pattern of current applied to 50% of the neu-
rons in each of SEN and PFC (Figure 2). Stimulus-related activity 
in SEN neurons is evoked by a transient (10 ms) increase in the 
background current, j, input to each affected neuron (Section 
2.1). This causes an immediate increase in spike frequency, 
without inducing any specific spike ordering. In PFC neurons, 
stimuli are represented by replacing the background input with 
a stimulus-specific, pre-calculated pattern of currents (Section 
2.2), for a sustained period of 1 s. This evokes a spatio-temporally 
extended pattern of activity which is near-identical over succes-
sive presentations of a given stimulus (Figure 2). Importantly, 
these pre-calculated patterns are drawn from the same distribu-
tion as j and are therefore statistically indistinguishable from 
background activity or concurrently active representations of 
other stimuli.

3.1 shIft In response
The first experiment (Figures 4 and 5) reproduces the shift in 
DA response from a US to an earlier CS (Ljungberg et al., 1992; 
Schultz, 1998; Pan et al., 2005). We recorded network activity 
over 100 conditioning trials, presented at 10 s intervals. Each 
trial begins with a presentation of the CS, followed 500 ms later 
by the US. Initially, we associate the US with intrinsic reward by 
setting all synapses projecting from US-specific SEN neurons to 
their maximum values, such that presentation of the US results 
in a strong phasic response in the short-latency pathway, from 
both INT and DA neurons (c.f. Figure 5A). All other modifi-
able  synapses in the network are initialized to their minimum 
values.

Typical responses to stimuli via the long-latency pathway are 
shown in Figure 4. As expected, in the first trial (Figure 4A) the 
network shows no response to the CS in either DA or STR neu-
rons, but produces a strong phasic DA response to the US. A small 

plasticity to be modulated by distal DA rewards (see below and 
Izhikevich, 2007) for a detailed explanation of this issue). Using 
an earliest-neighbor method, the firing of post-synaptic neuron j 
at time t increases g by

 

′ = + = −+ +

+

+

γ
τij ij t

iA e
t t

tg
∆ ∆,

*

 (8)

where ti
*  is the time of arrival (after axonal conductance delay) 

of the last spike of pre-synaptic neuron i. Similarly, when a spike 
arrives from pre-synaptic neuron i (again, after conductance delay) 
at time t the value of g is reduced by

 
′ = − =

−− −

−

−

γ γij ij t
jA e

t t
t∆ ∆,

*

t
 (9)

where t j
*  is the time of last spike of post-synaptic neuron j. The vari-

able g otherwise decays exponentially with time constants t
g
 = 0.2 s 

(PFC) and t
g
 = 1 s (SEN). The parameters A+ = 0.1, A− = 0.15 

(dimensionless), and t± = 0.02 s determine the relative size of the 
STDP window for both causal and anti-causal firings.

2.4 dopaMIne ModulatIon of spIke-tIMIng dependent synaptIc 
plastIcIty
Dopaminergic modulation of synaptic plasticity (DA–STDP) is 
implemented in the calculation of synaptic strength (v) from its 
derivative

 
v
a g=

2

5  (10)

where a corresponds to the level of extracellular DA (in μM) and 
g is the synaptic eligibility trace (Izhikevich, 2007). The value of a 
is step-increased by 0.05 μM for each spike of a DA neuron while 
otherwise diffusing with exponential time constant t

a
 = 0.1 s. A 

baseline DA concentration of between 0.5 and 1 μM is therefore 
maintained by the background activity of DA neurons, allowing 
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Figure 3 | Maintenance of response to an unpredictable uS. After 
training the response of the network to the presentation of a US is not 
suppressed if the preceding CS is omitted. The DA response immediately 
recovers to its original (pre-training) strength.

Chorley and Seth Spiking model of reward prediction

Frontiers in Computational Neuroscience www.frontiersin.org May 2011 | Volume 5 | Article 21 | 4

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


3.2 response to unexpected rewards
We next examined the behavior of the conditioned network 
obtained previously (i.e., after 100 trials involving US/CS pair-
ing) to unexpected US presentations (Figure 3). Specifically, we 
remove the CS from the stimulus pair and present only the US in 
the 101st trial.

As just described, phasic responses of midbrain DA neurons will 
shift from US to CS when these stimuli are reliably paired. However, 
a response to the US will immediately return if the preceding CS 
is subsequently omitted (Ljungberg et al., 1992). This implies that 
DA responses do not become insensitive to US-signaled rewards 
in general. Rather, DA neurons remain sensitive to unpredictable 
rewards and utilize temporal information from preceding stimuli 
to actively suppress those which occur predictably. In agreement 
with in vivo observations (Ljungberg et al., 1992), Figure 3 shows 
a clear reappearance of the DA response. Reappearance of the DA 
response occurs in our model because, in the absence of a preceding 
CS, there is no stimulus-evoked activity in the PFC and therefore 
no anticipatory activation of inhibitory (STR) neurons prior to 
US onset (Figure 3, top).

3.3 depressIon by reward oMIssIon
We next show how the model reproduces the below-baseline dip in 
DA activity which occurs at the time of a predicted reward, when-
ever that reward is unexpectedly omitted (Ljungberg et al., 1991). 
As before, we start with the fully conditioned network (Section 3.1). 
We now omit the US and present only the CS in the 101st trial; 
we repeat this procedure 10 times to allow ensemble averaging of 
DA responses.

Figure 6A shows the average (suppressed) DA response in the 
final conditioning trial (Section 3.1; trial 100) when both CS and US 
are presented in sequence for the last time. Here, the DA response 
to the US has clearly been suppressed (compare with Figure 4). 
In contrast, Figure 6B shows the DA response to the subsequent 
CS-only trials. A dip in DA response is clearly identifiable (inset). 

increase in STR spike frequency is induced immediately following 
presentation of the US. This increase is generated by the DA–PSF 
mechanism, whereby US-induced increases in DA concentration 
increase the excitability of STR neurons. This causes them to fire 
post-synaptically with respect to PFC neurons, just after presen-
tation of the US, rendering their afferent synapses available for 
potentiation by DA–STDP.

Figure 4B shows the response of the network half-way through 
training. A DA response to the US is still easily identifiable, however, 
a response to the CS is now also established in the short-latency 
channel. Consistent with Pan et al. (2005), the simultaneous pres-
ence of separate DA responses to both CS and US excludes the 
possibility of a single response moving in a retrograde manner 
from US to CS over the course of the training period. Figure 4B 
also shows a response in STR neurons (upper panel, long-latency 
pathway) beginning just prior to US onset, eliciting a small inhibi-
tory effect on DA neurons, and leading to a weakened DA response 
to the US (lower panel). The precise timing of this STR activity is 
ensured by sustained CS-specific activity in PFC neurons, com-
bined with DA–PSF at STR neurons and DA–STDP at PFC → STR 
synapses.

After 100 trials the DA response has entirely shifted from the 
US to the CS (Figure 4C). Modification of synaptic efficacy in 
the short-latency channel by DA–STDP has led to a strong phasic 
response to the CS in nearly all DA neurons. Figure 5 shows how 
this is facilitated by a corresponding increase in CS-specific INT 
activity. Before conditioning, INT neurons respond only to the US 
(Figure 5A) whereas after conditioning a response to the CS has 
also developed (Figure 5B). Significantly, INT neurons maintain a 
response to the US. However, this no longer leads to DA activation 
because synaptic plasticity in the long-latency channel has also 
led to a strong phasic response in STR neurons, just prior to the 
US. Here the precisely timed wave of inhibition from STR entirely 
cancels INT activity, to result in the suppression of the previously 
observed US-specific DA response.
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Figure 4 | The shift in DA response from uS to CS (bottom) relies upon a 
precisely timed inhibitory signal from STr neurons (top). (A) Before training 
DA neurons show a strong phasic response to the US only. This results in DA 
release which activates receptors on STR neurons, increasing their excitability 
and inducing a transient rise in their spontaneous activity immediately after the 
US. (B) After 50 trials DA neurons have begun to show a phasic response the 

CS, while some STR neurons now display well-timed activity immediately prior 
to the onset of the US, leading to a slight suppression of the response. (C) After 
100 trials DA neurons show a strong phasic response to the CS, but not to the 
US. While excitatory afferents to DA neurons have been conditioned to produce 
a phasic response to the CS, the STR neurons now fire at exactly the time 
required to entirely suppress any DA response to the US.
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3.4 sensItIvIty and robustness
To examine robustness, we investigated the model’s performance 
under several perturbations. In each case we measure the mean 
number of DA spikes to occur in the 50 ms following either US or 
CS, over 50 runs of the original experiment described in Section 
3.1. DA responses are expressed as a percentage of the maximum 
increase/decrease in mean spike count with respect to the original 
experiment.

3.4.1 Behavior over a range of ISIs
We first examined performance under different inter-stimulus 
intervals (ISI) separating US and CS presentations, over the entire 
range covered by the PFC representation (every 100 ms in the range 
[100, 900] ms, Figure 7). Consistent with the original experiment 
(Section 3.1), in each case DA responses to the US are initially 
strong, and responses to the CS are initially weak. As learning pro-
ceeds responses to the CS gradually increase, while responses to 

Importantly, the model captures both the negative (below baseline) 
response in this situation, as well as the precise timing of that signal. 
To assess the statistical significance of this dip a further 100 repeti-
tions of the dip-inducing 101st trial were performed on a single 
fully conditioned network. This procedure yielded an average of 
6.28 (s = 2.65) DA spikes in the 50 ms preceding the US (baseline) 
compared to just 0.52 (s = 0.70) in the 50 ms immediate following 
it; that is, over 2 SD below baseline. The DA response dip occurs in 
our model because STR neurons continue to exhibit precisely timed 
responses to the CS (Figure 6, top), however the resulting inhibi-
tion does not now encounter any corresponding excitatory signal 
from INT neurons. The below-baseline dip can be interpreted as a 
negative prediction-error with respect to the expected US (Schultz, 
1998). We note here that repetition of CS-only trials was not inves-
tigated in respect of CS response extinction, as we consider that 
process to involve additional, active, mechanisms (see Pan et al., 
2008 for a detailed model of the extinction process).
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Figure 6 | Peri-event histograms reveal the dip in DA activity which 
occurs in response to omitted reward after training. (A) With the US still 
present, the average neuronal response to the final 10 training presentations of 
the CS–US pairing demonstrates an STR-mediated suppression of DA activity 

to near baseline (c.f. Figure 4). (B) Presentation of the CS alone in 10 trials 
immediately after training elicits the same STR response as in previous trials, 
but this now leads to a below-baseline suppression of DA activity at precisely 
the time of the expected (but omitted) US.
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We note that the manipulation of inter-trial ISI has no effect on 
DA responses to the CS (i.e., these responses develop as usual). 
This is expected, since CS responses in the short-latency pathway 
occur immediately after stimulation and are therefore independ-
ent of the ISI.

3.4.3 PFC specificity
Finally, we examine sensitivity of the model to the specificity of PFC 
responses to sensory stimuli. At each time-step during stimulation, 
input to a random subset of stimulus-affected neurons in PFC is 
driven by the background current j instead of the stimulus-specific 
current pattern C. This has the effect of disrupting spike timing 
within PFC representations (Figure 9) and leads to significant deg-
radation of the representation beyond 10% input noise.

Figure 8B shows that model performance degrades gracefully 
as spike-timing disruption increases. PFC noise was incremented 
in 1% steps over the range [0%, 10%]. At 5%, DA responses to the 
US are suppressed by ≈75% as compared to the original experi-
ment, while at above 10% CS and US responses become almost 
indistinguishable. As before, responses to the CS are unaffected as 
US suppression degrades. We note (see Figure 9) that 10% noise in 
PFC input does induce significant degradation of stimulus-specific 
activity patterns.

4 dIscussIon
We have described a spiking neural network model of DA activ-
ity in which phasic responses are adaptively transferred from pri-
mary rewards to earlier, reward-predicting stimuli. The model 
accounts for a broad range of features including; (i) the shift of 
the DA response from a US to an earlier predictive CS (Ljungberg 
et al., 1992; Schultz, 1998; Pan et al., 2005), (ii) the maintenance 
of a response to unpredicted rewards (Ljungberg et al., 1992), and 
(iii) the below-baseline suppression of background DA activity in 
response to omitted rewards (Ljungberg et al., 1991).

Our model combines a dual-path architecture (Brown 
et al., 1999; Tan and Bullock, 2008) with DA-modulated STDP 
(Izhikevich, 2007) to provide an integrated account of the neural 

the US gradually decrease, asymptoting at 100% of the increase/
decrease observed in the original experiment. These observations 
show that the model is robust across multiple ISIs.

3.4.2 Inter-trial variation in ISI
We next examine model performance under inter-trial variation 
in ISI. For each CS + US presentation, ISI fluctuations were tested 
within a range of 500 ± [10, 100] ms. DA responses to the US 
degrade gracefully as inter-trial ISI variation increases (Figure 8A). 
With variation restricted to the narrower range (±10 ms) DA 
responses are eventually almost fully suppressed (>85%), as in the 
original experiment (see Figure 4. At higher levels, relative sup-
pression decreases and CS/US responses become indistinguishable. 
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around the mean ISI (m = 500 ms) are increased, suppression of the US response 
undergoes graceful degradation (A). Similarly, performance degrades as the level 
of noise applied to PFC representations is increased (B). Development of 
associated CS responses are unaffected by either ISI fluctuation or PFC jitter.
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constrained to respond to some particular set of task-related stim-
uli. Our model incorporates DA–STDP for just the same purpose. 
However, Izhikevich’s model does not set out to capture the broad 
range of DA response features exhibited by our model. Unlike our 
model, Izhikevich’s model is not able to reproduce either the below-
baseline dip in DA activity observed when an expected reward is 
omitted (Figure 6), or the reappearance of a DA response to a 
US when a predictive CS is omitted (Figure 3). This is because 
Izhikevich’s model does not incorporate any form of persistent 
“working memory” to enable active suppression of DA responses. 
Instead, the model relies upon spike-timing effects induced by the 
consecutive presentation of CS and US which have the effect of 
suppressing DA responses to any US, not just a US predicted by a 
preceding CS.

In short, by integrating the selective DA–STDP mechanism of 
Izhikevich (2007) into a dual-path architecture similar to Brown 
et al. (1999) and Tan and Bullock (2008), our model succeeds in 
reproducing a full range of reward-related DA responses, under 
general conditions in which neurons in the network may be con-
currently activated outside of their specific task-context.

4.2 network archItecture
Our model is consistent with several features of mammalian 
cortico-basal anatomy and physiology. Consistent with the long-
latency pathway, anatomical studies suggest that cortical signals 
arrive at DA neurons in the substantia nigra via medium spiny stri-
atal neurons (Voorn et al., 2004). Also, striatal neurons display pre-
cisely timed phasic above baseline firing during the waiting period 
in conditioning tasks (Schultz, 1992). Here we model a subset of 
the cortico-striatal projection, in which PFC neurons converge on 
striatal neurons with a ratio of 10:1, consistent with experimental 
data (Zheng and Wilson, 2002). Consistent with the short-latency 
pathway, a variety of fast subcortical pathways connect peripheral 
sensory input to DA neurons. For example, visual input can arrive at 
DA neurons via the superior colliculus with a latency substantially 
shorter than the corresponding cortical pathway (McHaffie et al., 
2005). In the model presented here, these asymmetric latencies 
ensure that CS cannot inhibit themselves.

computations underpinning adaptive DA responses to stimulus-
reward contingencies, in the presence of uncorrelated background 
activity in participating neurons. It predicts specific roles, in this 
process, for both stimulus-specific temporally extended cortical 
activity (Goldman-Rakic, 1996; Fuster, 2009) and DA modula-
tion of neuronal excitability (DA–PSF) in striatal neurons efferent 
to PFC.

4.1 coMparIson wIth prevIous Models
As in the present model, the dual-path models of Brown et al. (1999) 
and Tan and Bullock (2008) show how prediction-error signals can 
arise from a mismatch between excitatory and inhibitory pathways. 
While these models account for a similar range of phenomena as 
does the present model, they are not designed to do so in the presence 
of unrelated background activity of stimulus-affected neurons. In 
these previous models, incoming stimuli give rise to specific activity 
patterns in striosomal dendrites, however there is no mechanism by 
which unrelated activity in afferent neurons could be treated dif-
ferently (i.e., “ignored”) by reward-related plasticity processes. By 
contrast, our model locates stimulus-specific activity in PFC (affer-
ent to striatum) and incorporates a synaptic tagging mechanism 
in the plasticity rule, allowing selective synaptic modulation in the 
presence of irrelevant background (PFC) activity, via DA–STDP 
(see below). This aspect of our model is important inasmuch as it 
addresses the so-called “credit assignment” problem (Sutton and 
Barto, 1998), i.e., the problem of distinguishing between neuronal 
activity involved in generating a particular behavior or eliciting a 
particular reward, and other, unrelated, activity. In the context of 
reinforcement learning, credit assignment is essential to ensure 
that reward-relevant synapses can be identified, and that reward-
unrelated activity of stimulus-affected neurons does not disrupt 
predictive DA responses.

The model of Izhikevich (2007) was designed to address pre-
cisely this credit assignment problem. In this previous model, 
prediction-error signals arise spontaneously in a network under-
going DA–STDP. The DA–STDP mechanism actively selects against 
irrelevant, background neural activity, allowing stimulus-specific 
responses to develop within a network that is neither quiet, nor 
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that suggested by Lustig et al. (2005). Moreover, the number of 
potentially coexisting polychronous groups typically far exceeds 
the number of neurons (Izhikevich, 2006), implying that our 
model has a very large memory capacity. Polychrony provides a 
distinctive framework for considering spike timing (Izhikevich, 
2007). As compared to synfire chains (Abeles, 1982), polychrony 
emphasizes time-locked but synchronous activity, and unlike 
liquid state machines (Maass et al., 2002) polychronous groups 
exhibit sensitivity to previous inputs.

Prefrontal cortex neurons in our model fire in the range 
1–5 Hz independently of whether stimuli are present or absent. 
Experimental observations, however, show that stimulus-related 
PFC activity is often in the range 5–20 Hz (Funahashi et al., 1989). 
We chose to maintain a constant PFC firing rate throughout the 
experiment in order to ensure that the influence of PFC on DA 
responses must be due to precise spike-timing patterns and cannot 
be explained by firing rate transitions at stimulus onset or offset, 
therefore validating the interpretation of our model in terms of 
polychronous groups. Future work will address firing rate transi-
tions in explicit models of recurrent PFC activity (Szatmary and 
Izhikevich, 2010) in the context of DA-modulated plasticity.

4.4 dopaMInergIc neuroModulatIon
Dopamine modulation of both STDP (Fino et al., 2005; Pawlak 
and Kerr, 2008; Shen et al., 2008; Di Filippo et al., 2009) and neu-
ronal excitability (Nicola et al., 2000; Williams and Castner, 2006) 
have been reported for cortico-striatal projections. Both types of 
modulation are incorporated in our model.

4.4.1 Dopamine modulation of spike-timing dependent synaptic 
plasticity
Spike-timing dependent synaptic plasticity can take many forms, 
including both Hebbian (potentiation when post-synaptic activ-
ity follows pre-synaptic activity) and anti-Hebbian (the converse; 
Dan and Poo, 2004; Fino et al., 2005; Shen et al., 2008). We chose 
to implement the Hebbian form of DA–STDP, which has the 
network-level effect of increasing (decreasing) synaptic strengths 
under high (low) DA concentrations (Izhikevich, 2007). Because 
low DA concentrations tend to occur during random background 
activity, whereas high DA concentrations tend to occur immediately 
following stimulation, this mechanism results in weak long-term-
depression (LTD) over prolonged periods of low (background) DA 
activation and strong long-term-potentiation (LTP) during brief 
periods of high (stimulus-evoked) DA activation, consistent with 
in vitro studies (Shen et al., 2008).

Dopamine modulation of spike-timing dependent synaptic 
plasticity depends on “eligibility traces,” implemented at each 
synapse as a simulated enzyme assumed to be important to plas-
ticity (Izhikevich, 2007)2. Pre- and post-synaptic activity induces 
discrete changes in the concentration of this enzyme, which other-
wise decays exponentially. DA modulates the extent to which this 
enzyme induces late LTP/LTD, thereby enabling DA-modulated 
plasticity to occur at synapses whose pre/post activity occur in the 
few ms prior to reward.

There are multiple alternatives for neural instantiation of the 
short-latency pathway in our model via different subcortical nuclei; 
moreover, CS and US signals may flow through different pathways. 
Because conditioned responses involve plasticity, the correspond-
ing short-latency pathways should undergo DA–STDP. In contrast, 
signals reflecting intrinsic primary rewards (US) need not involve 
plasticity mechanisms. Although our model is modality independ-
ent, candidate pathways may involve superior colliculus for US 
signals (Redgrave and Gurney, 2006), and STN for CS signals. In 
the latter case, STN may be activated directly as part of the so-called 
“hyperdirect” pathway (Nambu et al., 2002), or indirectly, via a 
process of disinhibition involving globus pallidus (external) and 
striatum (Albin et al., 1989).

Our model is consistent with suggestions that competition 
between excitatory and inhibitory pathways play a significant role in 
basal ganglia operation (Redgrave and Gurney, 2006), specifically in 
the generation of DA responses (Brown et al., 1999; Pan et al., 2008; 
Tan and Bullock, 2008), where their functional significance depends 
on their latency characteristics. Activity in the long-latency inhibi-
tory channel that suppresses short-latency excitatory inputs to DA 
neurons can be interpreted as predictive; unsuppressed activity can 
be considered as a prediction-error. This interpretation is consistent 
with views of cortical dynamics suggesting that prediction-errors 
flow in a feedforward (bottom-up) direction, while predictions flow 
in a feedback (top-down) direction (Friston, 2010).

4.3 pfc actIvIty
In our model, PFC neurons exhibit stimulus-specific temporally 
extended patterns of activity, enabling inhibitory projections in the 
striatum (STR) to suppress DA activity at precise times following 
stimulus offset. This implementation of PFC activity reflects the 
general role of PFC in working memory (Goldman-Rakic, 1996; 
Fuster, 2009), and is consistent with the existence of recurring, 
time-locked cortical spike patterns such as cell assemblies (Hebb, 
1949; Harris, 2005), cognits (Fuster, 2009), synfire chains (Abeles, 
1982), and polychronous groups (Izhikevich, 2006).

The framework of polychrony, which refers to time-locked but 
not synchronous activity (Izhikevich, 2006), is most appropriate 
for understanding the dynamics of our model. At any time post-
stimulus (within the 1 s duration of stimulus-evoked activity), 
a specific and repeatable group of PFC neurons will have just 
fired, as determined by the corresponding matrix C (Section 2.2). 
These neurons project convergently and with varying delays to 
STR neurons. There is therefore a high probability that every 
such (polychronous) group will project to at least one specific 
target in STR such that incoming spikes arrive at the same time. 
By increasing the firing rate of STR targets at just the time of 
DA release, the DA–PSF mechanism ensures that only those syn-
apses efferent to polychronous groups which fire immediately 
before US presentation are made available for potentiation via 
DA–STDP. In contrast to previous models (Brown et al., 1999; 
Tan and Bullock, 2008) background activity will not affect the 
specificity of potentiation because such activity will not reli-
ably participate in polychronous grouping. The framework of 
polychrony therefore allows for selective strengthening of spe-
cific cortico-striatal synapses (in this case via DA–STDP), fur-
nishing a mechanism for coincidence detection comparable to 

2This enzyme could reflect autophosphorylation of CaMK-II, oxidation of PKC or 
PKA, or some other relatively slow process (Izhikevich, 2007).
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Modulation of neuronal excitability by DA–PSF enables DA–
STDP to influence pathways that do not project directly onto DA 
neurons (i.e., the PFC → STR pathway). By modulating the excit-
ability of post-synaptic neurons, this mechanism influences the 
relative firing rates of pre- and post-synaptic neurons, which in 
turn affects STDP. This mechanism ensures that DA responses to 
separate stimuli do not interfere at DA neurons, allowing multiple 
stimulus-response mappings to be maintained concurrently in the 
network (e.g., the CS response is maintained concurrently with 
the US response).

4.5 predIctIons
Our model generates a number of predictions regarding DA 
responses in time-delayed reinforcement learning situations.

First, timely disruption of the phasic DA signal should impede 
learning of novel CS–US contingencies while having little effect on 
previously learned responses. This prediction arises because, in our 
model, phasic DA responses to a CS are not required for expression 
of previously learned responses, however phasic responses to the US 
are necessary for the induction of cortico-striatal plasticity underly-
ing the acquisition of conditioned responses. To our knowledge, 
current evidence does not directly address this prediction, though 
it is consistent. Pharmacological disruption of DA receptor func-
tion in striatum does modulate cortico-striatal STDP (e.g., Fino 
et al., 2005; Shen et al., 2008 and see Di Filippo et al., 2009 for a 
review), yet it is still unclear exactly how phasic and tonic DA release 
differentially interact with other neurotransmitters to modulate 
plasticity in this pathway.

A second prediction, arising from the DA–PSF mechanism, 
is that during early conditioning trials a small increase in stri-
atal activity should occur immediately after presentation of the 
US. Also, as learning progresses, this response should increase 
in strength and undergo a continuous retrograde shift (in vir-
tue of DA–STDP) settling just prior to the US. This prediction 
furnishes a very specific test of the validity of our model. To 
our knowledge, existing studies have investigated striatal activ-
ity during delayed response tasks (Schultz, 1992, 1998) and 
have recorded the development of these signals during learning 
(Schultz, 2003). However, these recordings are often sparse (i.e., 
of only a few neurons, possibly masking ensemble activities) 
and do not report with sufficient temporal precision to directly 
evaluate our predictions.

Finally, we predict that disruption of stimulus-evoked pre-
frontal cortical activity [e.g., either pharmacologically or via 
transcranial magnetic stimulation (TMS)] during the delay 
period will disrupt the subsequent suppression of DA responses 
to the US. Current evidence shows that TMS to PFC can impede 
behavioral performance in delayed response tasks (Pascual-Leone 
and Hallett, 1994). To our knowledge, influence on DA responses 
in such situations have not been assessed. Our model would 
predict, in such cases, that previously suppressed DA responses 
would reappear, following PFC disruption. More generally, the 
dependence of our model on polychronous PFC activity raises the 
possibility that DA responses could be affected by fine-grained 
manipulation of PFC firing patterns, for example by micro-
stimulation of PFC neurons.

In our model, DA–STDP enables modification of SEN → INT 
synapses in the short-latency channel. Specifically, CS-induced 
(pre-synaptic) activity at SEN neurons is coupled with DA release 
at the time of the US (via eligibility traces) in the presence of 
stochastic, low-frequency (post-synaptic) INT activity, to induce 
plasticity in all synapses efferent to CS-specific SEN neurons. By 
this mechanism, repeated CS–US presentations lead to CS-specific 
responses in both INT and DA neurons (Ljungberg et al., 1992). 
In the PFC → STR pathway, DA–STDP is coupled with DA–PSF 
to induce plasticity (see below).

As mentioned, multiple forms of plasticity have been observed in 
the cortico-basal loop, especially in the prefrontal-striatal pathway 
(Dan and Poo, 2004; Fino et al., 2005; Shen et al., 2008). While in 
the present work we focus on the common Hebbian form, future 
work will address the interaction of alternative forms with DA 
modulation at the various timescales at which it has been shown 
to operate (Schultz, 2007).

4.4.2 Dopamine modulated post-synaptic facilitation
Modulation of neuronal excitability has been demonstrated in a 
variety of studies both in vitro and in vivo (see Nicola et al., 2000; 
Williams and Castner, 2006 for reviews). DA has a facilitatory effect 
on some but not all striatal neurons, specifically those receiving 
highly convergent synaptic input (Gonon, 1997), suggesting a proc-
ess of DA–PSF. However as with DA–STDP, the precise mecha-
nisms underpinning the observed phenomenology are not well 
understood. We implement DA–PSF here with a simple mechanism 
ensuring that DA up-regulates the excitability of STR neurons. 
As described in Section 2.5, this is accomplished by allowing DA 
to modulate the abstract parameter b, in the neuron model of 
Izhikevich (2007).

In our model, the modulation of neuronal excitability provides 
a temporal reference, contextualizing the effects of DA–STDP. 
That is, DA–PSF increases (post-synaptic) STR firing immedi-
ately after reward, therefore increasing the number synapses in 
the PFC → STR pathway that may be potentiated by DA–STDP. 
Because DA–STDP selects against non-specific firing in the PFC 
the combined DA–PSF/STDP mechanism allows stimulus-specific 
sub-groups of cortico-striatal synapses to be selectively reinforced 
in response to DA rewards.

In more detail, the mechanism operates as follows. When a US 
arrives the DA–PSF mechanism causes a phasic increase in STR 
activation. When reliably paired with a CS, the sub-population of 
(PFC → STR) synapses targeted by DA–STDP will be specific to 
that CS. Non-CS affected neurons continue to fire randomly with 
respect to increased STR activity and are therefore not targeted by 
DA–STDP. Over several trials, the STR response undergoes a retro-
grade shift, from just after the US, to just before it (Figure 4). The 
corresponding wave of inhibition accounts for the suppression of 
the DA response to the US. Importantly, STR activity in late trials 
does not occur in response to any US-induced DA–PSF (the US 
no longer elicits a DA response) but instead responds to specific 
CS-induced PFC activity. This process is inherently self-limiting; 
as the DA response extinguishes, both DA–PSF and DA–STDP 
shut off, STR activity ceases to regress, and suppression of the DA 
response is maintained at precisely the expected time of the US.
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4.6 future work
The computational model described in this paper has provided an 
integrated account of cortico-basal neural computations account-
ing for a broad range of DA responses in reinforcement learning 
paradigms.

Our model has focused on combining competitive excitatory 
and inhibitory pathways with mechanisms of synaptic plasticity 
(DA–STDP) and post-synaptic facilitation (DA–PSF). Its results 
encourage a more detailed investigation of the biophysical proper-
ties of these mechanisms. For example Humphries (2009) describe 
a more accurate reduced model of DA-modulated striatal medium 
spiny neuron (MSNs) function which could be integrated into our 
own framework.
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However, in the present formulation we directly specified this activ-
ity using pre-computed activity patterns drawn from the same sta-
tistical distribution as random background activity. In future work, 
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