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Aims The chemokine receptor CXCR4 modulates endothelial progenitor cell migration, homing, and differentiation, and
plays a key role in cardiovascular regeneration. Here we examined the effect of ex vivo acidic preconditioning (AP)
on CXCR4 expression and on the regenerative potential of mouse bone marrow (BM) ckit+ cells.

Methods
and results

Acidic preconditioning was achieved by exposing BM ckit+ cells to hypercarbic acidosis (pH 7.0) for 24 h; control
cells were kept at pH 7.4. Acidic preconditioning enhanced CXCR4 and stromal cell-derived factor 1 (SDF-1)
mRNA levels, as well as CXCR4 phosphorylation. Acidic preconditioning ability to modulate CXCR4 expression
depended on cytosolic calcium [Ca2+]i mobilization and on nitric oxide (NO), as determined by [Ca2+]i buffering
with BAPTA, and by treatment with the NO donor (DETA/NO) and the NO synthase inhibitor (L-NAME).
Further, AP increased SDF-1-driven chemotaxis, transendothelial migration, and differentiation toward the endo-
thelial lineage in vitro. In a mouse model of hindlimb ischaemia, control and AP ckit+ cells were transplanted into
the ischaemic muscle; AP cells accelerated blood flow recovery, increased capillary, and arteriole number as
well as the number of regenerating muscle fibres vs. control. These effects were abolished by treating AP cells
with L-NAME.

Conclusion Acidic preconditioning represents a novel strategy to enhance BM ckit+ cell therapeutic potential via NO-dependent
increase in CXCR4 expression.
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Introduction
Cell therapy is a promising strategy for the treatment of a variety of
cardiovascular ailments, including myocardial infarction and limb
ischaemia. However, bone marrow (BM) cells from elderly patients
and individuals with cardiovascular risk factors, including dia-
betes,1,2 hypercholesterolaemia,3 hypertension,3 and smoking,4

exhibit limited therapeutic potential. Therefore, there is a strong
clinical need to develop cell enhancement strategies to improve
the clinical benefit of BM cell transplantation. BM cells have been
evaluated ex vivo, prior to being transplanted, and it has been
shown that stromal cell-derived factor 1 (SDF-1) can direct cell
migration,5– 7 gauge BM cell quality, and predict therapeutic effi-
cacy following transplantation. This is in agreement with the well-
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known role of SDF-1 and its receptor, CXCR4, in tissue repair. In
response to ischaemia, SDF-1 is upregulated and acts as a potent
chemoattractant to recruit circulating and resident CXCR4+ pro-
genitor cells to the injury site.5,7– 9 Further, ex vivo exposure to
nitric oxide (NO) donors can increase BM cells regenerative prop-
erties10 and this positive effect has been related to enhanced
CXCR4 expression.7,11–13 Preconditioning with brief episodes of
acidosis is known to limit ischaemia/reperfusion injury in the
heart,14,15 lung,16,17 and endothelium18,19; the mechanism(s) for
this response have not been elucidated but may involve activation
of prosurvival kinases Akt and ERK, and the overexpression of anti-
apoptotic protein Bcl-XL. However, it is still unknown whether
acidic preconditioning (AP) ex vivo enhances BM cells therapeutic
potential. We have previously shown that acidosis modulates
CXCR4 expression and that this effect is cell-type specific; endo-
thelial cells kept at pH 7.0 exhibit a decrease in CXCR4
expression, whereas in other cell types CXCR4 levels are
unchanged.20 Furthermore, Froyland et al.21 demonstrated
pH-dependent up-regulation of CXCR4 mRNA in NT2-N
neurons during hypoxia/reoxygenation.

The aim of the present work was to investigate the effect of AP
on SDF-1/CXCR4 expression, on SDF-1/CXCR4-directed BM cell
function in vitro, and regenerative potential in a mouse model of
hindlimb ischaemia. We utilized BM ckit+ cells because transplan-
tation of these cells in the infarcted heart leads to myocardial and
vascular regeneration,22 therefore they represent an attractive
population to develop cell therapy enhancement strategies.

Methods
For a detailed description of all methods, see Supplementary material
online.

Animals
Swiss CD1 male mice, 4–8-week-old, were used for ckit+ cell iso-
lation. All animal studies complied with the Guidelines of the Italian
National Institutes of Health and with the Guide for the Care and
Use of Laboratory Animals published by the US National Institutes
of Health (NIH Publication No. 85-23, revised 1996) and were
approved by the Institutional Animal Care and Use Committee.

Cell isolation, culture, and treatments
See Supplementary material online, Methods.

Acidification protocol
Cells were seeded in 48 multi-well dishes (5 × 105 cells/well) and cul-
tured in Stem Span serum-free medium (Stem Cell Technologies) con-
taining the following recombinant human cytokines: 100 ng/mL stem
cell factor, 20 ng/mL IL-3, 20 ng/mL IL-6, and 100 ng/mL Flt-3 ligand
(R&D Systems). Immediately after seeding multi-well dishes were
placed in airtight modular incubator chambers (Forma Scientific Inc)
and infused for 20 min, with either 5%CO2/95% air or 20%CO2/80%
air to achieve a buffer pH of 7.4 or 7.0, respectively, as previously
described.23 After gas mixture, infusion chambers were sealed and
placed at 378C for the duration of the experiments, i.e. 24 h or
longer, as indicated. After acidification, the dishes were removed
from the incubator chambers and returned to 5%CO2/95% air to
achieve a buffer pH of 7.4. Thereafter, the different assays were per-
formed as described.

Analysis of proliferation and cell death
ckit+ cells cultured in the growth medium were counted daily from
Day 1 to Day 5. Cell death was determined by FACS analysis following
either Propidium Iodide (PI) staining, caspase-9, or caspase-3 staining
(Oncogene Research Products).

Adhesion assay
ckit+ cell adhesion was analysed onto fibronectin-coated dishes and
onto a monolayer of human umbilical vein endothelial cells
(HUVECs). Assays were carried out in EBM-2 medium (Lonza).

Migration assay
Both SDF-1 (100 ng/mL, R&D Systems) directed chemotaxis and trans-
endothelial migration across a HUVEC monolayer were evaluated as
previously described.24

Differentiation assay
Cell differentiation assays were carried out in M199 medium
(Sigma-Aldrich) supplemented with 20% FCS or 2% FCS+ SDF-1
(100 ng/mL).

mRNA extraction and qRT–PCR
RNA was extracted from ckit+ cells using Trizol reagent (Invitrogen)
according to the manufacturer’s instruction. The sequences of
forward and reverse primers for each gene of interest were selected
from NCBI database (program Primer3 version 0.4.0).

Flow cytometry
Purity of each cell preparation, i.e. ckit+ cell number, as well as the
expression of CD34, Sca-1, Flk1/KDR, and CXCR4 by these cells,
was assessed by FACS.

Nitric oxide production
Nitric oxide production was evaluated by 4,5-Diaminofluorescein
(DAF-2 DA) (Alexis) added to the complete medium for 6 h and
then analysed by FACS.

In vivo procedures and
immunohistochemistry
See Supplementary material online, Methods.

Statistical analysis
Variables were analysed by two-side Student’s t-test and two-way
ANOVA. A value of P ≤ 0.05 was deemed statistically significant.
Mean values are indicated+ SEM. The GraphPad Prism software
(version 5.00 for Windows, GraphPad Software, San Diego, CA,
USA) was used for computer analysis.

Results

Effect of acidification on ckit1 cell
proliferation, death, and endothelial
differentiation
ckit+ cells were isolated from mice and cultured in growth
medium, either at pH 7.4 or 7.0 for 5 days. In order to characterize
AP as an ex vivo strategy to enhance BM cells regenerative proper-
ties, the effect of prolonged acidosis was first analysed. Acidifica-
tion markedly inhibited the progressive increase in cell number
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observed under control conditions (Figure 1A), without a significant
effect on cell cycle (see Supplementary material online, Figure S1).
The percentage of ckit+ cells was .90% after isolation, decreased
to �85% after 24 h and to �35% after 5 days in culture; interest-
ingly, there was no effect of acidification on the percentage of cells
expressing ckit, CD34, Sca-1, and KDR (see Supplementary
material online, Figure S2). Additional experiments examined the
effect of acidosis on cell death. By PI-staining and FACS analysis,
acidification was found to enhance cell death both at 24 and
48 h (Figure 1B) and increase the number of caspase-3-positive
cells at 48 h (Figure 1C); in contrast, it was found no significant
increase in the number of caspase-9-positive cells (see Supplemen-
tary material online, Figure S3). Enhanced cell death at pH 7.0 may
explain the apparent discrepancy between acidification ability to
inhibit the progressive increase in cell number and the absence
of an effect on cell cycle. Finally, the effect of acidification on
ckit+ cell differentiation toward the endothelial lineage was exam-
ined. ckit+ cells were seeded onto fibronectin-coated dishes either
at pH 7.4 or pH 7.0 in the presence of 20% FCS for 4 or 7 days. At
both time points, a marked decrease in DiI-Ac-LDL positive cells
was found at pH 7.0 vs. 7.4 (Figure 1D).

Effect of acidic preconditioning on ckit1

cell proliferation and adhesion
The decrease in ckit+ cell functions after prolonged exposure to
pH 7.0 prompted us to examine the effect of AP for 24 h on
cell proliferation and adhesion at different time points after return-
ing to pH 7.4. AP cells proliferated at a rate comparable to control
cells that were kept at pH 7.4 throughout the 3-day course of the
experiment (see Supplementary material online, Figure S4).

Additional studies examined whether AP modulated ckit+ cell
adhesion to fibronectin and TNF-a-activated endothelium at pH
7.4. Interestingly, AP enhanced ckit+ cell adhesion to both
fibronectin-coated dishes (see Supplementary material online,
Figure S5A) and activated HUVEC monolayer (see Supplementary
material online, Figure S5B).

Effect of acidic preconditioning on
CXCR4 and SDF-1 expression
Since CXCR4 signalling plays a pivotal role in precursor cell
migration and homing, we examined whether AP modulates
CXCR4 and SDF-1 expression. ckit+ cells exposed to pH 7.0
exhibited a progressive increase in CXCR4 and SDF-1 mRNA
levels; at the 5 h time point, neither the increase in CXCR4 nor
in SDF-1 were statistically significant (data not shown), whereas
at the 24 h time point CXCR4 and SDF-1 mRNA levels were
2.5+ 0.4 and 1.7+0.2 fold vs. control, respectively (Figure 2A).
Interestingly, an increase in CXCR4 and SDF-1 mRNA was also
observed in BM ckit+ cells from ApoE2/2 and diabetic mice (see
Supplementary material online, Figure S6). Further, human BM
ckit+ cells exposed to AP exhibited a 1.3+ 0.2-fold increase in
CXCR4 mRNA (n ¼ 5; P ¼ 0.03). The percentage of CXCR4 posi-
tive cells was determined by FACS analysis. At the 24 h time point,
�50% control cells and �60% AP cells expressed CXCR4 with a
mean fluorescence intensity of �20 and �24 for control and AP
cells, respectively; both achieved statistical significance at the 48 h
time point (see Supplementary material online, Figure S7A).
Further, we examined AP effect on CXCR4 phosphorylation; AP
for 24 h enhanced CXCR4 phosphorylation, both under baseline
conditions and upon exposure to SDF-1 (see Supplementary

Figure 1 Acidosis effect on ckit+ cell proliferation, death, and endothelial differentiation. (A) Acidosis inhibited the progressive increase in
ckit+ cell number at pH 7.4 (n ¼ 5). (B) Acidosis enhanced cell death, as assessed by FACS analysis of PI-stained cells (n ¼ 9). (C) FACS analysis
for caspase-3 (n ¼ 3). (D) At 4 and 7 days, the number of DiI-Ac-LDL+ cells was lower at pH 7.0 vs. 7.4 (n ¼ 3 in duplicate). Statistical signifi-
cance: *P , 0.05 for pH 7.4 vs. 7.0.
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material online, Figure S7B). We next addressed the mechanisms
that may be responsible for AP-mediated increase in CXCR4
expression. It has been previously reported that acidification
increases [Ca2+]i,

25 which is a key event in triggering NO pro-
duction.26,27 Furthermore, increases in [Ca2+]i

11 and NO7,13

have both been shown to enhance CXCR4 expression. Interest-
ingly, we found that [Ca2+]i buffering with BAPTA-AM abolished
the increase in CXCR4 induced by AP and also by raising
bathing [Ca2+] from 0.2 to 0.5 mM at pH 7.4 (Figure 2B, upper
panel). We next showed that NO played an important role in
the upregulation of CXCR4 by acidosis. Nitric oxide donor
DETA/NO enhanced CXCR4 expression in ckit+ cells kept at
normal pH, whereas NOS inhibitor L-NAME abolished
AP-mediated CXCR4 increase (Figure 2B, upper panel). In agree-
ment with these results on NO and CXCR4 expression, ckit+

cells kept at pH 7.0 for 6 h exhibited an increase in DAF positivity
which was prevented by L-NAME (Figure 2B, lower panel, and see
Supplementary material online, Figure S8).

As HIF-1a is a regulator of CXCR428,29 and its expression is
enhanced by acidification20 and NO,30– 32 we investigated

whether AP effects on CXCR4 were paralleled by HIF-1a induc-
tion. To this end, we analysed HIF-1a expression in control cells
following exposure to DETA/NO and in AP cells treated with
L-NAME; both NO and acidification induced HIF-1a protein
expression and L-NAME abolished this effect in AP cells (see Sup-
plementary material online, Figure S9). Further, in control cells
treated with L-NAME, there was a small decrease in HIF-1a
expression, whereas in AP cells treated with DETA/NO there
was an additional increase in HIF-1a expression (see Supplemen-
tary material online, Figure S9).

Effect of acidic preconditioning on
SDF-1-directed ckit1 cell migration and
differentiation toward the endothelial
lineage
In subsequent in vitro experiments, we evaluated the functional
significance of CXCR4 up-regulation induced by AP. ckit+ cells
were kept for 24 h either at pH 7.4 or pH 7.0 and then analysed
for their ability to migrate in response to SDF-1. Cell migration

Figure 2 Acidic preconditioning enhances CXCR4 and SDF-1 expression in c-kit+ cell. (A) Acidic preconditioning enhanced CXCR4 (upper
panel; n ¼ 6) and SDF-1 (lower panel; n ¼ 10) mRNA levels, as assessed by qRT–PCR. (B) Upper panel shows that acidic preconditioning-
mediated increase in CXCR4 mRNA was abolished by BAPTA-AM and L-NAME. Further, in control cells, CXCR4 expression increased
upon raising bathing [Ca2+] from 0.2 to 0.5 mM or exposure to DETA/NO (n ¼ 3; * P , 0.05 for treated vs. C cells). Lower panel shows a
representative FACS analysis of DAF positivity; ckit+ cells exposed to acidic preconditioning exhibited an increase in NO production which
was prevented by L-NAME.
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was evaluated, both in chemotaxis and in transendothelial
migration assays at pH 7.4. AP cells exhibited a higher ability
than control cells to migrate in response to SDF-1 and this
effect was abolished upon treatment with an anti-CXCR4 anti-
body (Figure 3A). SDF-1-directed transendothelial migration
assays were performed under two different pH conditions. The
endothelial monolayer was constituted by HUVECs that were
grown for 16 h, prior to the assay, at either pH 7.4 or at pH
7.0 (Figure 3B, upper and lower panel, respectively). Under
both pH conditions, AP enhanced transendothelial migration.
We then examined whether AP may modulate ckit+ cell differen-
tiation toward the endothelial lineage. To that end, ckit+ cells

were cultured for 24 h either at pH 7.4 or at pH 7.0 and then
seeded onto fibronectin-coated dishes in the presence of 20%
FCS for 7 days at pH 7.4. AP increased ckit+ cell adhesion
with over 95% adherent cells expressing endothelial cell
markers (i.e. Factor VIII and KDR) and displaying Ac-DiI-LDL
uptake (Figure 4A–C ).

Additionally, we examined the role of SDF-1 in AP cell differen-
tiation. To address this issue, culture medium was supplemented
with 100 ng/mL SDF-1 and FCS concentration was lowered from
20 to 2%. SDF-1 markedly enhanced the number of
DiI-Ac-LDL-positive cells following AP, whereas it had no effect
on cells cultured at pH 7.4. This effect of SDF-1 on DiI-Ac-LDL

Figure 3 Acidic preconditioning enhances chemotaxis and transendothelial migration toward SDF-1. (A) Acidic preconditioning enhanced
chemotaxis and this response was abolished by an anti-CXCR4 antibody (n ¼ 3). (B) Acidic preconditioning enhanced ckit+ cell transendothe-
lial migration, both through HUVEC grown at pH 7.4 (n ¼ 5; upper panel) and through HUVEC grown at pH 7.0 (n ¼ 3; lower panel). Statistical
significance: * P , 0.05 for acidic preconditioning cells vs. C cells.
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uptake was abolished by an anti-CXCR4 blocking antibody
(Figure 4D).

Effect of acidic preconditioning on ckit1

cell therapeutic potential in a mouse
model of hindlimb ischaemia
The experiments presented so far show that ckit+ cells exposed to
AP in vitro exhibit an increase in CXCR4 expression and enhanced

SDF-1-directed migration and differentiation toward the endo-
thelial lineage. These results prompted us to evaluate the regenera-
tive potential of AP-treated ckit+ cells in vivo, in a mouse model of
hindlimb ischaemia. ckit+ cells were cultured for 24 h either at
pH 7.4 or at pH 7.0, and then injected into the adductor muscle,

immediately after femoral artery dissection. Hindlimb perfusion

was evaluated by LDPI for 3 weeks after treatment. Interestingly,

ckit+ cells exposed to AP significantly improved blood flow vs.

Figure 4 Acidic preconditioning enhances ckit+ cell differentiation toward the endothelial lineage. In 20% FCS, acidic preconditioning
enhanced: (A) DiI-Ac-LDL+ cell number (n ¼ 10), (B) factor VIII+ cell number (n ¼ 4), and (C) KDR+ cell number (n ¼ 4). For all markers
used, average positive cell number is shown in the upper panel and representative images in the lower panel; calibration bar ¼ 50 mm. (D)
In 2% FCS, DiI-Ac-LDL+ cell number was similar for cells treated with acidic preconditioning vs. control. SDF-1 addition enhanced DiI-Ac-LDL+

cell number only for cells treated with acidic preconditioning, whereas it had no effect on C cells; DiI-Ac-LDL uptake by acidic preconditioning
cells was abolished by an anti-CXCR4 antibody (n ¼ 6 in duplicate). Statistical significance: *P , 0.05 for acidic preconditioning cells vs. C cells.
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Figure 5 Acidic preconditioning enhances ckit+ cell therapeutic potential in a mouse model of hindlimb ischaemia. ckit+ cells were exposed
to acidic preconditioning, then 5 × 105 cells were injected into the mouse adductor muscle at the time of femoral artery dissection. Control
mice were injected with C cells or saline. (A) Hindlimb blood flow evaluated by LDPI (n ¼ 8 at each time point). The progressive increase in
blood flow was accelerated in acidic preconditioning cells-treated vs. C cells and saline-treated mice. (B) Acidic preconditioning cells increased
capillary number vs. C cells or saline, at the 7- and 14-day time points (n ¼ 6; calibration bar ¼ 20 mm). (C) Acidic preconditioning cells
increased arteriole number at the 14-day time point (n ¼ 6). Arterioles stained with a-smooth muscle actin antibody; calibration
bar ¼ 30 mm. (D) Acidic preconditioning cells increased regenerating fibres at the 7-day time point (n ¼ 6; calibration bar ¼ 50 mm). For all
assays performed, average positive cell number is shown in the left panel and representative images in the right. Statistical significance:
*P , 0.05 for acidic preconditioning cells vs. C cells or saline.
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control cells at each time point analysed after cell injection
(Figure 5A). Further, in adductor muscles injected with AP cells,
we found a significant increase in capillary number (Figure 5B)
and arteriole density (Figure 5C), an increase in regenerating
muscle fibres 7 days after cell injection (Figure 5D) and a decrease

in the area of tissue damage (see Supplementary material online,
Figure S10). Conversely, no significant difference was found
between mice treated with ckit+ cells without exposure to AP
vs. animals injected with saline. In light of the key role that NO
plays in CXCR4 expression in response to AP, we next examined
the therapeutic potential of ckit+ cells exposed to AP and treated
with L-NAME. These cells failed to enhance limb perfusion
(Figure 6A), did not increase capillary number, had no effect on
muscle regeneration (Figure 6B and D), and markedly inhibited
the increase in arterioles (Figure 6C). When control cells were
exposed to L-NAME, their behaviour was similar to that of
untreated control cells; it was found only a delay in the perfusion
index at the 7-day time point, and a marginal decrease in capillary
number at Day 14, whereas there was no effect on arterioles, capil-
laries at Day 7 and on regenerating muscle fibres (Figure 6).

Discussion
The present study shows that AP increased CXCR4 expression
in BM c-kit+ cells. This effect was associated with enhanced
SDF-1-directed cell migration and endothelial differentiation
in vitro, and with a potentiated angiogenic and regenerative action
in a mouse model of hindlimb ischaemia. Both in vitro and in vivo,
AP effects were mediated by NO.

Prior studies have examined the effect of acidification in a variety
of cell types. It has been reported that a marked and prolonged
decrease in pH has a negative effect on cell survival and func-
tion.23,33 In contrast, at least in endothelial cells, a brief exposure
to a mild acidotic milieu exerts a beneficial action on survival
and, upon returning to a normal pH, also on cell function.33

These beneficial responses have been attributed to increased
secretion of pro-survival angiogenic factors, i.e. fibroblast growth
factor 2 and vascular endothelial growth factor,23 and to enhanced
expression of the tyrosine kinase receptor AXL; upon binding to
its ligand, the survival factor growth arrest-specific gene 6
product (Gas6), AXL exerts an antiapoptotic action.33 These
in vitro studies are in agreement with in vivo results showing that
preconditioning with brief episodes of acidosis limits ischaemia/
reperfusion injury in the heart,14,15 lung,16,17 and endothelium.18,19

Our present work focused on CXCR4 because there is substan-
tial evidence supporting SDF-1/CXCR4 key role in the response to
cell therapy. In humans, impairment of CXCR4 signalling reduces
the proangiogenic action of endothelial progenitor cells (EPC)9

and the response to autologous BM cell transplantation into the
ischaemic heart.8 Another study has compared the functional
activity of both CXCR4+ and CXCR42 human BM mononuclear
cells and found that only CXCR4+ cells improved neovasculariza-
tion in a murine model of hindlimb ischaemia.8 Further, in a rodent
model of myocardial infarction, hypoxic preconditioning augmen-
ted cardiac progenitor cell therapeutic efficacy by inducing
CXCR4 expression.12 We also found that ckit+ cells exposed to
AP also exhibited a marked increase in SDF-1 expression; this is
expected to have a positive action via both autocrine and paracrine
mechanisms. Indeed, cell priming with SDF-1 prior to transplan-
tation enhances their therapeutic potential34; further, direct
SDF-1 injection into the ischaemic limb35 and heart36 induces a
regenerative response and improves function. It is noteworthy

Figure 6 L-NAME abolishes acidic preconditioning ability to
enhance ckit+ cell therapeutic potential in vivo. Treatment with
L-NAME abolished acidic preconditioning cells ability to enhance
limb perfusion (A), increase capillary number (B), and regenerating
fibres at Day 7 (D); the increase in arterioles at Day 14 was mark-
edly inhibited (C). Control cells, L-NAME treated and untreated,
behaved similarly except for lower limb perfusion and capillary
number in L-NAME-treated cells at Days 7 and 14, respectively
(panel A, n ¼ 7 in each group; panels B–D, n ¼ 5 for each bar
graph; *P , 0.05 L-NAME treated vs. untreated acidic precondi-
tioning cells; ÏP , 0.05 for L-NAME-treated acidic preconditioning
cells vs. control cells; #P , 0.05 for L-NAME-treated vs. untreated
control cells).
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that, in the present work, the increase in the CXCR4 protein
induced by mild acidification for 24 h was relatively small. Never-
theless, AP for 24 h enhanced CXCR4 phosphorylation, both
under baseline conditions and upon exposure to SDF-1. Further,
a selective CXCR4 blocking antibody abolished both
SDF-1-directed chemotaxis and differentiation toward the endo-
thelial lineage. Taken together, these results link AP ability to
modulate CXCR4 expression and activation, enhanced SDF-1
responsiveness in vitro, and improved therapeutic potential in vivo.
The increase in CXCR4 expression in AP cells is expected to
promote their migration toward ischaemic tissues which express
high SDF-1 levels,5– 7 and also facilitate CXCR4+ cell differen-
tiation toward the endothelial lineage. Interestingly, AP enhanced
CXCR4 expression also in BM ckit+ cells from humans and from
hypercholesterolemic and diabetic mice.

Under our experimental conditions, NO is the key mediator
linking acidification to CXCR4 expression. The NO donor
DETA/NO mimicked AP ability to enhance CXCR4 expression;
further, AP effects on CXCR4 expression and ckit+ cells regenera-
tive potential in vivo were abolished by the NOS inhibitor L-NAME.
These results are in agreement with prior studies showing that a
mild decrease in pH enhances NO production in vivo37 and in
vitro.38 We have previously shown that acidification raises
[Ca2+]i,

25 which is a key event in triggering NO production.26,27

Accordingly, the intracellular Ca2+ chelator BAPTA-AM prevented
AP effect on CXCR4 expression. Further, CXCR4 expression is
HIF-1a-dependent 28,29 and, under our experimental conditions,
HIF-1a increased both in response to DETA-NO30 –32 and to
AP; the latter effect was prevented by L-NAME. Therefore, both
[Ca2+]i and NO play a pivotal role in AP-mediated increase in
CXCR4 expression.

Interestingly, here we found that control ckit+ cells, without AP
exposure, failed to induce neovascularisation in vivo. It is noteworthy
that the effect of EPC transplantation in animal models of hindlimb
ischaemia is still controversial; most studies have shown an angio-
genic response associated with an increase in blood flow,5,8,35

whereas others have failed to show any beneficial response.11,39,40

Further, numerous studies on this topic have utilized human cells
obtained either from the peripheral circulation8,9,35 or cord
blood34,41 rather than BM cells, and have transplanted such cells in
immunocompromised mice; in contrast, we have transplanted
mouse BM cells in the ischaemic limb of same strain mice. Finally,
no prior study has utilized an enriched population of BM ckit+

cells for direct intramuscle injection in the mouse ischaemic hind-
limb. These experimental differences may explain the discrepancy
between our results with control cells and those prior studies
which have shown a beneficial response to EPC transplantation in
the mouse model of hindlimb ischaemia.

In conclusion, AP is a simple and unexpensive strategy to
enhance BM ckit+ cell therapeutic potential. Further, unlike
other cell potentiating interventions, such as viral-mediated trans-
fer of angiogenic or antiapoptotic genes, it is expected that regulat-
ory agencies would readily accept AP as part of the cell
preparation protocol for clinical use. Once BM cells have under-
gone the selection process under Good Manufacturing Practice
(GMP) conditions, they would be placed in a hypercarbic environ-
ment to achieve a buffer pH of 7.0 for 24 h, prior to

transplantation into the patient.42 Therefore, AP represents a clini-
cally applicable strategy to improve the therapeutic efficacy of BM
cell transplantation.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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