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receptor: Significance in the pathogenesis
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Abstract

Comeplex regional pain syndrome is an extremely painful condition that develops after trauma to a limb. Complex regional
pain syndrome exhibits autoimmune features in part mediated by autoantibodies against muscarinic-2 acetylcholine (M2)
receptor. The mechanisms underlying the M2 receptor involvement in complex regional pain syndrome remain obscure.
Based on our recent work demonstrating that limb nerve trauma releases a potent proalgesic, immunodominant myelin basic
protein fragment, our present sequence database analyses reveal an unexpected and previously undescribed structural
homology of the proalgesic myelin basic protein fragment with the M2 receptor. As both complex regional pain syndrome
and the proalgesic myelin basic protein activity are prevalent in females, this myelin basic protein/M2 homology presents an
inviting hypothesis explaining the mechanisms of autoimmune pathogenesis and sexual dimorphism that underlies vulnera-
bility toward developing complex regional pain syndrome and other pain states with neuropathic features. This hypothesis

may aid in the development of novel diagnostic and therapeutic strategies to chronic pain.
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Complex regional pain syndrome (CRPS) is an exceed-
ingly painful and refractory condition that develops after
trauma to a limb.'” Patients with CRPS present with
homotopic sensory, autonomic, motor, skin and bone
changes (e.g., limbs hot or cold, swollen or thin, red or
blue, with scaling or clammy skin, and localized osteo-
porosis) and, most importantly, pain. The classic expres-
sion of this syndrome was described first by Weir
Mitchell in 1864* in battlefield patients suffering soft
tissue injury and fractures. In patients so afflicted, the
characteristic pain phenotype was a burning dysesthesia
and the intolerability of low-threshold mechanical stim-
ulation, such as even a slight air movement on their skin
(tactile allodynia). While mechanisms underlying this
syndrome have been at best controversial, recent work
has provided novel insights into the unifying role of
adaptive immunity. Here, we describe an unexpected
structural homology between an immunogenic peptide

formed due to nerve injury and a structurally homolo-
gous epitope present on nociceptive afferents.

CRPS as an autoantibody-mediated
syndrome
While CRPS has been long thought to arise as a

result of an inflammatory process, more current work
has it to be deemed an autoimmune condition.! 3> 12
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Table I. Sequence alignment of the proalgesic, immunodominant 68-100 region of MBP and
the intracellular 291320 region of muscarinic acetylcholine M2 receptor.

Myelin basic protein
Human
Mouse

Muscarinic 2 receptor
Human
Mouse

68-AHYGSLPQKSHGR-TQDENPVVHFFKNIVTPRTP-100
THYGSLPQKSQHGR-TQDENPVVHFFKNIVTPRTP

291-AVASNMRDDEI-TQDENTVSTSLGHSKDENS-320
AVASNMRDDEI-TQDENTVSTSLGHSKDDNS

MBP: myelin basic protein.

Several observations lend strong support to this asser-
tion. (i) The passive transfer of serum immunoglobulin
G (IgG) antibodies from a CRPS patient, but not a
normal patient, elicits CRPS-like pathology in mice.>°
(i1) Intravenous infusion of immunoglobulin reduced
pain in patients with long-standing CRPS.' > (iii) In a
murine tibial fracture and cast immobilization model of
CRPS, B-cell depletion in mice treated with CD20-
neutralizing antibody or genetically lacking the ability
to produce IgM (UMT mice) attenuated pain, which
resumed after injection of serum IgM autoantibodies
from wild-type to pMT-fracture mice.”'® Against this
assertion serves the evidence from the multicenter ran-
domized blinded placebo-controlled trial that 0.5 g/kg
intravenous immunoglobulin immunotherapy produced
no Dbenefit in CRPS compared with placebo-
treated patients.®

Nerve injury after limb trauma has been considered as
a contributing factor of CRPS,' and limb fracture has
been suggested to produce neoantigens in the skin,
nerve, and cord, which trigger B cells to secrete IgM
antibodies that bind those antigens and initiate a pro-
nociceptive antibody response.'’'? One such target
which may contribute to the pathogenesis of CRPS is
myelin basic protein (MBP).

MBP is a pivotal autoantigen in nerve injury
pain states

MBP, a major component of the myelin sheath, is an
intrinsically disordered, cationic protein, interacting
with polyanionic cellular partners.'*'> The centrally
located 68-100 region of MBP (MBP68-100: residues
are numbered according to the GenBank AAHO08749
human MBP sequence, Table 1) includes a functionally
important and strictly conserved «-helix. In the course of
several autoimmune demyelinating conditions, including
multiple sclerosis and Guillain-Barré syndrome, this
major immunodominant epitope region is liberated by
proteases of the cathepsin and metalloprotease fami-
lies'* ' and functions as a highly immunogenic autoan-
tigen. In rodents, we find the same peptides within the
MBP68-100 region are released in response to physical
peripheral nerve trauma.'®'®

Injection of peptides encoding the MBP68-100 region
into an intact sciatic nerve is sufficient to produce a
T-cell-dependent tactile allodynia lasting for several
weeks; whereas, the control and scrambled peptides are
inert.!” ' The MBP68-100 peptides are released in the
nerve preceding morphological signs of demyelination,
at day 1 after sciatic nerve chronic constriction injury
(CCI),"® suggesting release through a localized and pre-
cise proteolytic event. The IgM autoantibodies contrib-
ute to pain in a mouse model of CRPS>'? and serum
IgM autoantibodies against the algesic MBP epitopes
persist in CCI allodynia.?® These data led us to suggest
that MBP68-100 mediates tactile allodynia in the
absence of overt neuropathological findings and contrib-
utes to autoimmune pathogenesis of neuropathic pain
phenotypes  mediated by  myelinated  A-affer-
ent fibers.'”?!

The MBP and muscarinic acetylcholine M2
receptor homology model of pain

The cholinergic muscarinic-2 (M2) receptor is a G
protein-coupled receptor encoded by the CHRM2 gene
in humans. The M2 receptor has been found to be
expressed in small primary nociceptive afferents, satellite
cells and dorsal root ganglia (DRGs).?*** The M2 recep-
tor elicits an inhibitory role on primary nociceptive
afferents, and its levels are upregulated after peripheral
nerve axotomy.>* Serum autoantibodies directed against
M2 receptor have been detected in a subset of
CRPS patients."!

In our searches in the sequence databases, we unex-
pectedly observed a sequence homology between the
algesic MBP fragments and the intracellular 291-320
region of M2 receptor (Table 1). Here, we suggest that
the cryptic MBP68-100 epitopes comprising the
TQDENPYV sequence are released from the intact MBP
protein as a result of minor nerve/myelin injury associ-
ated with limb trauma (Figure 1). These anti-MBP auto-
antibodies would cross-react with the intracellular
(TQDENTY) 302-308 residues of M2 receptor. The
resulting autoantibody binding would interfere in
the physiological balance of acetylcholine and the M2
receptor and its inhibitory action on primary afferents.
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Figure 1. MBP/acetylcholine receptor homology model of pain (a hypothesis diagram). In peripheral nerve, the muscarinic acetylcholine
M2 receptor signaling is inhibitory on primary nociceptive afferents. Following nerve injury, degradation of myelin basic protein (MBP)
causes the release of the cryptic epitope comprising TQDENPV sequence (1) and generation of the reactive immunoglobulin (e.g., IgM)
autoantibody (2). The antibody cross-reacts with the intracellular TQDENTYV sequence of the M2 receptor (3). In addition, the MBP68-
100/TQDENPYV directly interferes with the intracellular M2 receptor/TQDENTYV interactors and downstream signaling cascades. The
resulting interference with the inhibitory M2 receptor signaling (4) leads to pain facilitation (5). MBP: myelin basic protein.

This endogenous process of molecular mimicry
would contribute to cross-activation of autoreactive
T and/or B cells. In addition, the nerve injury-released
MBP68-100 residues may interfere with the M2 receptor
binding to interactors and downstream signaling cas-
cades in an autoantibody-independent manner.
This MBP68-100-mediated interference with the inhibi-
tory action of the M2 receptor would contribute to sus-
tained sensitization of afferents and the development of
persistent pain states (Figure 1). As the MBP68-100 res-
idues are conserved in human and rodents (Table 1), the
proposed mechanism likely relates to clinical pain and
preclinical pain-like behaviors.

Our model does not exclude a possibility of the anti-
M2 receptor autoantibody production and interaction
with the M2 receptor on the afferent. Whether and
how anti-M2 receptor or anti-MBP autoantibodies con-
tribute to pain remain obscure. Insofar, neural-targeted
autoantibodies are thought to stimulate nociceptive sig-
naling by fixing complement, interfering with the physi-
ological activity of an antigen or via the immunoglobulin
Fc-receptor activation on afferents.?” ! Despite the sys-
temic circulation of the autoantibodies, CRPS presenta-
tion is highly localized.

CRPS is defined by a region-confined course or
injury-triggered, regionally restricted autoantibody-
mediated autoimmune disorder with minimally destruc-
tive course.” Similarly, in the CCI mononeuropathy
model, unilateral tactile allodynia despite the systemic
circulation of the autoantibody against the algesic

MBP?° may imply a focal afferent (e.g., nodal/parano-
dal** or DRG soma) site of the autoantibody action in
pain. It remains possible that a serum autoantibody rep-
resents a byproduct rather than a pathogenic factor in
nociceptive circuits.

Spontaneous onset CRPS, without evidence for a pre-
cipitating noxious event, occurs in 3% to 11% of cases.
CRPS may also be triggered by a noxious event remote
from the affected limb, such as spine surgery or
stroke.**** Clinical presentation of CRPS is similar, irre-
spective of the presence or the source of a noxious
event.>* Thus, localized proteolytic release of MBP68-
100 observed in the absence of overt pathology,!” and
its robust proalgesic action in an intact nerve'’'? imply
the potential role of MBP68-100 in both spontaneous
and remote onset CRPS.

Sexual dimorphism of painful and
autoimmune disorders

Like most known autoimmune disorders,*>3® CRPS is
disproportionally more prevalent in females (ratio to
males is 4:1). Autoantibodies against muscarinic recep-
tor and MBP have been linked to painful, autoimmune,
female-prevalent disorders, Sjogren’s syndrome and
multiple sclerosis, respectively. Importantly, recent find-
ings of our group suggest that autoantibody production
against the proalgesic MBP peptides is prevalent in
female, relative to male, rodents post-CCI.37 Seminal
findings demonstrate female-selective involvement of
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the adaptive T-cell-dependent tactile allodynia mecha-
nisms in mice with peripheral nerve injury.*® While this
latter work did not implicate specific antigens, MBP is a
likely candidate. The T-cell-dependent proalgesic MBP
action,'” prevalent in females,?’ likely contributes to the
sexual dimorphism phenomena of neuropathic pain.

In conclusion, high sequence homology between
muscarinic-2 receptor and the algesic MBP region
released after nerve trauma may contribute to the path-
ogenesis of pain associated with CRPS and potentially
other painful conditions. Accordingly, we suggest that
therapeutic approaches directed at the pro-nociceptive
MBP sequence, such as the altered mutant ligand,39
may prove useful as non-narcotic analgesics in patients
with CRPS.
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