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Clinical photodynamic therapy (PDT) schedules are based on the assumption that optimum drug – light intervals are times at which
there is a maximum differential between photosensitiser retention in the tumour and surrounding normal tissue. However, vascular-
mediated effects contribute to tumour destruction by PDT; therefore, plasma sensitiser levels and endothelial cell drug exposure
could also be important determinants of PDT response. The purpose of this study was to investigate the influence of tumour, tissue
and plasma concentrations of the photosensitiser Foscans (meta-tetrahydroxyphenylchlorin, mTHPC) on PDT response. Groups of
BalbC nude mice, bearing human mesothelioma xenografts (H-MESO1) were injected (i.v.) with a single dose of 14C-labelled
mTHPC, or with two doses, separated by 72 h. Drug levels in plasma, tumour and normal tissues were measured at 5 min to 120 h
after drug administration. The PDT tumour and skin responses were evaluated by illuminating separate groups mice at intervals of
5 min to 120 h after injection of Foscan (nonlabelled). Drug levels in both tumour and skin increased during the first 24 h after a single
injection, and remained almost constant for at least 120 h. The second injection produced a further, rapid increase in mTHPC levels in
tumours and skin, with steady state being maintained from 20 min to 120 h. By contrast, PDT response of both tumours and skin
were maximal for illumination at 1 – 3 h after drug, with very little response when illumination was given 48 – 120 h after drug. There
was no significant correlation between tumour or skin drug level and PDT response. There was, however, a significant correlation
between plasma drug levels and tumour or skin response, excluding an initial distribution time of 20 min. These studies demonstrate a
pronounced disassociation between tumour drug levels and optimum drug – light intervals for PDT response with Foscan. We
suggest that the PDT effect, in both tumours and normal tissues, is largely mediated via vascular damage and that the selectivity of
PDT is not based on differential tumour drug uptake.
British Journal of Cancer (2003) 88, 283 – 290. doi:10.1038/sj.bjc.6600682 www.bjcancer.com
& 2003 Cancer Research UK

Keywords: photodynamic therapy; Foscan; pharmacokinetics; vascular damage

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Photodynamic therapy (PDT) is increasingly used as a treatment
for small localised tumours or as an adjuvant to debulking surgery
for more advanced disease. The principle of PDT involves
administration of a photosensitiser, followed by a distribution
interval, and subsequent illumination of the tumour area with light
of an appropriate wavelength to excite the sensitiser to its triplet
state. The ensuing photochemical reaction is dependent on the
presence of oxygen and generates singlet oxygen and free radicals.
These toxic species are highly reactive and short lived; therefore,
the resultant tissue damage occurs very close to the site of
production.

The photosensitiser used in this study, meta-tetrahydroxy-
phenylchlorin (mTHPC, trade name Foscans), is a pure chemical with
a strong absorption peak in the red part of the spectrum (652 nm).
Foscan is one of the most potent photosensitisers currently
available for clinical use. Clinical protocols for PDT are based on
the assumption that optimum intervals between photosensitiser
administration and illumination are times at which there is a
maximum differential between drug retention in the tumour and in
surrounding normal tissue. For Foscan-PDT, a drug – light interval

of 4 days is usually chosen. The relation between optimum drug
dose, light dose and drug – light interval is, however, complex and
there is little systematic data available to relate these parameters to
tumour response and normal tissue toxicity.

Distribution studies in experimental animals have demonstrated
that Foscan levels increase in tumours from 1 to 3 days after
injection, whereas drug levels in many normal tissues remain
constant or decrease over the same period (Alian et al, 1994; Peng
et al, 1995; Whelpton et al, 1995, 1996; Veenhuizen et al, 1997a).
This leads to differential drug levels in tumour vs normal tissue at
2 – 4 days after injection. Early clinical data in mesothelioma
patients also demonstrated good selectivity, with drug concentra-
tions in the tumour of 5 – 14 times that in surrounding normal
tissue (pulmonary artery, bronchus, muscle and skin) at 2 – 3 days
after drug administration (Ris et al, 1991; Braichotte et al, 1992). A
study of PDT for metastatic gynaecological cancer (Wierrani et al,
1997) also demonstrated concentration ratios of 3 – 6 for tumour/
fatty tissue (retroperitoneal pelvic wall area) in a series of patients
biopsied at 4 days after Foscan. However, despite the generally
impressive differentials seen between tumour and normal tissue
sensitiser levels, a truly selective tumour necrosis is seldom seen
after PDT.

Tumour destruction by PDT can occur either as a direct result of
tumour cell killing or as a secondary consequence of vascular
collapse (Henderson et al, 1985; Star et al, 1986). The endothelial
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cell has been identified as an early target for PDT damage and
there is abundant evidence for the importance of vascular-
mediated effects after in vivo PDT using Foscan and other
photosensitisers, like Photofrin (Fingar et al, 1990, 1992). In the
light of this information, it would seem logical to shift the
emphasis in clinical PDT from targeting the tumour cell to
targeting the vasculature. The consequences of vascular damage
are predicted to be much more severe for tumours than for normal
tissues, which have a more robust and extensive vascular network.

Several experimental studies have identified a discrepancy
between times of maximal tumour drug uptake and optimum
illumination intervals for the best tumour effect, both for Foscan
and for other photosensitisers (Ris et al, 1993; Morlet et al, 1995;
Veenhuizen et al, 1997a, b) . Optimum illumination intervals are
usually considerably shorter than times for maximal loading of the
tumour with sensitiser. We hypothesise that it is exposure of the
endothelial cells of vessels feeding the tumour to the sensitiser that
determines tumour response, and that this is more closely reflected
by plasma levels than by tissue levels of photosensitiser. If a
correlation between plasma drug levels and tumour response is a
general phenomenon, then drug – light intervals of a few hours
could be considered for some clinical protocols.

Short drug – light intervals will probably not be suitable for large
surface area PDT, where normal tissue toxicity is dose-limiting.
However, many applications of PDT involve focal illumination of
relatively small areas, and it has even been argued that necrosis of
a margin of normal tissue surrounding the tumour is required to
achieve cure. Illumination at shorter, more effective, time intervals
might allow the drug dose to be lowered, thus reducing the risk of
generalised skin photosensitivity. To achieve an optimal PDT
effect, the sensitiser dose, time interval between drug injection and
illumination, and the light dose should be finely titrated. A greater
understanding of the relation between plasma/tissue drug levels
and tumour response or normal tissue toxicity would facilitate
such a process.

In this study, Foscan distribution at different times after drug
delivery is compared with the PDT response of the tumour and
normal skin for illumination at the same time points.

MATERIALS AND METHODS

Animals and tumour model

All experiments were carried out in accordance with protocols
approved by the local experimental animal welfare committee and
conformed to national and European regulations for animal
experimentation. Female nude BalbC mice (weighing 21 – 30 g, at
an age of 12 – 26 weeks) were used for all experiments. H-MESO1
(human mesothelioma xenograft) tumour fragments from a
subcutaneous donor tumour were implanted on the lower dorsum.
Tumour growth was documented twice a week using callipers. The
untreated tumours had a volume doubling time of about 15 days.
Pharmacokinetic measurements or PDT were performed when
tumours had reached a maximum diameter of 8 mm and a depth of
at least 3 mm.

Determination of 14C-mTHPC levels in tissues

Mice (six per group) were killed 5 min to 120 h after an intravenous
injection (tail vein) of 14C-labelled mTHPC (0.3 mg kg�1), dis-
solved in ethanol, polyethylene glycol 400 (PEG) and water (2 : 3 : 5
volume ratio). The 14C-mTHPC was provided by Scotia Pharma-
ceuticals Ltd (Stirling, Scotland) and synthesised by American
Radiolabelled Chemicals Inc. (St Louis, USA). Plasma was obtained
by exsanguination of the mice and subsequent centrifugation.
The following organs were then excised: tumour, skin, lung,
heart, liver, kidney, fat (i.p.), muscle, tongue, oesophagus and

diaphragm. After rinsing with saline and blotting dry, the organs
were cut into 2 – 3 samples, each weighing o100 mg, and placed in
preweighed counting vials. Additional experiments were done in a
separate group of mice, perfused via the left ventricle with 5 ml of
saline (0.9% NaCl) to remove circulating blood from the organs
prior to their removal and counting. A measure of 1 ml of
Soluenes-350 (Packard Instrument Company, Groningen, The
Netherlands) was added to the samples and vials were stored for
2 – 3 days until the tissue was dissolved. Ultima Gold MV counting
fluid (15 ml) was then added to each vial before counting in a
Packard tricarb liquid scintillation counter.

In a second experiment, two injections of 14C-labelled mTHPC
(0.3 mg kg�1) were given to each mouse, separated by 72 h. This
was done in order to produce a plasma peak at the time of
maximum tumour loading. The animals were again killed at 5 min
to 120 h after the second injection, and plasma and tissue samples
were collected as described above. 14C-mTHPC levels in the plasma
and tissues were determined as a percentage of the injected dose
per gram tissue or per millilitre plasma. Mean values (71 s.d.) for
groups of six mice were calculated. A second-order exponential
decay (y¼ y0+A1 exp(�x/t1)+A2 exp(�x/t2)) was fitted to the
experimental data to obtain time constants (T1/2) for the clearance
of mTHPC from plasma and various organs.

PDT treatment of tumours

Tumour-bearing mice (eight per group) were injected intrave-
nously with 0.3 mg kg�1 Foscans (kindly provided by Scotia
Pharmaceuticals, Stirling, Scotland). The drug was dissolved in
ethanol, PEG and water, as described above. At 5 min to 120 h after
injection, mice were illuminated with red light of 652 nm
wavelength, while held in restraining jigs. A diode laser (Applied
Optronics Corp., South Plainfield, NJ, USA) was used to deliver a
light bundle of 12 mm diameter to the tumour area, via quartz
fibres with lens applicators (Medlight S.A. Ecublens, Switzerland).
The rest of the mouse was shielded. A fluence rate of 100 mW cm�2

was used to deliver light doses of 5, 10 or 30 J cm�2 to the tumour
surface. In a second experiment, two injections of Foscan
(2� 0.3 mg kg�1) were given, separated by 72 h, and tumours
were illuminated with 30 J cm�2 at 5 min to 72 h after the second
injection.

Tumour size was measured twice per week and the time to
recurrence was calculated as the time taken for a tumour to
increase by 42 mm from a treatment size of 670.5 mm geometric
mean diameter. This represents approximately a 2.5-fold increase
in tumour volume. Tumours that did not regrow within 120 days
were defined as cures and assigned a maximum tumour-free
survival of 120 days for graphical presentation of the results. Cured
mice, and a small number of animals (o5%), which had to be
killed because of sickness before 120 days, but without recurrent
tumours, were entered as censored observations in the statistical
comparison of groups.

PDT treatment of the normal skin

Animals (six per group) were held in restraining jigs and a skin
patch of 13� 8 mm2 on the lower dorsum was illuminated with
652 nm red light. The rest of the mouse was shielded. Superficial
illumination was given (with the diode laser described above)
5 min to 120 h after i.v. tail injection of Foscan (0.3 mg kg�1).
Light doses of 5 or 10 J cm�2 were delivered at a fluence rate of
100 mW cm�2. Control animals received no mTHPC prior to
illumination, or illumination with light of an unsuitable wave-
length (675 nm) at 24 h after Foscan.

Skin damage was evaluated three times per week, by two
independent observers, according to a semiquantitative scale
(Table 1). The percentages of grade 0 – 4 reactions for each skin
patch were calculated to give the mean skin score over the whole
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treated area. The average skin score over a follow-up time of 30
days was then calculated.

Statistics

Comparisons of tumour responses between groups were tested
using the Breslow rank test, which is a generalisation of the
Wilcoxon rank test that allows inclusion of censored observations
and the comparison of more than two groups. A comparison of
average skin reactions according to drug – light interval was done
using the Kruskal – Wallis one-way analysis of variance. The
association between pairs of variables was assessed by means of
the Spearman rank-order correlation coefficient.

RESULTS

Pharmacokinetics and distribution of 14C-mTHPC

Pharmacokinetic profiles after single and double injections of 14C-
mTHPC in tumour-bearing mice are shown in Figure 1. The
plasma levels decreased rapidly and the concentration – time curve
was described by a second-order exponential decay, with T1/2

values of 1.370.4 and 20.973.1 h (mean7s.e.) after the first
injection. T1/2 values for plasma clearance after the second
injection were 1.170.3 and 17.871.7 h, which is not significantly
different from those measured after a single drug dose. This agrees
well with results of a separate study (unpublished results, not
shown), in which the plasma concentration of nonlabelled Foscan
was measured using HPLC. In those studies, the initial drug
concentration in plasma of nude mice was 4079 ng ml�1, at 5 min
after administration of a 0.3 mg kg�1 drug dose. This decreased to
82 ng ml�1 at 48 h, giving T1/2 values of 1.470.3 and 22.074.0 h.

Drug levels in both skin and tumour increased during the first
24 h after a single injection and then remained constant until 120 h.
The data shown in Figure 1 are for samples taken from animals

without saline perfusion, but separate experiments (not shown)
demonstrated that perfusion to remove circulating blood did not
significantly alter the measured drug levels in skin or tumour at
any of the sampling times. After a second injection of 14C-mTHPC,
there was a rapid increase in drug levels in both skin and tumour,
with a steady state being maintained from 20 min to 120 h. These
tissue drug levels were significantly higher than after the single
drug dose (Po0.01 in all cases).

Drug levels in other tissues (from nonperfused mice) after a
single drug dose are shown in Figure 2. Peak drug concentrations
in liver, lung, kidney and heart were all reached within the first
1 – 3 h, and these drug levels were much higher than was seen in
the tumour at any time. Other organs had a more delayed uptake,
similar to that seen in skin and tumour, and drug levels never
exceeded 2% of the injected dose. Drug concentrations measured
at 20 min after injection in perfused animals were lower than in
nonperfused animals in lung, heart and kidney (data not shown).
No other significant differences were seen between measurements
made in perfused and nonperfused mice. There was a slow
elimination of drug from liver and lung, with T1/2 values of
19.774 h and 18.2743.5 h. This is comparable to the T1/2 values
for plasma clearance, but lacks the initial fast clearance phase.
Drug levels in all other tissues remained fairly constant, at near
maximum levels, during the period 3 – 72 h.

Tumour response to PDT

Tumour response (recurrence-free survival) was assessed for
illumination with 30 J cm�2 at 5 min to 120 h after a single injection
of Foscan (0.3 mg kg�1), or after two injections separated by 72 h
(2� 0.3 mg kg�1). These results demonstrated that illumination
intervals of 1, 3 or 6 h were most effective (Figure 3, bottom panel).
There was no significant difference between these groups, either
for illumination after a single drug dose or a double drug dose. At
these times, a total of 70% (single injection) or 60% (double
injection) of mice were cured of their tumours using a light dose
of 30 J cm�2 (Table 2). Illumination at 1, 3 and 6 h after a single
Foscan dose, or at 1 and 6 h after a double dose, was significantly
more effective than illumination at all other intervals (Po0.05).
Illumination at 3 h after the double dose was, however, not
significantly different from 20 min (P¼ 0.09) or 24 h (P¼ 0.25).
Illumination at intervals greater than 24 h was ineffective, with no
cured tumours and very little growth delay compared with
untreated tumours. There was no increase in tumour response
for illumination after the double injection compared with the
single injection and no significant differences between the two data
sets, either within each drug – light interval or overall. Experiments
with lower light doses applied at 20 min to 24 h after a single drug
dose confirmed that the drug – light intervals of 3 – 6 h were the
most effective (Figure 3, top panels and Table 2).

Tumour response to PDT was evaluated as a function of drug
levels in tumour and plasma at the time of illumination. After a
single drug dose, the relation between response and tumour drug
levels was described by a clockwise hysteresis (Figure 4A), with a
poor overall correlation between tumour drug levels and response
(P¼ 0.099). The PDT response increased with increasing drug
concentration during the first 3 h, but for longer intervals the
tumour response decreased markedly, whereas the drug concen-
trations continued to rise by almost a factor of 3 (0.5 – 1.4% of
injected dose). For drug – light intervals 420 min, there was a
negative correlation between tumour response and tumour drug
levels (P¼ 0.52). After a double injection of Foscan, there was a
further increase in tumour drug levels, to a maximum of 2.0 – 2.4%
of injected dose. The accumulation phase was much more rapid
(20 min) and there was no correlation between response and
tumour drug levels (P¼ 0.779).

The relation between tumour response and plasma drug levels
was described by a counterclockwise hysteresis (Figure 4B). During

Table 1 Scoring system for skin reactions

Grade 0: No change in skin colour
Grade 1: Minimal redness
Grade 2: Redness
Grade 3: Deep blue coloration, wound
Grade 4: Scab formation
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Figure 1 14C-mTHPC, as a percentage of the injected dose per gram
tumour (m) or skin (K) or per millilitre plasma (J), expressed as a
function of time after a single drug injection (left panel) or two injections
separated by 72 h (right panel). The results are means (7s.d.) of groups of
six mice.
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the initial distribution phase (20 min after a single or double drug
injection), there was an inverse relation between plasma drug
levels and PDT response. This indicates that the central blood
compartment is not the effector compartment for Foscan-mediated
PDT. At times beyond 1 h, the falling plasma concentrations were
matched by decreasing tumour response to PDT. This pattern was
repeated after the second injection. If all drug – light intervals
(single and double injection) were considered, the correlation
between tumour response and plasma drug levels was not
significant (P¼ 0.078). However, if the distribution times
(20 min) were excluded, there was a highly significant correlation
(Po0.0001) between plasma levels and tumour response.

PDT skin response

PDT damage to normal skin was also assessed for illumination at
5 min to 72 h after a single dose of Foscan (0.3 mg kg�1). Skin
reactions increased over the first 10 days after illumination, with
healing thereafter. The average skin scores over the period 1 – 30
days were calculated and evaluated as a function of drug – light
interval (Figure 5). Neither illumination alone, nor illumination
with an unsuitable wavelength of light at 24 h after Foscan, induced
any measurable skin reaction. The PDT-induced skin damage was
maximal for 10 J cm�2 at 1 – 6 h, with no significant difference
between these three time intervals. Skin reactions for a drug – light
interval of 20 min were slightly lower (P values ranged from 0.05 to
0.07) and reactions for all other intervals were significantly lower
(Po0.004). There was no correlation between skin reactions and
drug levels in the tissue at the time of illumination (P¼ 0.570,
Figure 6A). The relation between skin reaction and plasma drug

levels was described by a counterclockwise hysteresis (Figure 6B),
similar to that seen for tumour response. The correlation between
PDT response and plasma drug levels was, however, not significant
(P¼ 0.111 for illumination intervals 1 – 72 h).

DISCUSSION

The primary objective of this study was to relate pharmacokinetic
and pharmacodynamic parameters for the photosensitiser Foscan
to the extent of PDT damage. Plasma drug clearance in these
mice was biexponential, with T1/2 values of 1.3 and 20.9 h. This
implies a rapid drug distribution into tissue compartments, as
has been demonstrated in several other studies in both mice
and rats (Morlet et al, 1995; Peng et al, 1995; Whelpton et al,
1996). The highest tissue drug levels were seen in liver and lung,
followed by kidney and heart. These are all tissues containing
reticuloendothelial cells, which are known to preferentially
accumulate photosensitisers (Gomer and Dougherty, 1979).
Elimination of drug from both tumour and normal skin was very
slow, with near maximum levels being maintained until at least
120 h.

A comparison of the pharmacokinetic profiles with PDT
responses in tumour and skin demonstrated major discrepancies
between tissue drug loading and optimal illumination intervals for
PDT efficacy. This was particularly apparent for the schedules with
illumination after a double Foscan dose, where a plasma boost was
given at times when tumour drug levels were already high. Tumour
response in these mice varied from 85% cures to no significant
growth delay, depending on the drug – light interval, whereas the
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Figure 2 14C-mTHPC levels in other normal tissues (see text legends), as a function of time after a single drug injection. The plasma clearance curve, from
Figure 1, is reproduced in each panel for comparison (J). Results are expressed as percentage of injected dose per gram tissue and are mean values (7s.d.)
of six mice.
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tumour drug levels remained constant. There was a much closer
correspondence between plasma drug levels and tumour or skin
response, except for illumination during the first 20 min after drug
delivery.

These results are in agreement with our earlier studies on
Foscan-mediated response in a rapidly growing murine tumour
RIF1 (Veenhuizen et al, 1997a). The previous study also
demonstrated a very poor correlation between tumour drug levels
and PDT efficacy, with a much better correlation for plasma drug
levels. Once again, there was an initial distribution time of about

20 min, before illumination effected a PDT response. Other
investigators have also reported a general lack of correlation
between Foscan uptake in tissue and PDT effect, although most of
these studies did not directly compare pharmacokinetics and PDT
response (Ris et al, 1993; Morlet et al, 1995; Veenhuizen et al,
1997b).

One factor that could contribute to a decreasing PDT response,
at longer illumination intervals, is tumour cell proliferation in the
time between drug delivery and illumination. This could have a
diluting effect on drug levels per cell and complicate interpretation
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Table 2 Number of cureda tumours per treatment group for light doses of 5 – 30 J cm�2 applied at various intervals after one or two doses of Foscan

Drug – light interval

Drug dose (mg kg�1) Light dose (J cm�2) 5 min 20 min 1 h 3 h 6 h 24 h 48 h 72 h

1� 0.3 5 — 0/8 0/8 1/8 0/8 0/8 — —
1� 0.3 10 — 1/8 1/8 4/8 4/8 0/8 — —

1� 0.3 30 1/8 2/8 3/7b 8/8 5/8 0/8 0/8 0/8
2� 0.3 30 1/8 1/8 5/7 3/8 5/7 1/7 0/8 0/8

aNo palpable tumour at 120 days after treatment time.
bThis group also included three tumours that did not regrow, but mice were sacrificed with lung metastases before the cure end point time of 120 days.
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of the results in rapidly growing tumours. Such an effect is,
however, very unlikely to be a factor in the response of the slow
growing H-MESO1 tumours, which have a volume doubling time
of 15 – 17 days.

The lack of response in tumour and normal skin, illuminated
during the first 20 min after Foscan (when plasma levels are
maximum), indicates either that the circulating blood is not the
effector compartment, or that the drug is initially in an inactive
form (see below). If the endothelial cells in microvessels feeding
the tumour represent the target population, as we propose, then a
short delay before maximum tumour and tissue response to PDT
would be reasonable. Several studies have used fluorescence
microscopy to investigate Foscan distribution in tissues at
increasing times after administration. Studies in mice transplanted
with CaD2 tumours (Peng et al, 1995) showed strong fluorescence
in the vascular walls of tumour vessels at 1 h after drug delivery,
but low fluorescence in the tumour cells. At 24 h, strong
fluorescence was seen in the cytoplasm of tumour cells, but not
in the surrounding muscle cells. Results from studies using a
Syrian hamster cheek pouch tumour model (Andrejevic-Blant et al,
1997) demonstrated high fluorescence levels in endothelial cells at
8 h after Foscan, with accumulation in squamous epithelial tissues
from 2 to 4 days. Clinical studies in a group of patients treated with
Foscan PDT for gynaecological cancers (Wierrani et al, 1997) or
SCC of the upper airways (Andrejevic Blant et al, 2001) also
demonstrated high fluorescence levels in endothelial and inflam-
matory cells during the first 20 h.

The results from this study demonstrated that Foscan PDT was
relatively ineffective at controlling the regrowth of H-MESO1
xenografts when illumination was given at intervals of 424 h. This
is in agreement with several other studies in rodent tumours and
human xenografts grown in nude mice (Ris et al, 1993; Morlet et al,
1995; Van Geel et al, 1995; Veenhuizen et al, 1997a) , but it differs
from clinical experience. Standard clinical protocols for Foscan
PDT involve illumination with 20 – 30 J cm�2 at 4 days after a drug
dose of 0.15 mg kg�1. Such schedules are clearly effective at
controlling small superficial tumours at sites such as the oral cavity
and upper aerodigestive tract (Dilkes et al, 1996; Grosjean and
Savary, 1996; Fan et al, 1997; Savary et al, 1997) . However, very
few clinical studies have systematically investigated the influence
of changing the drug – light interval while keeping both drug and
light dose constant. It is therefore not clear whether the 4-day
illumination interval commonly employed represents the optimal
treatment time. One clinical study in patients with multiple BCC of
the skin did demonstrate significantly increased complete response
(CR) rates for lesions illuminated at shorter intervals after a low
dose of Foscan (0.1 mg kg�1) than for illumination at 3 – 4 days
(Baas et al, 2001). The CR for lesions treated with 15 J cm�2 at 1 – 2
days was 83% (n¼ 24), compared with a CR of only 37% for
illumination at 3 – 4 days (n¼ 27). These studies are now being
extended to relate the response rate of BCC tumours to plasma and
tumour drug levels at the time of illumination (Baas, unpublished
data).

One possible explanation for the more persistent PDT efficacy
seen for human tumours illuminated at 42 days after Foscan, may
be the slower drug distribution and clearance. The initial rapid
drug clearance phase, which is seen in rodents, does not occur in
humans. Pharmacokinetic profiles for Foscan demonstrate an
unusual delayed plasma peak at about 10 h after bolus injection,
with subsequent elimination half-lives in the range of 30 – 60 h
(Braichotte et al, 1995; Glanzmann et al, 1998). The plasma drug
concentrations therefore remain at levels of at least 500 ng ml�1 for
up to 96 h after a standard dose of 0.15 mg kg�1 Foscan. This
contrasts with the pharmacokinetic profiles in rodents, which
demonstrate peak plasma levels within a few minutes of drug
administration and a rapid initial clearance, with T1/2 values of
1 – 3 h (Whelpton et al, 1995; Veenhuizen et al, 1997a). In the
present study, plasma drug levels were only 1% of the injected dose
at 48 h after administration of a 0.3 mg kg�1 Foscan dose. This is
equivalent to a drug concentration of o100 ng ml�1, which was
also confirmed in separate studies, where the Foscan plasma
concentrations were measured by HPLC.
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Figure 4 Mean recurrence-free survival for groups of mice illuminated at
various times after a single Foscan dose (K) or two drug doses separated
by 72 h (J). Results are expressed as a function of mean tumour drug
levels (A), or mean plasma levels (B), measured in separate groups of mice,
for each drug – light interval (written beside the data points).
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Figure 5 Mean skin reactions (7s.d.) for groups of mice (n¼ 6) illumi-
nated with 5 or 10 J cm�2 min to 72 h after a single Foscan dose.
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The reason for the delayed plasma peak in human plasma after
Foscan injection is not fully understood. One contributing factor

could be the protein-binding patterns of this drug, which differ
from those of other photosensitisers. In vitro binding studies
(Hopkinson et al, 1999) have shown that Foscan initially binds to a
heavy, nonlipoprotein fraction (not albumin) in human plasma,
which does not fluoresce, and subsequently redistributes to the
plasma lipoproteins. Hopkinson and colleagues hypothesise that
Foscan initially binds to this unknown protein fraction in a highly
aggregated form and that it is subsequently taken up into tissue in
this form. If true, this could explain why illumination during the
initial period after Foscan injection is not effective. The rate at
which the drug disaggregates and dissolves in the plasma
lipoprotein fraction would then determine the minimum effective
time for PDT.

In conclusion, these studies have demonstrated a pronounced
disassociation between tumour drug levels of the photosensitiser
Foscan and optimum drug – light intervals for PDT efficacy. We
suggest that the tumoricidal effect of Foscan-mediated PDT is
largely mediated via vascular damage and that the selectivity of the
treatment is based on factors other than differential tumour drug
uptake. This might also hold true for PDT using other
photosensitisers, such as Photofrin, where vascular damage is an
important component of the total effect. Plasma Foscan levels had
a much greater influence on PDT response than either tumour or
skin drug levels, although illumination during the first 20 min was
relatively ineffective. If confirmed in clinical studies, this could
offer opportunities for individual optimisation of treatment.
Illumination could be given at intervals longer than that required
for drug distribution, but before the plasma drug concentrations
decrease below defined levels.

ACKNOWLEDGEMENTS

The authors are grateful to Jan Schellens (Division of Medical
Oncology), Maurice Aalders and Martijn Triesscheijn (Division of
Experimental Therapy) for stimulating discussions during these
studies, and for assistance with calculating pharmacokinetic
parameters. This study was partly financed by the Dutch Cancer
Foundation, Grant NKI 2000-2282.

REFERENCES

Alian W, Andersson-Engels S, Svanberg K, Svanberg S (1994) Laser-
induced fluorescence studies of meso-tetra(hydroxyphenyl)chlorin in
malignant and normal tissues in rats. Br J Cancer 70: 880 – 885

Andrejevic Blant S, Grosjean P, Ballini JP, Wagnieres G, Van den Bergh H,
Fontolliet C, Monnier P (2001) Localization of tetra(m-hydroxyphenyl)-
chlorin (Foscan) in human healthy tissues and squamous cell carcinomas
of the upper aero-digestive tract, the esophagus and the bronchi: a
fluorescence microscopy study. J Photochem Photobiol B 61: 1 – 9

Andrejevic-Blant S, Hadjur Ch, Ballini J-P, Wagnieres G, Fontolliet C, Van
den Bergh H, Monnier P (1997) Photodynamic therapy of early
squamous cell carcinoma with tetra(m-hydroxyphenyl)chlorin: optimal
drug – light interval. Br J Cancer 76: 1021 – 1028

Baas P, Saarnak AE, Oppelaar H, Neering H, Stewart FA (2001)
Photodynamic therapy with meta-tetrahydroxyphenylchlorin for basal
cell carcinoma: a phase I/II study. Br J Dermatol 145: 75 – 78

Braichotte D, Savary JF, Glanzmann T, Westermann P, Folli S, Wagnieres G,
Monnier P, van den BH (1995) Clinical pharmacokinetic studies of
tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by
fluorescence spectroscopy at 2 wavelengths. Int J Cancer 63: 198 – 204

Braichotte D, Wagnieres G, Philippoz JM, Ris HB, Van den Bergh H (1992)
Preliminary clinical results on a second generation photosensitizer:
mTHPC. In Photodynamic Therapy and Biomedical Lasers, Spinelli P,
Dal Fante M, Marchesini R (eds) pp 461 – 465. Amsterdam: Elsevier
Science Publishers B.V.

Dilkes MG, DeJode ML, Rowntree-Taylor A, McGilligan JA, Kenyon GS,
McKelvie P (1996) m-THPC photodynamic therapy for head and neck
cancer. Lasers Med Sci 11: 23 – 29

Fan K, Hopper C, Speight P, Bionaccorsie G, Bown S (1997) Photodynamic
therapy using mTHPC for malignant disease in the oral cavity. Int J
Cancer 73: 25 – 32

Fingar VH, Wieman TJ, Weber Doak K (1990) Role of thromboxane and
prostacyclin release on photodynamic therapy-induced tumor destruc-
tion. Cancer Res 50: 2599 – 2604

Fingar VH, Wieman TJ, Wiehl SA (1992) The role of microvascular damage
in photodynamic therapy: the effect of treatment on vessel constriction,
permeability, and leukocyte adhesion. Cancer Res 52: 4914 – 4921

Glanzmann T, Hadjur C, Zellweger M, Grosiean P, Forrer M, Ballini JP,
Monnier P, Van den Bergh H, Lim CK, Wagnieres G (1998)
Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma
and individualized light dosimetry in photodynamic therapy. Photochem
Photobiol 67: 596 – 602

Gomer CJ, Dougherty TJ (1979) Determination of [3H]- and [14C]hema-
toporphyrin derivative distribution in malignant and normal tissue.
Cancer Res 39: 146 – 151

Grosjean P, Savary JF (1996) Tetra-(mTHPC) clinical PDT. Lasers Med Sci
11: 227 – 235

Henderson BW, Waldow SM, Mang TS, Potter WR, Malone PB, Dougherty
TJ (1985) Tumour destruction and kinetics of tumour cell death in two

Skin drug level (% injected dose g−1)

A
ve

ra
ge

 s
ki

n 
re

ac
tio

n 
(A

U
)

A
ve

ra
ge

 s
ki

n 
re

ac
tio

n 
(A

U
)

0.1 1 10 100
0

20

40

60

80

100

5'

20'

1h3h6h

24h

48h
72h

0.5 1 5
0

30

60

90

120

150

5'

3h

1h 48h

72h

6h 24h

120h

Plasma drug level (% injected dose ml−1)

A

B

Figure 6 Mean skin reactions for illumination with 10 J cm�2 at different
intervals after a single Foscan dose. Results are expressed as a function of
mean skin drug levels (A), or mean plasma drug levels (B), measured in
separate groups of mice, at each drug – light interval, as indicated.

Foscans and photodynamic efficacy

P Cramers et al

289

E
x
p

e
ri

m
e
n

ta
l

T
h

e
ra

p
e
u

ti
c
s

British Journal of Cancer (2003) 88(2), 283 – 290& 2003 Cancer Research UK



experimental mouse tumours folowing photodynamic therapy. Cancer
Res 45: 572 – 576

Hopkinson HJ, Vernon DI, Brown SB (1999) Identification and partial
characterization of an unusual distribution of the photosensitizer meta-
tetrahydroxyphenyl chlorin (temoporfin) in human plasma. Photochem
Photobiol 69: 482 – 488

Morlet L, Vonarx-Coinsmann V, Lenz P, Foultier M-T, De Brito LX, Stewart
CM, Patrice T (1995) Correlation between meta(tetrahydroxyphenyl)-
chlorin (m-THPC) biodistribution and photodynamic effects in mice.
Photochem Photobiol 28: 25 – 32

Peng Q, Moan J, Ma LW, Nesland JM (1995) Uptake, localization, and
photodynamic effect of meso-tetra(hydroxyphenyl)porphine and its
corresponding chlorin in normal and tumor tissues of mice bearing
mammary carcinoma. Cancer Res 55: 2620 – 2626

Ris HB, Altermatt HJ, Inderbitzi R, Hess R, Nachbur B, Stewart JC, Wang Q,
Lim CK, Bonnett R, Berenbaum MC (1991) Photodynamic therapy with
chlorins for diffuse malignant mesothelioma: initial clinical results. Br J
Cancer 64: 1116 – 1120

Ris HB, Altermatt HJ, Nachbur B, Stewart JCM, Wang Q, Lim CK, Bonnett
R, Althaus U (1993) Effect of drug – light interval on photodynamic
therapy with meta-tetrahydroxyphenylchlorin in malignant mesothelio-
ma. Int J Cancer 53: 141 – 146

Savary JF, Monnier P, Fontolliet C, Mizeret J, Wagnieres G, Braichotte D,
Van den Bergh H (1997) Photodynamic therapy for early squamous cell
carcinomas of the esophagus, bronchi, and mouth with m-tetra (hydroxy-
phenyl) chlorin. Arch Otolaryngol Head Neck Surg 123: 162 – 168

Star WM, Marijnissen HPA, Van den Berg-Blok AE, Versteeg JAC Franken
KAP, Reinhold HS (1986) Destruction of rat mammary tumour and
normal tissue microcirculation by hematoporphyrin derivative photo-
irradiation obderved in vivo in sandwich observation chambers. Cancer
Res 46: 2532 – 2540

Van Geel IPJ, Oppelaar H, Oussoren YG, Schuitmaker JJ, Stewart FA
(1995) Mechanisms for optimising photodynamic therapy: second-
generation photosensitisers in combination with mitomycin C. Br J Cancer
72: 344 – 350

Veenhuizen R, Oppelaar H, Ruevekamp M, Schellens J, Dalesio O, Stewart F
(1997a) Does tumour uptake of Foscan determine PDT efficacy? Int J
Cancer 73: 236 – 239

Veenhuizen RB, Ruevekamp MC, Oppelaar H, Helmerhorst TJ, Kenemans
P, Stewart FA (1997b) Foscan-mediated photodynamic therapy for a
peritoneal-cancer model: drug distribution and efficacy studies. Int J
Cancer 73: 230 – 235

Whelpton R, Michael-Titus AT, Basra SS, Grahn M (1995) Distribution of
temoporfin, a new photosensitizer for the photodynamic therapy of
cancer, in a murine tumor model. Photochem Photobiol 61: 397 – 401

Whelpton R, Michael-Titus AT, Jamdar RP, Abdillahi K, Grahn MF (1996)
Distribution and excretion of radiolabeled temoporfin in a murine tumor
model. Photochem Photobiol 63: 885 – 891

Wierrani F, Fiedler D, Grin W, Henry M, Krammer B, Grunberger W (1997)
Intraoperative meso-tetrahydroxyphenylchlorin-based photodynamic
therapy in metastatic gynecologic cancer tissue: initial results. J Gynecol
Surg 13: 23 – 29

Foscans and photodynamic efficacy

P Cramers et al

290

E
x
p

e
rim

e
n

ta
l

T
h

e
ra

p
e
u

tic
s

British Journal of Cancer (2003) 88(2), 283 – 290 & 2003 Cancer Research UK


