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Compared with healthy older adults, patients with Alzheimer’s disease show decreased

alpha and beta power as well as increased delta and theta power during resting state

electroencephalography (rsEEG). Findings for mild cognitive impairment (MCI), a stage

of increased risk of conversion to dementia, are less conclusive. Cognitive status of

213 non-demented high-agers (mean age, 82.5 years) was classified according to a

neuropsychological screening and a cognitive test battery. RsEEG was measured with

eyes closed and open, and absolute power in delta, theta, alpha, and beta bands were

calculated for nine regions. Results indicate no rsEEG power differences between healthy

individuals and those with MCI. There were also no differences present between groups in

EEG reactivity, the change in power from eyes closed to eyes open, or the topographical

pattern of each frequency band. Overall, EEG reactivity was preserved in 80+-year-olds

without dementia, and topographical patterns were described for each frequency band.

The application of rsEEG power as a marker for the early detection of dementia might be

less conclusive for high-agers.

Keywords: aged 80 and over, EEG reactivity, resting state EEG, eyes open, eyes closed, mild cognitive impairment

INTRODUCTION

Dementia is diagnosed due to pronounced cognitive impairments and deterioration in daily living,
but pathophysiological changes in the brain usually occur before this critical stage is reached
(Sperling et al., 2011). Mild cognitive impairment (MCI), which is characterized as objective
cognitive deficits that are more severe than normal aging would suggest, but mild enough to not
interfere with daily independence, is thought to be a precursor to dementia (Winblad et al., 2004).
Older adults (OA) with MCI have a higher risk of developing dementia, particularly Alzheimer’s
disease (AD), compared to healthy OA (Mitchell and Shiri-Feshki, 2009) and show more brain
neuropathology linked to dementia in postmortem studies (Petersen et al., 2006) and in studies with
cerebrospinal fluid analysis (Visser et al., 2009). In longitudinal examinations, the development
of patients with MCI is heterogeneous. For example, it was reported that 14% of MCI cases
reverted back to normal cognition, 35% progressed to dementia, and 51% stayed stable at the 2-year
follow-up (Pandya et al., 2017).
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To further understand MCI and its progression to dementia,
it is, important to study brain changes in MCI directly and
to find biomarkers that better predict progression to dementia.
Resting state electroencephalogram (rsEEG) measures seem to be
especially suitable because they are easily obtained (non-invasive,
no special stimuli necessary, short recording time) and can
help to understand the connectivity of brain networks (Babiloni
et al., 2019). Differences in rsEEG activity in eyes closed (EC)
conditions between healthy OA and patients with AD have been
shown consistently (in cross-sectional and longitudinal studies)
and include decreased alpha and beta power, increased delta
and theta power, and changes in coherence and other functional
connectivity measures [for reviews, see Jeong (2004) and Babiloni
et al. (2016)]. Similar results were reported for vascular dementia
(van Straaten et al., 2012) while frontotemporal dementia does
not show consistent differences in rsEEG compared with healthy
OA (Nardone et al., 2018).

In contrast, only a few studies compared the rsEEG of healthy
OA and OA with MCI during EC. The following studies all
included the frequency bands delta, theta, alpha, and beta and
reported inconsistent results. For example, in two cross-sectional
studies from the same research group, MCI patients (age ∼72
years) had less alpha 1 (8–10.5Hz) power and stronger delta
power, while no changes were present in the theta and beta
bands (Babiloni et al., 2006b, 2010). Others also reported higher
delta power in MCI (age, 71.9 ± 7.9 years) compared to healthy
individuals of the same age and no significant differences in
the other frequency bands (Ya et al., 2015). Alternatively, it
was reported that theta power was decreased in OA with mild
cognitive deficits (age, 70.7± 8.8 years) and that changes in other
bands were present only in further cognitively declined groups
(Prichep et al., 1994). Another study with participants of similar
age in the MCI group (72.5± 6.0 years) reported lower delta and
theta band power, but no change in the faster frequency bands
(Kwak, 2006). This study included comparable fewer cases of
MCI (n= 16) than all other studies mentioned, where the sample
size for MCI ranged from 40 to 155 cases. In a different sample
with a similar small MCI case amount (n= 20, age 74± 5 years),
no significant differences between patients with MCI and healthy
OA in the theta band were detectable, although theta power of the
MCI group fell in-between healthy and OA with dementia (van
der Hiele et al., 2007a). In addition, it was shown that patients
with MCI (mean age, 70.7 years) revealed less alpha and less
beta phase-locked synchronization (measured with global field
synchronization instead of power), but no changes in the slower
frequency bands (Koenig et al., 2005).

Taken together, no conclusive picture for the typical delta,
theta, alpha, and beta power values during rsEEG in EC condition
in the presence of MCI can be obtained from these studies. It
seems that the direction of changes is comparable to findings
in dementia. However, which of these changes are earliest in
the transition toward dementia and, therefore, most common
in MCI is unclear. This might be due to the limited number of
studies, including preclinical stages of dementia, small sample
sizes, heterogeneity in MCI classification, and heterogeneity in
the underlying cause of MCI (Yang et al., 2019).

Heterogeneity of underlying causes for MCI also means that
only a certain proportion of MCI cases will progress toward
dementia and, therefore, might be the only ones displaying rsEEG
patterns similar to those known in dementia. Moreover, many
types of dementia exist with AD being the most common cause.
Longitudinal studies can take this into account and examine
which EEG power parameters at the baseline best predict further
cognitive decline or even progression to AD or other types of
dementia in OA with MCI. For example, posterior alpha power
was reported to be smaller in progressing MCI compared with
stable MCI cases (age of all MCI cases at the baseline, 65.9 ± 9.6
years) and predicted worsening of cognitive function in a 1-year
period with 75% positive predictive power (Luckhaus et al.,
2008). For a longer follow-up period of 21 months, one study has
shown that relative alpha power, relative theta power, and mean
frequency at the temporo-occipital region in EC conditions at the
baseline (age at baseline, 58.2 ± 5.9 years) were the best EEG
predictors for conversion to AD (Jelic et al., 2000). Accuracy of
prediction was raised from only 70%, which was obtained with
MMSE as the only predictor, to 85% by adding EEG parameters
(Jelic et al., 2000). The best choice of parameters to predict
conversion from MCI (age at the baseline, 68.7 years) to AD
over a 2-year follow-up period obtained by data mining from
177 EEG parameters included predominantly beta frequency
parameters and reached 88% sensitivity, 82% specificity, and 64%
positive predictive value (Poil et al., 2013). The classification rates
in all studies so far were not sufficient enough for diagnostic
application (Jelic and Kowalski, 2009; Rossini et al., 2020).

Different causes for MCI also mean that subtypes of MCI
should be differentiated. Most commonly, this is done by
distinguishing between amnestic (aMCI) and non-amnestic
(naMCI) cognitive deficits (Petersen, 2004). The aMCI is thought
to be primarily related to AD because the relative incidence
of AD is significantly higher in aMCI compared with naMCI,
although other outcomes, such as vascular dementia or mixed
forms, are also possible (Jungwirth et al., 2012). In addition, it
has been shown that the amnestic subtype of MCI differs from
the non-amnestic type and shows lower central alpha and greater
occipital theta power at rest compared with naMCI (Babiloni
et al., 2010). Magnetic resonance imaging (MRI) results also
support the notion that neuropathological changes are different
in both types (Guan et al., 2017).

In addition to disease-related changes, EEG oscillations at rest
are also subject to changes during healthy aging. Research on
rsEEG (mostly during EC) in healthy OA consistently reveals
changes in the alpha band, which are similar to changes found
in AD, such as reduced power and reduced peak frequency
with increasing age (Rossini et al., 2007). For delta and theta
bands, decreases were mostly reported (Babiloni et al., 2006a;
Gaál et al., 2010), while activity in the beta band seems to be
more pronounced in OA compared with young adults (Koyama
et al., 1997; Rossiter et al., 2014). Those changes in delta, theta,
and beta bands are in the opposite direction of those reported
due to AD. Research on healthy OA as well as MCI, however,
has mainly been conducted within the age range of 60–80 years.
Thus, there seem to be no detailed reports about topographical or
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frequency specific EEG power characteristics in high-agers (>80
years) during rest or in comparison with younger OA.

Most studies so far only analyzed rsEEG data obtained
while eyes were closed. Studying eyes open (EO) conditions
seems appropriate, considering that task-related brain activity is
dependent on the prior background activity (Başar andGüntekin,
2012), and cognitive tasks in everyday life are usually not solved
in EC conditions. It has been shown that the classifications
between healthy OA and MCI work better with data from EO
than EC conditions (McBride et al., 2014). For example, alpha
activity during EO was reduced in MCI compared with healthy
OA, but alpha activity in EC was not able to discriminate between
both groups (McBride et al., 2014). Including both conditions
makes it possible to study states of low and moderate vigilance
(Babiloni et al., 2019) and to differentiate between global arousal
and focal activations (Barry et al., 2007). Investigating the
changes from EC to EO conditions, termed EEG reactivity,
might be promising as well. EEG reactivity describes the power
difference in a frequency band between two distinct conditions
(Klimesch, 1999). In the following, reactivity will be defined
as the difference in power between EO rest and EC rest (EO-
EC). Findings for reactivity are often limited to the alpha band.
Synchronous alpha activity observed during EC is blocked when
eyes are opened, which can be easily detected in the raw data
(Berger, 1929). Healthy OA showed decreased alpha reactivity
compared with young adults (Duffy et al., 1984) or a lack of
reactivity at all (Gaál et al., 2010). Alpha reactivity was found
to be even more decreased in patients with AD compared with
healthy OA (van der Hiele et al., 2007b; Schumacher et al., 2020).
In a study with small samples sizes, values of the MCI group (n
= 11) were between the healthy (n= 12) and demented group (n
= 10), but did not differ significantly from the healthy control
group (van der Hiele et al., 2007b). Alpha reactivity was also
found to be the best predictor of global cognitive performance,
memory and language skills across all groups (van der Hiele et al.,
2007b).

Recently, Barry and De Blasio (2017) have published rsEEG
data for young adults (age, 20.4; range, 18.8–25.6 years) and
OA (age, 68.2; range, 59.8–74.8 years), which looked in detail
at the topographical characteristics of each frequency band and
the changes from EC to EO conditions (reactivity) not only
in the alpha frequency but also in the delta, theta, and beta
bands. Across both groups, delta and theta power in EO and
EC were midline dominant with a maximum at the vertex
and a bias toward the right hemisphere (Barry and De Blasio,
2017). For the alpha band, the well-known posterior dominance
was reported, and power in the right hemisphere was stronger
compared with the left. Activation in the beta band showed
centroparietal dominance. For young adults, changes from EO
to EC included the overall reduction in power for delta, theta,
alpha, and beta bands and a focal frontal increase in the beta
frequency (Barry et al., 2007). A similar pattern was found
in healthy OA, indicating that the EEG reactivity for delta,
theta, alpha, and beta is maintained in healthy aging (Barry
and De Blasio, 2017). No further studies exist that investigated
EEG reactivity in other frequency bands than alpha in MCI
or dementia.

From the current state of research, it can be concluded that
further studies with adequate sample sizes are needed to better
consider healthy aging as a reference point and the transition
to cognitive decline (Yang et al., 2019), especially data for the
oldest (>80 years) are lacking for neuropsychological as well
as neurophysiological parameters (Slavin et al., 2013). Similarly,
dementia research should include more of the oldest participants
as they also make up the majority of the affected patients (Brayne
and Davis, 2012; Richard et al., 2012).

The aim of the current study was to investigate the association
of EEG activity in the delta, theta, alpha, and beta bands during
different rest conditions with the cognitive status of OA, ranging
from healthy toMCI (aMCI and naMCI). Since cognitive changes
in the course from healthy aging to early dementia describe a
continuum, the exact diagnostic classification of MCI is difficult
(Petersen, 2004). This might become even more difficult with the
advancing age of the sample. In order to tackle this uncertainty,
we categorized OA into groups of different cognitive status,
taking into consideration the level of evidence of cognitive
impairments (see Methods) and using the recommendations
for diagnosis of MCI in community-based samples (Petersen
et al., 2018). This resulted in three groups: (1) cognitively
healthy individuals (CHI) with strong evidence of no cognitive
impairments, (2) possible MCI (pMCI) subjects with some
evidence of cognitive impairments, and (3) MCI participants
with strong evidence of cognitive impairments (Müller et al.,
2020). The MCI group was further subdivided according to type
of cognitive deficits in aMCI and naMCI. As the prevalence
of MCI is positively correlated with age (Kryscio et al., 2006),
only high agers (participants in their eighties) were included in
the study to ensure a sufficient amount of MCI cases in the
volunteer sample. Also, this was supposed to fill the previously
identified gap for data from high-agers in the context of
MCI research.

The main objective was to find out if the rsEEG of 80+-year-
olds with MCI (pMCI, aMCI, and naMCI) differed significantly
from healthy individuals of the same age. Therefore, differences
between groups in mean absolute and mean relative power of
the delta, theta, alpha, and beta bands were studied for EO, EC,
and reactivity (EO–EC). It was expected that, similar to findings
in younger samples of MCI and samples of patients with AD,
MCI would have lower alpha and beta power and stronger delta
and theta power during EC. In the EO condition, alpha power
was expected to decrease in the MCI groups, while, for the
other bands, no specific predictions could be made according to
prior findings. Alpha reactivity was predicted to be smaller in
the MCI groups, while no predictions were made for the other
frequency bands.

METHODS

This study is part of the SENDA study (Sensor-based systems for
early detection of dementia, registered in the German Clinical
Trials Register under DRKS00013167), which was conducted
at Chemnitz University of Technology, Germany. The detailed
study protocol was published earlier by Müller et al. (2020). Only
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TABLE 1 | Characteristics of the total sample and groups according to cognitive status.

Total CHI pMCI naMCI aMCI

N (in %) 213 (100) 72 (34) 80 (38) 17 (8) 44 (21)

m/f 109/104 32/40 43/37 12/5 22/22

Age in years M (SD) 82.5 (2.4) 82.1 (2.4) 82.5 (2.1) 83.2 (3.1) 83.0 (2.7)

Education in years M (SD) 14.0 (3.2) 14.4 (3.4) 14.0 (3.3) 14.3 (3.2) 13.3 (2.7)

MoCA (0–30) M (SD) 25.6 (2.6) 27.8 (1.2) 25.8 (2.1) 22.8 (1.6) 22.8 (1.7) *a

Handedness (-100–100) M (SD) 83.3 (38.2) 89.1 (24.4) 81.9 (41.6) 78.2 (39.5) 81.5 (42.6)

GDS Score (0–15) M (SD) 2.8 (2.0) 2.6 (1.9) 2.6 (1.8) 3.6 (2.7) 3.4 (2.1)

NAA Score (20–60) M (SD) 26.3 (3.4) 25.3 (2.7) 25.9 (3.3) 29.5 (4.5) 27.9 (3.0) *b

CHI, cognitively healthy individuals; pMCI, possible mild cognitive impairment; naMCI, non-amnestic MCI; aMCI, amnestic MCI; MoCA, Montreal Cognitive Assessment; GDS, Geriatric

Depression Scale; NAA, Nürnberger-Alters-Alltagsaktivititäten-Skala (Nuremberg Gerontopsychological Rating Scale for Activities of Daily Living).

*p < 0.05.
aPost-hoc Dunn Bonferroni test showed: CHI > pMCI > naMCI = aMCI.
bPost-hoc Dunn Bonferroni test showed: CHI = pMCI< naMCI = aMCI.

information relevant to the current research question will be
described here.

Participants
The SENDA study sample included 244 participants (123 males;
age, 79–93 years; M = 82.5; SD = 2.5), which were recruited
from January 2018 to March 2020. Study participation required
walking ability, sufficient German language skills, residence in
or around Chemnitz, Germany, and self-organized means of
travel to and from the laboratory. Volunteers were excluded
before testing if any of the following criteria applied: (1) acute
psychological disorder; (2) diagnosis of any neurocognitive
or neurological disorder; (3) past traumatic head injury; (4)
substance abuse; (5) participation in other clinical studies; (6)
a physician-directed ban from physical activities; (7) severe
restrictions due to cardiovascular, pulmonary, or orthopedic
diseases; (8) or failure to reach the minimum required score of
19 during screening with the Montreal Cognitive Assessment
(MoCA, Nasreddine et al., 2005). Each participant signed a
written informed consent, and all study proceedings were
approved by the Ethics Committee of Chemnitz University
of Technology, Germany, Faculty of Behavioral and Social
Sciences (V232-17-KM-SENDA-07112017, approved on
19.12.2017). Each participant received 25 e compensation for
his or her participation at three appointments. This included
neuropsychological testing (part of first appointment) and EEG
recordings (part of the second appointment).

The analysis for this article included 213 participants.
Exclusion from analysis was due to (1) dropout from the
study before all needed testing was completed (n = 17), (2)
signs of severe depressive symptoms [Geriatric Depression
Scale (Gauggel and Birkner, 1999) short version > 8, n =

9], (3) technical issues during the EEG recording, (n = 4),
(4) and falling asleep during EEG recording (n = 1).
Demographic characteristics are reported in Table 1. In addition,
the participants reported their medication regimens. Due to
the old age of the participants, many of them were following
a medication regimen, which most often included medication
for high blood pressure, thrombosis prophylaxis, cholesterol

reduction, stomach acid reduction, and thyroid function. There
were 15 participants taking medication, which might have
influenced EEG activity, such as tricyclic antidepressants (n= 6),
antipsychotics (n = 2), Parkinson medication (n = 2), anti-
dementia medication (n = 2), and benzodiazepines (n = 5,
prescribed for sporadic, not regular use, according to medication
plans). These cases were distributed across all four groups (CHI:
3, pMCI: 4, naMCI: 5, and aMCI: 3). Conducting the following
analysis without these cases did not result in any differences, and
we, therefore, did not remove them from the sample.

Neuropsychological Testing and MCI
Classification
All the participants went through an intensive
neuropsychological test battery, which was carried out from
trained testing staff at the University lab. This included the
German version of the MoCA (Nasreddine et al., 2005) and the
German version of the Consortium to Establish a Registry for
Alzheimer’s Disease Neuropsychological Test Battery (Morris
et al., 1989; Memory Clinic Basel, 2005; CERAD-NP). The
MoCA was used to measure global cognitive functioning and to
screen for MCI. It is the second most utilized geriatric cognitive
screening tool after the mini mental status examination but
has superior sensitivity to mild cognitive impairments (Breton
et al., 2019). The CERAD-NP examines the cognitive domains
memory, language, executive functions, and visuo-construction.
In addition, information about the level of education (overall
years of education) and handedness [a laterality quotient
according to Oldfield (1971)] was obtained. The participants
completed additional questionnaires at home, which included,
among others, the Nürnberger-Alters-Alltagsaktivititäten-Skala
(NAA; Nuremberg Gerontopsychological Rating Scale for
Activities of Daily Living; Oswald and Fleischmann, 1995) to
measure basic and instrumental activities of daily living as well
as the German short version of the Geriatric Depression Scale
(GDS; Gauggel and Birkner, 1999) to screen for depressive
symptoms. The GDS was used to exclude individuals from the
analysis (GDS > 8) to prevent the inclusion of undetected cases
of major depression and also as a covariate.
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MCI classification was based on the recommendations of The
National Institute on Aging and the Alzheimer’s Association
(Albert et al., 2011) and in accordance with the criteria
proposed by Petersen et al. (2014). These criteria are also part
of the Diagnostic and Statistical Manual of Mental Disorders
(5th ed.; DSM-5; American Psychiatric Association, 2013) for
the diagnosis of mild neurocognitive disorders. The criteria
were: (1) self—or informant report of cognitive complaints,
(2) impairments in at least one cognitive domain while taking
into consideration age and education, (3) general independence
in daily activities, and (4) no dementia. Cognitive complaints
(criteria 1) were not included as a criterion of MCI here
because there is no consensus on inclusion or operationalization
(Mitchell, 2008). Subjective complaints also seem to be far less
relevant for the prediction of dementia in community-based
samples like ours compared with the participants in memory
clinics (Snitz et al., 2018). In addition, we found subjective
complaints to be very common in this age group. In a subgroup of
our sample (n = 136), 65% of the participants reported memory
complaints when asked to compare their memory performance 5
years prior.

Cognitive impairments (criteria 2) were determined according
to performance in MoCA (one sum score) and CERAD-NP
(nine separate test scores). The following CERAD-NP scores
were used: verbal fluency (number of animals named in 1min),
Boston naming test (number of objects correctly identified),
phonematic fluency (number of words named with letter “S”
in 1min), constructional praxis (number of correctly copied
characteristics), word list learning (number of words correctly
remembered in third trial), word list recall (savings score), word
list recognition (discriminability score), constructional praxis
recall (savings score), and trail making test (quotient B/A). We
followed a two-step procedure that is recommended for diagnosis
of MCI in the general population, which states that, first, a
screening should be used, and, in case of abnormal findings,
in-depth cognitive testing should follow (Petersen et al., 2018).
A MoCA score below 26 points and at least one CERAD-NP
performance below 1.5 standard deviations of the normative
mean (taking into consideration age, sex, and education level)
resulted in the classification of mild cognitive impairment (MCI).
Correspondingly, the participants were classified as being healthy
(CHI) if they scored 26 or more points on the MoCA and also
within the normative range (no score below −1.5 SD) in all of
the CERAD-NP scores. Out of the participants classified as MCI,
amnestic cases (aMCI) were distinguished by deficits in at least
one of the memory tests (word list learning, word list recall, word
list recognition, and constructional praxis recall). Accordingly,
non-amnestic cases (naMCI) presented with deficits only in the
other non-memory tests. Due to the application of the two-
step process, an additional class was defined for the participants
who showed cognitive impairments only according to one of
the two tests. They were categorized as possibly having MCI
(pMCI). This group either included the participants who had
deficits in one specific domain of the CERAD-NP, but, overall,
cognitive functioning was normal according to MoCA or the
participants that had no strong impairment in any single domain,
but small deficits in different domains added up to a low MoCA

score (<26). Although this group would be considered as non-
MCI according to Petersen et al. (2018) as these individuals
neither showed abnormal scores in the screening (MoCA > 25)
nor in-depth clinical testing after abnormal testing revealed any
cognitive impairments, we opted to separately analyze this group
to have high discriminatory power between CHI and MCI.

General independence (criteria 3) was presumed for all
the participants because we only included community-dwelling
volunteers in this study. This was further confirmed by the NAA
scores, which were below 39 for all individuals and fell within a
normal range for this age group (Oswald and Fleischmann, 1995).
No dementia (criteria 4) was also ensured due to the exclusion
criteria described before.

EEG Recordings
The actiCHamp system (Brain Products GmbH, Gilching,
Germany) was used to record 32 active EEG electrodes positioned
according to the international 10–20 system (Fp1, Fp2, F7, F3,
Fz, F4, F8, FC5, FC3, FC1, FC2, FC4, FC6, T7, C3, Cz, C4, T8,
CP5, CP3, CP1, CP2, CP4, CP6, P7, P3, Pz, P4, P8, O1, Oz, and
O2). The setup included a forehead ground electrode at Fpz and
an online reference electrode at Fz. All data were acquired with
a 500Hz sampling rate and 24-bit resolution. The electrode-skin
impedance was kept below 25 k�.

The EEG recording during rest only made up a small part of
the complete testing on the day and always took place after gait
analysis and prior to fine motor testing. Rest periods were offered
during the whole procedure, and all the participants had received
a short break prior to EEG recording. EEG measurements took
place in an electrically shielded and darkened room. Tominimize
EEG artifacts and distractions for the subject, all instructions
were given from an adjacent room via a microphone and a
monitor. The participants sat relaxed, with their backs leaned
against the back rest and both hands rested comfortably on the
table in front of them (see Figure 1A for a photo of the complete
setup). They looked at a white fixation cross at the center of a
black screen for 4min (condition EO) and, afterwards, closed
their eyes for 2min (condition EC). The level of consciousness
the subject wasmonitored to annotate changes and other artifacts
in the EEG protocol.

Preprocessing of EEG Data
BrainVision Analyzer 2.2 (Brain Products GmbH, Gilching,
Germany) was used for all preprocessing steps. Data were
filtered (phase shift-free Butterworth infinite impulse response
filter, 1–70Hz, slope 48 dB/Hz), notch filtered (50Hz), and
down sampled from 500 to 256Hz. In addition, blink artifacts
in the rest condition EO were removed via Independent
Component Analysis (Jung et al., 1998) with Fp1 as the reference
channel for vertical eye movements. Continuous EEG data were
then common average re-referenced and segmented into 2-s
epochs for an automatic artifact rejection. Epochs were rejected
from further analysis if at least one channel included voltage
steps >25 µV/ms or if the difference between minimal and
maximal absolute voltage recorded exceeded 200 µV in any 200
ms interval.
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FIGURE 1 | Setup of the resting state EEG measurements (A) and depiction

of the nine regions of interest obtained from the EEG (B).

At each electrode absolute power (in µV²) and relative power
(in %, relative to the total power of the spectrum 1–24Hz) was
calculated with a Fast Fourier Transform algorithm for each
2s epoch resulting in 0.5Hz resolution. A Hanning window
(length 10%) and variance correction were applied to correct
for spectral leakage. Mean absolute power and mean relative
power were obtained by averaging 15 artifact-free segments for
30 s after the start of the condition. One participant did not
have enough artifact free segments for the EO and another
participant for the EC condition. Therefore, EO and EC analyses
were carried out with N = 212 and the reactivity analysis with
N = 211. Frequency bands included delta (1–3.5Hz), theta (4–
7.5Hz), alpha (8–13Hz), and beta (13.5–24Hz). All data were
log-transformed (base 10) to obtain normal distribution and
variance homogeneity before calculation of regions of interest
(ROI) based on Barry and De Blasio (2017). The combination
of three sagittal planes (left, mid, and right) and three coronal
planes (frontal, central, and posterior) resulted in nine different
ROIs (Figure 1B): left frontal (Fp1, F3, and F7), mid frontal (Fz),

right frontal (Fp2, F4, and F8), left central (T7 and C3), mid
central (Cz), right central (T8 and C4), left posterior (P7, P3,
and O1), mid posterior (Pz), and right posterior (P8, P4, and
O2). Reactivity for absolute and relative power was calculated
separately for each frequency band as the difference between EO
and EC (log power EO- log power EC) for each ROI.

In addition, from the same spectrum (relative power, EC
condition, 30 s), we also obtained the individual alpha frequency
(IAF) for each person. All electrodes of the posterior region (P7,
P3, O1, Pz, P8, P4, and O2) were averaged, and the frequency
of the maximum value in the alpha band was extracted with
the MinMax Marker Solution (BrainVision Analyzer 2.2). Six
participants were not included in this analysis because they did
not show clear peaks in the alpha range. This was indicated by
the values of the detected peak being less than 1.96 standard
deviations above the mean value of the alpha range. Visual
inspection of the cases indicated either absence of a peak or a
peak in the theta range.

Statistical Analysis
IBM SPSS Statistics Version 27 (IBM Corp., Armonk, NY, USA)
was used for all statistical analysis. P-values < 0.05 were regarded
as significant and p-values < 0.10 as a trend unless they had to be
adjusted for multiple testing. Effect sizes were reported as partial
eta squares (η2p). As variables were not normally distributed,
Kruskal–Wallis tests were used to test if covariates age, education,
and depressive symptoms differed between groups. A chi-square
test was used to test if sex and group distributions were
independent. No significant differences between groups emerged
for any of the covariates, which means that potential effects of
cognitive status on EEG parameters should not be due to sex, age,
and education confounding with the group classification.

First, absolute power data were pre-analyzed in order to check
if reactivity was still preserved in the sample of high-agers. For
this purpose, a 2× 3× 3× 4 mixed-design ANOVA was carried
out with the three within-subject factors rest condition (EO, EC),
sagittal (left, mid, and right) and coronal (frontal, central, and
posterior) as well as one between-subject factor group (CHI,
pMCI, naMCI, and aMCI), and the main effect of rest condition
was reported for each frequency band.

All the following analyses were run with sex as covariate.
Age and education in years were not included as covariates
because there was no significant relationship with any of the
EEG parameters, and their inclusion did not improve variance
explanation. One-way analysis of covariance (ANCOVA) was
used to test for differences in IAF between groups. Next, six
3 × 3 × 4 mixed-design ANCOVAs were carried out with
the dependent variables (1) absolute EC power, (2) absolute
EC power, (3) absolute power reactivity, (4) relative EO
power, (5) relative EO power, and (6) relative power reactivity,
respectively. Each ANCOVA included two within-subject factors
sagittal (left, mid, and right) and coronal (frontal, central, and
posterior) as well as one between-subject factor group (CHI,
pMCI, naMCI, and aMCI) to find differences between groups
and topography. Greenhouse-Geisser adjustments were reported
whenever sphericity assumptions were violated. To control for
multiple testing within each frequency band (three tests for
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FIGURE 2 | Brain maps showing the mean absolute power in µV² for all frequency bands in both conditions and the difference maps. EO, eyes open; EC, eyes closed.

absolute power and three tests for relative power), the Bonferroni
adjusted alpha level of 0.017 was used. Last, the directions of
the significant main and interaction effects from the 3 × 3 ×

4 ANCOVAs were determined via contrast analysis to describe
the topography in more detail. For the coronal factor, two
contrasts were used: comparing frontal with posterior (F – P)
and comparing the mean of frontal and posterior against the
central ROI (F/P – C). Similarly, two contrasts were included
for the sagittal factor: comparing left with right (L – R) and
comparing themean of left and right with themid ROI (L/R –M).
Again, Bonferroni adjusted alpha levels were used to control for
testing multiple contrasts within one effect (main effects: 0.025
interaction effect: 0.0125). Only significant effects are reported in
the text unless stated otherwise.

RESULTS

Reactivity
Results from the 2 × 3 × 3 × 4 mixed-design ANOVA indicated
a significant reduction in absolute power from EC to EO across
the whole sample in delta [F(1,207) = 30, p < 0.001, ηp² = 0.13],

theta [F(1,207) = 144.4, p < 0.001, ηp² = 0.41], alpha [F(1,207) =
275.3, p < 0.001, ηp² = 0.57], and beta bands [F(1,207) = 6.6, p =
0.01, ηp²= 0.03].

Cognitive Status
Classification of participants in the four groups (CHI, pMCI,
aMCI, and naMCI) according to the introduced criteria resulted
in 72 CHI, 80 pMCI, 17 naMCI, and 44 aMCI cases (Table 1).
The four groups differed significantly according to problems with
daily activities measured with the NAA (CHI= pMCI< aMCI=
naMCI). The IAF was fastest in the healthy group (M = 9.3Hz,
SD= 1.1) compared with the groups with cognitive impairments
(pMCI: M = 9.0Hz, SD = 0.8, naMCI: M = 9.1Hz, SD = 0.8,
aMCI: M = 9, SD = 0.8). These differences were not significant
[F(3,206) = 1.6, p= 0.19, ηp²= 0.02].

Tables with log-transformed absolute power values for
each frequency band, group, and ROI are available in the
Supplementary Material. Results of the mixed ANCOVA for
each frequency band for the outcome variables (power EC,
power EC, and reactivity) revealed no significant group effects
or interactions involving the factor group for neither absolute
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nor relative power analysis. The p-values for these nonsignificant
effects ranged from p = 0.05 to p = 0.90 (with effect sizes
between ηp² = 0.00 and ηp² = 0.04) for absolute power and
p = 0.02 to p = 0.98 (with effect sizes between ηp² = 0.01
and ηp² = 0.04) for relative power. In this sample, the rsEEG
activity in the four frequency bands did not differ significantly
according to the cognitive status of the participants when using
absolute or relative power values. As no differences between
groups were established, all the participants were pooled together
to obtain brain maps from the non-transformed absolute power
values (Figure 2) for each frequency band and condition for this
sample of OA to illustrate the topographies. The maps for each
group separately are available in the Supplementary Material.
In the whole sample, the effects were significant for the
sagittal factor, the coronal factor, and the interaction between
sagittal and coronal for all frequency bands and absolute
power outcomes. The topographical effects will be looked at
in more detail in the following sections only for absolute
power. Relative power values are especially useful to control for
person-specific confounding variables, which are less relevant
to within-subject effects. In addition, differences in relative
power are less clear to interpret because they can be caused
by changes in the studied frequency band or changes in any
of the other bands used in normalization. The results from
the topographical analysis of relative power are available in the
Supplementary Material.

Topography During EC
The complete results of the contrast analysis can be seen
in Table 2. For all frequency, bands activity was significantly
smaller at the midline compared to hemispheres (L/R > M).
There was no effect of lateralization in any of the frequency
bands (L = R). Both alpha and beta were dominant in the
posterior regions (F < P), while delta band was dominant in
the frontal region (F > P). For the delta, theta, and alpha
bands, central activity was less pronounced compared with the
mean activity from frontal and posterior (F/P > C). In the
delta band, the difference between midline and hemispheres
was more pronounced frontally compared with the posterior
regions (L/R > M × F > P). For all other bands, this was
reversed with stronger differences between midline compared
with L/R in the posterior regions instead of frontal regions (L/R
> M × F < P). Although no global effect of lateralization
was obtained in the alpha band, there was more pronounced
activity in the right hemisphere of the posterior region (L <

R × F < P). The smallest power values for theta and delta
were obtained from the mid-central regions (L/R > M × F/P
> C).

Topography During EO
The topography during the EO was very similar to EC
topography (Tables 2, 3). The only differences pertained to
lateralization, where theta and alpha both showed greater
power in the left compared with the right hemisphere (L >

R) and no differences in lateralization between frontal and
posterior regions.

Topography of Reactivity
Topographical differences in reactivity were apparent in
the descriptive reactivity data (Supplementary Material)
and were confirmed by the contrast analysis (Table 4).
When interpreting the direction of effects, the sign of the
reactivity values must be considered. When comparing
two negative values, the smaller value is the more negative
value and, therefore, indicates the larger change from EC
to EO.

For the delta band, the pattern of reactivity resembled that of
the EC condition, whichmeans that the greatest changes from EC
to EOwere present in the areas with themost delta activity during
EC [F < P; F/P < C; L/R < M × F > P; L/R < M × F/P > C].
For the theta, band reactivity was less pronounced in the central
regions (F/P < C), specifically the left and right hemispheres
(L/R > M × F/P < C), which were also the regions with less
theta activity in EO and EC. In the alpha band, once again,
reactivity was more pronounced in the right compared with the
left hemisphere (L > R), which explained the change from a
right hemispheric bias during EC to a significant left hemispheric
bias during EO. Further considerations of interactions actually
showed that this was only the case in the posterior but not
the frontal region (L > R × F < P). The change from EC to
EO in alpha power was greater in the midline compared with
hemispheres (L/R > M), especially so in the frontal regions (L/R
> M × F > P). Reactivity was strongest in the posterior region
and least pronounced in the central regions (F > P, F/P < C),
which reproduces the pattern of alpha activity during EC. In
the beta band, reactivity was more pronounced in the midline
compared with the hemisphere (L/R > M) and in the posterior
compared with frontal regions (F > P). This is related to the
fact that beta activity in the hemispheres is increasing in the left
and right frontal regions while it is decreasing with the opening
of eyes in the other regions (L/R > M × F > P). This focal
frontoparietal activity with opening the eyes can also be seen in
Figure 2 (last column).

DISCUSSION

In this study, the synchronized activity at rest while eyes are
open and closed in the classical broad bands delta, theta,
alpha, and beta was compared between cognitively healthy
OA and individuals with MCI of the same age. The sample
included OA, 80 years or older, which are often not enough
represented in studies on early detection of dementia. Groups
were compared with respect to mean absolute power, relative
power, and reactivity to eyes opening separately in each band.
No significant differences between any of the groups of different
cognitive status (CHI, pMCI, naMCI, and aMCI) were detected.
Overall, specific topographical patterns were present, which will
be compared with results from other age groups later. In addition,
EEG reactivity was also present in each of the four frequency
bands with overall greater power during EC compared with EO
and a few focal increases in the beta band. The topography of
reactivity for the most part related to the topography found in
the EC condition.

Frontiers in Aging Neuroscience | www.frontiersin.org 8 August 2021 | Volume 13 | Article 675689

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Fröhlich et al. Resting State EEG of 80+-Year-Olds

TABLE 2 | Results of the contrast analysis in each frequency band for absolute power (log-transformed) at rest with eyes closed.

Delta Theta Alpha Beta

F p ηp² F p ηp² F p ηp² F p ηp²

Main Effects (adj. α-level = 0.025)

L > R 4.1 0.04 0.02 1.9 0.18 0.01 1.1 0.129 0.01 0.0 0.89 0.00

L/R > M 266.5 <0.001 0.56 264.4 <0.001 0.56 387.4 <0.001 0.65 141.5 <0.001 0.41

F > P 130.5 <0.001 0.39 1.1 0.29 0.01 236.4 <0.001 0.53 26.4 <0.001 0.11

F/P > C 135.7 <0.001 0.40 165.3 <0.001 0.44 115.0 <0.001 0.36 3.1 0.08 0.02

Interactions (adj. α-level = 0.0125)

L > R x F > P 1.4 0.23 0.01 0.4 0.51 0.00 11.9 0.001 0.05 3.1 0.08 0.02

L > R x F/P > C 2.2 0.14 0.01 0.2 0.62 0.00 2.6 0.11 0.01 0.8 3.8 0.00

L/R > M x F > P 86.7 <0.001 0.30 4.7 0.03 0.02 81.1 <0.001 0.28 15.2 <0.001 0.07

L/R > M x F/P > C 15.9 <0.001 0.07 8.1 0.005 0.04 1.3 0.26 0.01 1.2 0.28 0.01

All test statistics are with (1, 207) degrees of freedom. Underlined effects are reversed in direction (i.e., the reversed effect from L > R × F > P is L < R × F > P). Changing the direction

of both directional indicators within a single effect is equivalent (i.e., L > R × F > P is the same as L < R × F < P). L, left; R, right; M, midline; F, frontal; P, posterior; C, central. Significant

results are printed in bold.

TABLE 3 | Results of the contrast analysis in each frequency band for absolute power (log-transformed) at rest with eyes open.

Delta Theta Alpha Beta

F p ηp² F p ηp² F p ηp² F p ηp²

Main Effects (adj. α-level = 0.025)

L > R 3.6 0.06 0.02 6.1 0.02 0.03 11.4 0.001 0.05 1.7 0.18 0.01

L/R > M 158.6 <0.001 0.43 173.7 <0.001 0.46 408.9 <0.001 0.66 143.4 <0.001 0.41

F > P 39.0 <0.001 0.16 2.9 0.09 0.01 106.1 <0.001 0.34

F/P > C 50.7 <0.001 0.20 86.4 <0.001 0.29 12.0 0.001 0.06

Interactions (adj. α-level = 0.0125)

L > R x F > P 0.0 0.87 0.00 2.6 0.11 0.01 0.0 0.95 0.00 6.7 0.01 0.03

L > R x F/P > C 1.4 0.23 0.01 0.1 0.80 0.00 0.5 0.47 0.00 0.5 0.49 0.00

L/R > M x F > P 24.1 <0.001 0.10 16.5 <0.001 0.08 14.8 <0.001 0.07 0.6 0.45 0.00

L/R > M x F/P > C 1.4 0.12 0.01 0.1 0.72 0.00 45.2 <0.001 0.18 7.4 0.01 0.03

All test statistics are with (1,207) degrees of freedom. Underlined effects are reversed in direction (i.e., the reversed effect from L > R × F> P is L < R × F > P). Changing the direction

of both directional indicators within a single effect is equivalent (i.e., L > R × F > P is the same as L < R × F < P). L, left; R, right; M, midline; F, frontal; P, posterior; C, central. Significant

results are printed in bold.

TABLE 4 | Results of the contrast analysis in each frequency band for reactivity (difference of log-transformed absolute power).

Delta Theta Alpha Beta

F p ηp² F p ηp² F p ηp² F p ηp²

Main Effects (adj. α-level = 0.025)

L > R 21.8 <0.001 0.10 1.3 0.25 0.01

L/R > M 9.1 0.003 0.04 18.7 <0.001 0.08

F > P 18.0 <0.001 0.08 0.1 0.76 0.00 66.2 <0.001 0.24 29.3 <0.001 0.12

F/P > C 39.7 <0.001 0.13 25.9 <0.001 0.11 86.6 <0.001 0.30 0.5 0.48 0.00

Interactions (adj. α-level = 0.0125)

L > R x F > P 0.6 0.43 0.00 4.5 0.04 0.02 8.5 0.004 0.04 2.2 0.14 0.01

L > R x F/P > C 0.1 0.76 0.00 0.1 0.80 0.00 1.0 0.33 0.01 0.1 0.77 0.00

L/R > M x F > P 11.5 0.001 0.05 2.83 0.09 0.00 30.6 <0.001 0.13 7.9 0.01 0.04

L/R > M x F/P > C 8.9 0.003 0.04 8.0 0.01 0.04 28.3 <0.001 0.12 5.5 0.02 0.03

All test statistics are with (1,206) degrees of freedom. Underlined effects are reversed in direction (i.e., the reversed effect from L > R × F > P is L < R × F > P). Changing the direction

of both directional indicators within a single effect is equivalent (i.e., L > R × F > P is the same as L < R × F < P). L, left; R, right; M, midline; F, frontal; P, posterior; C, central. Significant

results are printed in bold.
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No significant differences between any of the groups of
different cognitive status were found in IAF or resting state power
in EC, and, therefore, it can be concluded that the absolute and
relative power distributions were similar in each of the four
groups (CHI, pMCI, naMCI, and aMCI) for this condition. Thus,
the hypotheses that MCI is characterized by lower alpha and
beta power as well as stronger delta and theta power during EC
could not be confirmed in our sample. This is not in complete
agreement with prior findings of changes in the rsEEG in patients
with MCI. For the rest with EC, it was shown that alpha and
beta powers were reduced and theta and delta powers were either
elevated or reduced in MCI compared with healthy OA (Koenig
et al., 2005; Babiloni et al., 2006b, 2010; Kwak, 2006; Ya et al.,
2015). In fact, when specifying former studies, each study only
showed some of the listed changes, but the overlap between
results was often not great even though similar parameters
were studied.

One might assume that the lack of significant differences
between MCI and healthy participants in our study was caused
by an unsuitable resting state measurement protocol. This seems
to be rejectable as the protocol was very comparable to the ones
used in other MCI and dementia studies (e.g., Alexander et al.,
2006; van der Hiele et al., 2007b; Gaál et al., 2010; Toth et al.,
2014).

One major difference between the current findings and that
of other studies was the overall older age (mean, 82.5 years)
of the participants. The average age of most study samples was
∼10–20 years below that of the present sample [e.g., 62 years
(Koenig et al., 2005), 68 years (Barry and De Blasio, 2017), and
72 years (Babiloni et al., 2006b)]. In addition, the number of
rsEEG studies in this age group is very limited, which means that
there is limited knowledge of the typical rsEEG in MCI, but it is
also unclear how the rsEEG activity of healthy high-agers looks.
Some aging-related changes in the rsEEG, like the reduction in
alpha power, are probably similar in the aging process and the
neuropathological process of dementia (Rossini et al., 2007), and,
therefore, it might be harder to differentiate between healthy
but far advanced aging and early neuropathological changes.
Postmortem studies also showed that dementia pathology, such
as neuritic plaques, diffuse plaques, and neurofibrillary tangles
can be found in healthy OA without signs of dementia or
MCI during their lifetime (Bennett et al., 2006). In general, the
overlap in neuropathology between healthy and individuals with
dementia seems to increase with age (Richard et al., 2012). Taken
all together, this suggests that the cognitive status of high-agers as
determined by neuropsychological testing might not necessarily
represent the underlying neurophysiological state.

For EEG measurements, it must also be considered that aging
can cause anatomical changes that can dampen the measurable
EEG signal. It has been shown that cortical thinning with aging
results in smaller measurable EEG amplitudes and that power
differences between different age groups can be explained by
including cortical thickness into the analysis (Provencher et al.,
2016). As a consequence, it might be statistically problematic to
detect differences if the baseline level of power is very low. On
average, this is not the case in the current sample. The power
values at rest with EO in the present data set are comparable with

values found in a prior study (Hübner et al., 2018) with younger
OA (67–83 years).

The different groups of cognitive status were also compared
with regard to resting state power while EO and reactivity
(change from EC to EO). Although it had been shown
before that EO conditions might be better suitable to detect
EEG changes in MCI (McBride et al., 2014), this was not
replicated here. The present results indicated no differences
in resting state power with EO or reactivity according to
cognitive status in any of the frequency bands. Thus, the
hypothesis that MCI is characterized by reductions in alpha
power during EO and reduced reactivity in the alpha band
was not confirmed. In addition, for the first time, analysis of
reactivity was not restricted to the alpha band and included
also delta, theta, and beta bands. Group comparisons showed
that reactivity in the other bands was also not related to
cognitive status.

In addition, we studied the topography and reactivity of each
frequency band without taking into consideration the cognitive
status of the participants to generate knowledge about the rsEEG
in a group of non-demented high-agers. The topography of the
slower bands (delta and theta) was described withmaximal power
at the vertex in both rest conditions in healthy OA in prior studies
(Barry and De Blasio, 2017). This topography was not replicated
here, as delta power showed frontal dominance with the smallest
power at the vertex. Theta power was also smallest in the central
regions. It is unclear why these differences arise and if a small
sample size of prior studies, EEG setup or artifacts could be the
cause of this. As this pattern was especially pronounced during
EC condition, which typically shows very little frontal artifacts
such as blinking, this should not be the reason. Other studies with
young participants actually reported a very similar pattern with
prefrontal dominance of delta power (Barry et al., 2007; Chen
et al., 2008).

For the alpha band, topography was similar and, as expected,
showed strongest alpha power in the posterior ROI and smallest
power values centrally. A right hemisphere bias was present in
the alpha band during EC conditions and a left hemisphere bias
in the alpha and theta bands during EO, while, for all other
bands and conditions, no hemispherical differences were found.
In comparison, younger adults showed a right hemisphere bias
across all frequency bands during rest (EO and EC), which is
assumed to arise from the dominance of the left hemisphere in
right-handed participants (Simon-Dack et al., 2013; Barry and
De Blasio, 2017). This difference between our sample and results
from younger OA confirms many findings of age-related neural
dedifferentiation (Koen and Rugg, 2019).

The changes in band power due to eyes opening, in general,
resembled what has been shown in younger adults. Reactivity
was present in all bands and showed the typical pattern of overall
decreased power in all bands, and only focal frontal increases in
the beta band in EO (Barry and De Blasio, 2017). Even in high-
agers, reactivity is maintained in all frequency bands, showing
intact regulation of arousal and vigilance in the different resting
state conditions. The exact topographical pattern for delta, theta,
and alpha bands related to the observed EC pattern in each band,
meaning the difference EO – EC was the strongest in ROIs that
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showed the most activity during EC (delta: frontal, theta: frontal
and posterior, alpha: posterior).

Limitations
Some limitations of this study must be considered. First, all the
participants were volunteers, without symptoms of dementia and
no need to live in a nursing home. These constraints resulted in
the sample having a bias toward comparatively healthy and well-
educated individuals. Education could be an influencing factor,
because it is known as a proxy of a cognitive reserve, and it can
impact the relationship between brain changes and performance
measured in neuropsychological testing (Liu et al., 2013). This
should not influence the present results because the groups did
not differ in their levels of education.

In addition, one might assume that the MCI cases found in
this sample were mostly very mild and far from the progression
to dementia. However, the range of MoCA scores (19–25)
and the deficits found in CERAD-NP scores (<1.5 SD below
age specific norms) for the MCI groups indicated that this is
not the case. Although the norms of neuropsychological test
batteries like the CERAD-NP can be very strict when used
for individuals older than 75 years (Luck et al., 2018), this
issue was resolved by using a two-step classification system to
evaluate the cognitive status of the participants. This included
the neuropsychological test battery (CERAD-NP) with age- and
sex-corrected norm values and the MoCA. This screening tool is
known to detect MCI well-compared with others like the Mini
Mental Status Examination, which suffers from ceiling effects
in populations with mild impairments (Larner, 2012; Breton
et al., 2019). Standardized classification criteria according to
recommendations of the neurotic National Institute on Aging
and the Alzheimer’s Association (Albert et al., 2011) were
employed. This procedure is certainly comparable to the standard
clinical procedure, which includes first a screening and then
more extensive neuropsychological testing. In addition, this
recruitment procedure was chosen to obtain a sample of OA with
no or only mild cognitive deficits, as we were especially interested
in those early preclinical stages of dementia. Other studies
often used MCI samples that arose from memory clinics, where
probably, individuals applied with complaints, indicating further
progressive cognitive decline. Conversely, the present sample
allowed to study the process of cognitive decline even earlier.

The prevalence of MCI obtained from this strategy was 29%,
which is slightly higher than the incidence rate for community
samples calculated in a recent meta-analysis (Hu et al., 2017).
Considering the age of the sample, this prevalence seems well-
fitting and supports the validity of the classification strategy used.
In addition, the distribution from naMCI and aMCI matches
with prior findings that aMCI is the most common type of
MCI (Petersen et al., 2010). Unfortunately, a relatively large
part of the sample was classified as pMCI, indicating the high
rate of diagnostic uncertainty often apparent in the diagnosis of
preclinical and early dementia (Dubois et al., 2016).

The present study only focused on a selection of
EEG parameters that can be obtained from Fast Fourier
transform (spectral analysis). This was done because
such parameters have been shown before to differentiate
between healthy and persons with mild impairment

(Koenig et al., 2005; Babiloni et al., 2006b, 2010; Kwak, 2006; Ya
et al., 2015). They were now applied to a high-ager sample to
study their usefulness in terms of early detection of dementia
in such age groups. It is possible that early changes in resting
state networks are better found with other or more advanced
analysis methods. For example, measures of complexity (i.e.,
frequency or time domain entropy) or functional connectivity
(i.e., coherence, phase lag index, and synchronization likelihood,
and others) are able to extract different information from the
signals of resting state networks than absolute and relative
power can (Babiloni et al., 2019). Signal complexity seems to
be reduced in MCI compared with healthy OA, although there
are only few studies, including MCI, in addition to AD cases
(Sun et al., 2020). Functional connectivity in MCI has been
reported both as increased or decreased compared with healthy
OA (Lejko et al., 2020). This might be due to pathophysiological
as well as compensational processes present in MCI (Lejko et al.,
2020). Future studies should use these advanced measures in the
oldest-old samples to clarify if they can add findings that spectral
analysis was not able to disentangle.

Conclusion and Outlook
In this study, the rsEEG during EC and EO conditions of OAwith
and without cognitive impairments was studied. MCI was not
related to detectable changes in EEG power during rest, neither
for EC nor EO, compared with healthy individuals. Reactivity
in any frequency band was also not different between groups of
different cognitive status. With this sample of individuals in their
80’s, it was challenging to differentiate between cognitive deficits
caused by aging processes and actual pathological changes,
indicating MCI. However, by including only the participants
of very old age, it was possible to generate rsEEG data for an
understudied age sample, which can help to establish normative
data and is maybe better transferable to the clinical context,
where the majority of individuals being diagnosed with MCI and
dementia is rather old.

The present study results are strictly cross-sectional, and,
therefore, no statements on the trajectory of neuropsychological
performance and electroencephalographic parameters can be
made. All the participants were part of a longitudinal study
at the Chemnitz University of Technology, Germany (SENDA,
sensor-based systems for early detection of dementia), and
measurements were repeated up to three times in intervals of
8 months. In the future, additional data analysis will be carried
out. This will have two main advantages: (1) the validity of the
MCI diagnosis can be increased by including neuropsychological
data of more than one time point (Albert et al., 2011) and (2)
the predictive value of EEG parameters for the further cognitive
decline can be studied. So far, the accuracy obtained from such
studies is not high enough for clinical applications but they are
more promising than cross-sectional comparisons (Yang et al.,
2019).
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