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Abstract 

Schistosomiasis is a common, neglected parasitic disease caused by Schistosoma mansoni. Availability of two spe-
cific drug oxamniquine and praziquintel for treatment of the disease is a major concern. Recently NAD+ dependent 
lysine deacetylases have been identified as new drug targets in pathogens. Sirtuins are NAD+ dependent lysine 
deacetylases that are involved in a wide variety of vital cellular processes. Amongst them, members of sirtuin’s class1 
proteins are considered to be main target of the drugs. Sirtinol and Salermide are two known inhibitors of Schisto-
soma mansoni Class1sirtuin which is a protein with unknown 3-D structure. Here, we investigate molecular insights of 
interaction between modeled sirtuin1 structure and it’s inhibitors, that were derivatives of Sirtinol and Salermide, to 
prioritize them for their binding affinities with target. A detailed examination of absorption, distribution, metabolism 
and toxicity of these inhibitors has also been included in the study. Finally we found two derivatives of Sirtinol to be 
most appropriate drug candidates for Schistosomiasis.
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Background
Schistosomiasis, one of the most common parasitic dis-
eases in developing countries, is caused by species of 
dioecious blood flukes belonging to the genus Schisto-
soma. After malaria, schistosomiasis is the most impor-
tant tropical disease in terms of human morbidity. Under 
Schistosomiasis control initiative more than 40 million 
doses of Praziquantel have been dispensed in sub-Saha-
ran Africa (Fenwick et al. 2009). Praziquantel is reported 
as the only drug used for mass treatment of schistoso-
miasis (Dömling and Khoury 2010) while Oxamniquine 
is a specific drug for Schistosomiasis mansoni (Cioli 
1993; Fallon 1994). So, availability of the limited drug for 
the disease draws attention towards the search for new 
therapeutic targets as well as development of novel com-
pounds to overcome the prospective threats from resist-
ant strains of schistosomes (Doenhoff et  al. 2008) that 

have been already reported and characterized in endemic 
areas (Melman et al. 2009).

Recently NAD+  dependent lysine deacetylases (His-
tone modifying enzymes) have been identified as new 
drug targets in several pathogen (J Pierce et  al. 2012). 
Sirtuin1 protein in Schistosoma mansoni, a member of 
NAD+  dependent deacetylases family which is phylo-
genetically unrelated to the Zn2+-dependent deacety-
lase (Frye 2000), has been targeted in assays designed to 
study the therapeutic effect of inhibitors (Lancelot et al. 
2013). Sirtuin proteins have been classified into five dif-
ferent classes (I, II, III, IV and U), on the basis of pres-
ence of conserved motifs in their core domain (Religa 
and Waters 2012). Parasitic class I sirtuins, characterized 
by the GAGXSXXXGIPDFRS, PS/TXXH, TQNID and 
HG motifs (Religa and Waters 2012) have been exten-
sively and successfully explored as antiparasitic targets 
(Vergnes et  al. 2002). It has been reported that these 
proteins have vital role in parasite survival by catalyzing 
the deacetylation reaction of acetylated lysine residues of 
nuclear histones and other substrates, with NAD+  as a 
cofactor (Vergnes et al. 2002). Salermide, which induces 
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cell death in S. mansoni by targetting both Sirt1 and Sirt2 
(Lara et al. 2009), is a potential anticancer agent due to it’s 
sirtuin inhibition property. The inhibition of sirtuins has 
been less explored for their therapeutic use against para-
sites. The molecular features of SmSirt2 as well as it use 
for the development of new targets for schistosomiasis 
were explored in a recent studies (Singh et al. 2015; Singh 
and Pandey 2015). In the present paper Sirt1 protein of 
S. mansoni has been used for the study. Due to unavail-
ability of determined three dimensional structure of S. 
mansoni Sirt1 protein molecular insights of the inhibi-
tor protein interaction or their participating residues are 
not known. Here we have modeled a 3-D structure of the 
protein by multi-template homology modeling. After that 
ten derivatives of salermide and sirtinol were screened 
against the modeled structure by docking. For sorting 
the inhibitors according to their druggability they were 
assessed on ADMET parameters.

Methods
Sequence retrieval and phylogenetic analysis
Sirt1 protein sequence of S. mansoni was obtained 
from Uniprot (Acession no. A6XDL2). Physicochemi-
cal properties were predicted by using ProtParam server 
(http://web.expasy.org/protparam/). BLASTp (Altschul 
et  al. 1990) program was used to search similar protein 
sequences against non-redundant protein database in 
NCBI. The Sirt1 amino acid sequence was used as query 
sequence and identical amino acid sequences present in 
different species were selected for further study (Table 1). 
The Multiple Sequence Alignment of protein sequences 
was performed using ClustalW 2.0.10 program (Larkin 
et al. 2007). MEGA5.2 (Tamura et al. 2011) was used for 
constructing and analysing the phylogenetic tree. The 
neighbor-joining method (Saitou and Nei 1987) was used 
to get the information of evolutionary history. All the 
characters were having equal probability for transition. 
The 10,000 replicates of bootstrap consensus were taken 
to represent the evolutionary history of the taxa (Felsen-
stein 1985). Branches having less than 50  % bootstrap 

replicates were sorted out. The percentage of replicate 
trees in which the associated taxa clustered together in 
the bootstrap test (1000 replicates) is shown next to the 
branches. The tree is drawn to scale with branch lengths 
in the same units as those of the evolutionary distances 
used to infer the phylogenetic tree. The evolutionary 
distances were computed using the Poisson correction 
method and are in the units of the number of amino acid 
substitutions per site. All positions containing gaps and 
missing data were eliminated from the dataset (complete 
deletion option). BioEdit 7.0.2 (Hall 1999) has been used 
to calculate the entropy.

Multi‑template homology modeling of Sirt1 protein
PSI-BLAST (Altschul et  al. 1997) algorithm was used 
against the Protein Data Bank (www.pdb.org) to search 
homologous sequences having 3D structure solved by 
experimental techniques. After PSI-BLAST search 50 
protein structures were found then after three structures 
having PDB ID 2hjh, 4i5i and 4iao matching with differ-
ent positions of query sequence were used as a template. 
Multi-template modeling was performed by MODEL-
LER 9.10 (Šali and Blundell 1993). Homology modeling of 
was done by the steps: template selection from psi-blast, 
sequence multiple template alignment, multiple model 
building, evaluation of model, model refinement and 
model validation (Martí-Renom et al. 2000).

Protein structure optimization, quality assessment 
and visualization
MODELLER generated several preliminary models 
which were ranked based on their DOPE and GA scores. 
Models with low DOPE score were selected and stereo 
chemical property of each model was checked by PRO-
CHECK. The model which having low DOPE score and 
least number of residues falling in disallowed region 
in Ramachandran plot was selected for further study. 
ProSA-Web server (Wiederstein and Sippl 2007) was 
used to check the quality of models, energy and stereo-
chemical geometry.

Table 1  Comparison of DOPE score, quality factor determination through ERRAT and stereochemical property generated 
by Ramachandran plot of five models predicted through MODELLER

Residues in most 
favored regions

Residues in additional 
allowed region

Residues in generously 
allowed region

Residue in disal‑
lowed region

DOPE Score Overall quality 
score errat

Model1 0.858 0.125 0.009 0.009 −43,519.9 53.971

Model2 0.906 0.083 0.009 0.002 −44,363.7 60.000

Model3 0.875 0.112 0.009 0.004 −43,488.5 48.381

Model4 0.877 0.116 0.004 0.002 −43,591.1 56.883

Model5 0.891 0.096 0.011 0.002 −43,627 55.052

http://web.expasy.org/protparam/
http://www.pdb.org
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Active sites prediction and ligand designing
Active site in the protein model were identified by using 
DoGSite sever (Volkamer et al. 2012). Scoring was based 
on a linear combination of the three descriptors volume, 
enclosure and hydrophobicity for all the pockets present 
in the protein.

Sirtinol and Salermide are two known lead compounds 
against the Sirtuin Protein. Four derivatives of saler-
mide were generated by using Zinc database on the basis 
of similarity. The four derivatives of sirtinol were con-
structed by Chemsketch11.0.[ACD/Structure Elucidator, 
version 11.0, Advanced Chemistry Development, Inc., 
Toronto, ON, Canada, www.acdlabs.com, 2008].

Molecular docking
Pre-docking steps were performed with the help of 
AutoDockTools 4.2 in which grid was generated near 
the active site residue Ala103 (GlyAlaGly domain) (Mor-
ris et  al. 2009). Molecular docking was performed by 
Autodock 4.2. Flexible docking algorithm was used to 
check the interaction between ligand and protein. Aver-
age Grid points used in this docking were (60, 60, 60) 
and centre of ligand was approximately as coordinates: 
[−3.879 36.765 93.619]. Grid point spacing was 0.375Å. 
Lamarckian genetic algorithm (LGA) was used for 
docking.

ADMET screening
In order to rank the putative drug candidates on the basis 
of Absorption, Distribution, Metabolism, Excretion and 
Toxicity (ADMET) properties the structures of saler-
mide, sirtniol and eight derivatives were done by using 
admetSAR (Cheng et  al. 2012). First the structures of 
ligand PDB files were converted to SMILEs files by using 
Online SMILES Translator and Structure File Genera-
tor of National cancer Institute (http://www.cactus.nci.
nih.gov) and these files were used as input for ADMET 
prediction.

Results and discussion
Physicochemical properties
The S. mansoni. Sirt1 protein is 568 amino acids long 
and was predicted to have a molecular weight of 63,262.3 
Daltons with an isoelectric point (pI) of 4.71. Sirt 1 has a 
Negative GRAVY index of −0.513 which is indicative of a 
hydrophilic and soluble protein.

Homology modeling and structure validation
The selected template protein’s PDB IDs are 2hjh, 4i5i 
and 4iao. These template proteins showing 40, 46 and 
46 % identity with target protein sequence, respectively. 
The multiple template modeling was done by using these 
three protein structures.

For selection and validating the modeled structure 
(Fig.  1) obtained from the Modeller 9.13, DOPE score 
and Ramachandran plot was drawn using PROCHECK 
(Ramachandran plot has been shown in Additional 
file  1: Figure S1), quality score generated by ERRAT 
server were used. On the basis of DOPE score value 
(Table  1) model2 was selected for the further down-
stream analysis. Selected model subjected for validation 
step by`analyzing steriochemical property and quality 
score generated by ERRAT server. Steriochemical prop-
erty and ERNET score of all the modeled structures are 
compared (Table  1). Ramachandran plot of Selected 
model are shown in Additional file 1: Figure S1 have the 
phi/psi angles of 90.6 % residues are in the most favored 
region, 8.3  % residues are in additional allowed region, 
0.9 % residues are in generously allowed region and 0.2 % 
residues are in disallowed region (Additional file 1: Figure 
S1). Analysis suggested that model2 is best representative 
of Sirt1 with respect to Ramachandran plot and ERNET 
score and further selected for downstream analysis.

The overall protein quality and its structural deviation 
from the total energy were measured by Z-Score (Addi-
tional file  1: Figure S2). The black point in Additional 
file  1: Figure S2 represents the Z-score of the protein. 
Groups of structures determined from different source 
(NMR, X-ray) are distinguished by different color (NMR 
with dark blue and X-ray by light blue color). The plot of 
Z-Score represents value of the modeled protein of Schis-
tosoma mansoni is (4.5) is located within the space of 
proteins related to NMR. The modeled protein’s Z-Score 
is within the acceptable range (−10 to 10, negative 
Z-score are good and depend on length of protein).

Modeled protein has large number of insertion in both 
the terminals (Fig. 1). Explicitly blast tool was used to find 

Fig. 1  3-D model of sirtuin1 protein of Schistosoma mansoni pre-
dicted by multi-template modeling

http://www.acdlabs.com
http://www.cactus.nci.nih.gov
http://www.cactus.nci.nih.gov
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sequence similarity of inserted regions but it did not give 
any kind of similarity with existing annotated sequences.

Active site prediction
The probable binding sites and other sub binding site were 
detected in the predicted model of sirt1 and analyzed in 
terms of their geometrical, as well as physico-chemical prop-
erties. The DoGSite Scorer predicts eighteen binding pockets 
in terms of calculated descriptors as shown in Table 2. The 
ligand generally forms favorable interactions with the bind-
ing sites having largest interacting cavity, so active pocket 
P0 can be predicted as potential binding pocket. Amino-
acid composition descriptors calculate the values in term of 
non-polar amino acid ratio, polar amino acid ratio, positively 
charged amino acid ratio and negatively charged amino acid 
ratio and they are 0.45, 0.34, 0.22 and 0.09 respectively. The 
most favorable binding site contains amino acids with high 
conserved residue score and amino acid residues: Ala, Arg, 
Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, 
Ser, Thr, Trp, Tyr and Val are responsible for constituting 
potential active-site of situin1 structure.

Molecular docking
For the molecular docking, reported inhibitors of class I 
sirtuin known as sirtinol and salermide were selected. In 
this study we have generated four derivatives each of sir-
tinol and salermide. The structures of ten inhibitors have 
been shown in Fig. 2. These selected ligands further used 
for for comparative docking with Sm SirtI and Hs SirtI. 
The binding affinity of sirtinol and salermide is −10.36 and 
−11.25 kcal/mol with respect to Sm sirtuin1 respectively. 
For Homo sapiens Sirtuin1 the binding affinity of sirtinol 
and salermide is −10.77 and −9.94 kcal/mol respectively. 
The sirtinol inhibitor shows slightly higher binding affinity 
towards Hs Sirt1 with respect to Sm Sirt1. Data of docking 
results has been summarized in Table 3. 2-D plots of the 
interaction of ten inhibitors with Human Sirt 1 has been 
shown in Additional file 1: Figure S3, and the 2-D plots for 
interaction of  ten inhibitors with Schistosoma Sirt1 has 
been shown in Additional file 1: Figure S4. 

ADMET screening
Druggability and toxicity of ten drug candidates were 
assessed on the basis of 23 ADMET parameters. The 
results of ADMET screening have been shown in Addi-
tional file 1: Table S1.

Phylogenetic analysis
The Neighbor-Joining method was used to construct 
the phylogenetic tree. The minimum branch length 
lies between S. mansoni and Schistosoma haemato-
bium, Schistosoma japonicum, Clonorchis sinensis 
0.00, 0.06 and 0.25 respectively. In Fig.  3 the phylo-
genetic tree with bootstrap value are shown, that is 
approximately 100 for similar sequences. The per-
centage of replicate trees in which the associated 
taxa clustered together in the bootstrap test (10,000 
replicates) is shown next to the branches. The p dis-
tance model was used to construct the evolutionary 
distances and branch length represents the number 
of expected amino acid substitutions per site. On the 
basis of evolutionary distance of 20 sequences, as 
mentioned in Table  4, related with sirt1 protein phy-
logenetic tree was constructed and two major clades 
were obtained and bootstrap values were also calcu-
lated through neighbor-joining method.

Discussion
Previous studied by Lancelot et al. depicts that tran-
scriptional knockdown of SmSirt1by RNA interfer-
ence in Schistosoma led to morphological changes 
in the ovaries characterized by a marked increase in 
mature oocytes, reiterating the effect of sirtuin inhib-
itors and suggesting that SmSirt1 may act as principal 
drug target. The stability of different drug-receptor 

Table 2  Pockets and  descriptors calculation for  Sirtuin1 
model

Name Volume [Å]3 Surface [Å]2 Lipo sur‑
face [Å]2

Depth [Å] Simple 
score

P0 2117.23 2817.48 1667.61 27.66 0.6

P1 665.35 852.27 558.99 18.26 0.44

P2 605.27 765.08 445.91 16.5 0.33

P3 482.42 960.84 633.42 12.77 0.32

P4 442.11 793.97 462.03 16.59 0.24

P5 281 618.08 400.35 13.89 0.15

P6 241.21 180.08 175.7 18.94 0

P7 213.87 330.72 200.03 8.92 0.04

P8 196.15 322.3 206.77 10.56 0

P9 186.27 436.36 274.88 10.81 0

P10 183.57 233.86 187.31 10.71 0

P11 167.65 409.83 251.77 9.69 0.02

P12 144.29 285.9 169.88 7.47 0

P13 138 416.77 291.98 9.49 0

P14 135.17 336.34 263.55 9.61 0

P15 130.3 359.5 268.5 8.44 0

P16 122.72 361.74 153.14 6.71 0

P17 115.41 179.24 149.15 10.5 0

P18 112.84 247.52 203.21 9.15 0.05

P19 112.07 299.23 219.08 7.94 0

P20 111.81 343.81 194.84 10.21 0

P21 105.14 200.69 145.01 6.16 0

P22 103.34 112.15 76.41 11.79 0
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Fig. 2  Selected ligands and their analogs used of molecular docking with hSirt1 and SmSirt1. Sale1–4 represents the analogs of salermide and 
sirt1–4 represents derivatives of sirtinol

Table 3  Docking results of Human and pathogen Sirtinol1 proteins with 10 drug candidates

Ligand Binding affinity with  
host Sirt1 (kcal/mol)

Binding affinity with  
pathogen sirt1 (kcal/mol)

Pathogen Sirt1 Host Sirt1

Ligand efficiency IC(nM) Ligand efficiency IC(nM)

Sirtinol −10.77 −10.36 −0.35 25.57 −0.36 12.78

Sirtinol1 −9.25 −11.01 −0.36 8.5 −0.3 165.4

Sirtinol2 −5.44 −11 −0.35 8.95 −0.18 0.10333

Sirtinol3 −5.53 −9.2 −0.29 180 −0.17 0.08797

Sirtinol4 −10.51 −10.33 −0.33 26.95 −0.34 19.9

Salermide −9.94 −11.25 −0.36 5.62 −9.94 52.09

Salermide1 −7.53 −8.34 −0.4 769.44 −7.53 0.00304

Salermide2 −8.43 −5.31 −0.2 127.58 −8.43 666.91

Salermide3 −8.21 −6.35 −0.19 22.22 −8.21 960.99

Salermide4 −8.57 −9.48 −0.36 112.13 −8.57 519.85
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complexes on the basis of their docking based bind-
ing affinities suggests that salermide and sirtinol both 
have limited preferential binding affinities for path-
ogen sirt1 protein in comparison to host homolog. 
Docking based screening suggests that sirtinol2 and 
sirtinol3 have considerably higher binding affin-
ity with the parasite receptor (Fig.  4a, b). Sirtinol 1, 
salermide, salermide1 and salermide4 are having 
slightly higher binding affinities with pathogen Sirt1 
protein.

On the other hand the ADMET screening data sug-
gest that sirtinol1 and salermide due to having AMES 
toxicity may not be considered as drug candidate. 
Salermide1 is a predicted carcinogen in the AMES tat 
and salermide4 is a P-glycoprotein inhibitor. Sirtinol3 
has been predicted as a drug candidate which has nei-
ther blood–brain barrier crossing nor human intestine 
absorption capability. So, this may have prospects of 
being used as injection drugs that are directly mixed in 
blood. Further sirtinol2 is also a promising drug candi-
date for treatment of Schistosmiasis. Though sirtinol2 
is not having blood brain carrier permeability but it 
is not a major issue as the location of the pathogen in 
host is intestine.
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Fig. 3  Phylogenetic analysis of sirtuin1 protein homologues from 20 species was constructed by the neighbor-joining method using the MEGA 5.2 
program. Bootstrap values are indicated against each branch. Phylogenetic analysis showed two large clusters of ESX homeobox-1 protein

Table 4  Sirtuin1 protein of  S. mansoni sequence and  its 
different homologues of  species with  their length 
and NCBI accession code

S. No. Organisms Acession no. Length

1 Schistosoma mansoni KGB39559.1 568

2 Schistosoma japonicum CAX8242.1 410

3 Schistosoma haemotobium KGB39559.1 683

4 Clonorhis sinensis GAA56043.1 600

5 Echinococcus granulosum CDS22978.1 740

6 Zootermopsis nevadensis KDR10345.1 882

7 Pediculas humans coporsis XP_002432110.1 590

8 Drosophila melangoaster AA047879.1 483

9 Rhizoctonia solani EUC5131.3 535

10 Aspergillus oryzae XP_001820107.2 493

11 Merops nubicus KFQ33949.1 602

12 C. higginsianum EFQ33543.1 532

13 Pencillium expansum KGO37944.1 486

14 Nestor notabillis KFQ50963.1 602

15 Ophiostoma piceae EPE06021.1 631

16 Pseudozyma antarctica GAK62857.1 584

17 Dichomitus squalens XP_007362890.1 581

18 Picoides pubescens KFV72792.1 601

19 Aplysia californica XP_005095144.1 922

20 Apis mellifera XP_006569399.1 865
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Conclusions
Aim of this study was to design and screen new drugs 
for treatment of Schistosomiasis which is a disease 
prevalent in tropical regions of the world. We have 
screened two drug candidates named as sirtinol2 and 
sirtinol3, both are derived for the structures of sirtinol, 
a reported inhibitor of Schistosoma mansoni. There is 
need to search the druggability of the screened drug 
candidates which may prove to be promising in the way 
of providing low cost and safe drugs to the needy pop-
ulation in the society. This study will trigger the drug 
development and prospective clinical trial process for 
schistosomiasis may prove to be a milestone to new 
drug discovery.
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Fig. 4  a Interaction between sirt2 inhibitor and pathogen sirtuin1 protein. b Interaction between sirt3 inhibitor and pathogen sirtuin1 protein
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