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Abstract

Purpose

Associations between brain region volume and weight status have been observed in chil-
dren cross-sectionally. However, it is unclear if differences in brain region volume precede
weight gain.

Methods

Two high-quality structural brain images were obtained approximately one year apart in 53
children aged 9-12 years old. Children’s height and weight were also measured at each
scan. Structural images were processed using the FreeSurfer software-package providing
volume measures for regions of interest including the entorhinal cortex, nucleus accum-
bens, and hippocampus. Age- and sex-adjusted BMI z-scores (BMIz) were calculated at
both timepoints. The association between brain region volume and BMIz was examined
cross-sectionally using linear regression and longitudinally using structural equation model-
ing. All models were adjusted by estimated cranial volume to account for individual variation
in head size and were corrected for multiple comparisons (pFDR<0.05).

Results

The sample of children was primarily healthy weight at baseline (79.78%). Cross-sectionally
at the one-year follow-up, a positive relationship was observed between right hippocampal
volume and BMIz (8 =0.43, 95% CI/=(0.10, 0.77)). Longitudinally a negative relationship
was observed between right entorhinal volume at baseline and BMIz at the one-year follow-
up (B=-0.25, 95% Cl = (-0.44, -0.07)).
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Conclusion

These results suggest that measured volumes from certain regions of the brain that have
been associated with BMI in adults are associated with both concurrent BMIz and BMIz
change over one-year in a primarily healthy weight sample of children. As the entorhinal cor-
tex integrates signals from both reward and control regions, this region may be particularly
important to weight management during child development.

Introduction

Rates of childhood obesity continue to rise in the United States [1]. Obesity is related to a host
of co-morbidities that affect long term health outcomes as well as overall quality of life [2].
Increased weight has also been shown to be associated with altered brain morphology (i.e.,
gray matter density and/or regional volume) [3-6]. Associations between the morphometry of
developing brain regions and adiposity during childhood and adolescence are of interest
because significant growth and remodeling of gray matter occurs during this period [7], and
because the emergence of overweight in youth often tracks into adulthood [8]. Furthermore, a
recent study has highlighted that brain region volume is particularly related to body weight
and body mass index z-scores (BMIz) in children [3]. Therefore, volumetric analysis may be
particularly useful for understanding which regions of the brain are developmental important
to weight gain and weight management over childhood and adolescence.

The nucleus accumbens has been previously implicated in responding to environmental
food cues [9-11]. Increased response to food cues in this region has been shown to correlate
with increased weight gain in young adults (18-19-year old participants) [12]. Several studies
have examined nucleus accumbens volume in relation to body mass index (BMI) and have
found that larger nucleus accumbens volumes tend to correlate with higher BMI in adults
[13,14] and BMIz in children [3]. A recent study by Rapuano et al. has also shown that nucleus
accumbens volume is associated with genetic risk for the development of obesity in young chil-
dren [11]. Given these observed associations, we sought to explore the association between
nucleus accumbens volume and future adiposity gain in children. Further, animal studies [9]
have shown that the nucleus accumbens works in concert with other regions that have been
cross sectionally correlated with BMI in both adults and children such as the entorhinal cortex
[15] and hippocampus [16]. As both the entorhinal cortex and hippocampus are thought to be
particularly important for conditioned learning, particularly in relation to latent inhibition,
these regions may also be predictive of future weight gain [17]. For example, Burger and Stice
(2014) have demonstrated that food-cue related reward learning is predictive of future weight
gain in adults [18].

For example, the entorhinal cortex is thought to act as a gatekeeper between brain regions
including the nucleus accumbens and the hippocampal formation [19]. A recent analysis was
conducted in a large brain imaging cohort of adults (n = 895; mean + SD = 28 + 3.67 years)
using volumetric brain assessment to examine the relationship between the volume of brain
structures located in the medial temporal lobe and BMI [15]. This study found that, bilaterally,
the entorhinal cortex was negatively associated with BMI [15]. However, it is unclear if the
relationship between entorhinal volume and BMI observed in adults is also apparent in youn-
ger populations. Therefore, this region holds interest for examination of both cross-sectional
as well as longitudinal relationships with adiposity.
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The hippocampus is also of particular interest. Not only is it important for conditioned
learning it is also consistently observed to functionally respond to environmental food cues
and is thought to play a key role in the regulation of energy intake [10,11,16,20-22]. Structur-
ally, the hippocampus receives input from regions of the brain associated with reward such as
the nucleus accumbens and brain regions responsible for appetite regulation such as the hypo-
thalamus [23,24]. However, volumetric analyses of the hippocampus in child and adolescent
populations have provided mixed results, with some studies showing a positive relationship
between hippocampal volume and BMIz [6], some showing a negative relationship[16,25,26],
and others showing no relationship [3]. Therefore, similar to the nucleus accumbens and ento-
rhinal cortex, this region holds interest for both cross-sectional and longitudinal analyses in
relation to adiposity.

Although previous assessments of brain morphology in relation to BMI provide insights
into potential neural associations with adiposity, the lack of longitudinal data limits their inter-
pretation. Longitudinal studies are particularly important for understanding volumetric asso-
ciations in younger populations who are experiencing rapid changes in height, weight, and
brain development. As BMIz has been shown to be the most optimal measure of annual adi-
posity change in elementary school children we focused on this metric as our main outcome
measure [27]. Therefore, the purpose of this study was to assess the relationship between volu-
metric measures of the entorhinal cortex, hippocampus, and nucleus accumbens and child adi-
posity using repeated measurements at two time points approximately one year apart. Based
on previous studies, we hypothesized that entorhinal cortex [15] and hippocampal [16] volume
would negatively correlate with concurrent BMIz at both baseline and follow up, whereas
nucleus accumbens volumes would positivity correlate [3]. Similarly, we hypothesized that
entorhinal cortex and hippocampal volumes would be negatively associated with a change in
BMIz between time point 1 and time point 2, while nucleus accumbens volume would show a
positive relationship.

Methods

Participants

Seventy-eight (N = 78; 42 male) children between the ages of 9 and 12 years (mean + SD =

10.3 £ 0.8 years) were recruited as a sub-sample of a larger study (n = 200) through fliers placed
throughout the Upper Valley community and a contact list from the Children’s Hospital at
Dartmouth. Participants recruited in this sub-sample were all right handed, native English
speakers, and reported normal neurological history. Dartmouth’s Committee for Protection of
Human Subjects institutional review board approved all study protocols. Each child provided
written assent and parents provided informed consent. All participants received monetary
compensation for participating. As part of this follow up study the 78 participants completed a
neuroimaging study, which included a structural magnetic resonance imaging (sMRI) scan
[11]. Of the 78 participants, ten sSMRI scans were removed due to low signal-to-noise ratios
and two were removed due to inadequate parcellation of anatomical structures determined by
visual and statistical inspection, resulting in 66 high-quality scans at the first timepoint. Of the
original 78 participants, 65 returned approximately 1-year later for a follow-up visit. Six partic-
ipants were unable to complete the follow-up scan due to newly acquired braces or metal
retainers, resulting in a total of 59 follow-up sMRI scans obtained at the second timepoint. Of
these 59 sMRI scans, six were removed due to low signal-to-noise ratios and inadequate parcel-
lation of anatomical structures. Thus, a total of 53 individuals had usable data at time 2. Over-
all, 47 participants had viable scans at both time 1 and time 2 of this analysis.
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BMI and BMI z-score

Participants heights and weights were collected prior to their MRI scans at both visits. Study
staff assessed heights using a calibrated professional-grade stadiometer (model Seca 216) to a
tenth of a centimeter. Participant weight was measured on a calibrated Tanita scale (model
TBF-300A). Both measurements were collected once using standardized procedures. Child
BMI was calculated based on participants” height (m?) and weight (kg). Age and sex adjusted
BMI z-scores were calculated based on the Center for Disease Control 2000 growth standards.
(28]

Pubertal assessment

Puberty was self-reported by participants using the Self-Rating Scale for Pubertal Develop-
ment.[29] This questionnaire consists of three standard questions (growth spurt, body hair,
skin changes), two specific questions for boys (voice deepening, facial hair) and two specific
questions for girls (breast growth, menstruation). Each question is answered on a scale of 1-4
anchored at “has not yet begun” to “seems completed” apart from menstruation which is
scored either as a 1 (no) or 4 (yes). Three questions (body hair and the two sex specific ques-
tions) are used to categorize children into one of five pubertal statuses including pre, early,
mid, late, or completed puberty [30]. Seven of the 78 children did not complete the pubertal
assessment therefore the average pubertal status of the appropriate sex-specific strata were
used.

Structural MRI image acquisition

Structural scanning was performed on a 3T Philips Achieve MRI fit with a 32-channel SENSE
(Sensitivity Encoding) head coil. Structural images were obtained using a T1-weighted magne-
tization prepared rapid gradient echo (MPRAGE) protocol [repetition time (TR) = 9.9 ms;
echo time (TE) = 4.6 ms; flip angle = 8°; 1 x 1 x 1-mm? voxels] at both time points.

Structural image preprocessing and volume assessment

Structural images were reconstructed and segmented using FreeSurfer (5.3.0), an automated
segmentation tool that has been demonstrated to label structures comparably to manual trac-
ing techniques [31]. FreeSurfer’s quality assurance tool, QAtools, allows for quantitative assess-
ment of data quality [32,33] and was used to calculate signal-to-noise ratios and statistical
outliers for each segmentation completed. A series of screenshots were also generated by the
QA tool from various steps throughout the reconstruction pipeline to allow rapid visual
inspection of segmentation quality for each participant. As variation in image quality has been
shown to be particularly important to morphometric assessment [34] structural images that
were one standard deviation below the sample mean (17.142.6 at time point 1 and 17.0+£2.0 at
time point 2) or that were extreme statistical outliers (morphometric values >3 times the inter-
quartile range) or those that did not pass standard visual inspection were excluded from the
analysis. This extensive quality control procedure was used to ensure only high-quality seg-
mentations were obtained as movement during scanning is quite common which leads to
reduced quality of underlying structural images [35]. To account for variation in overall cra-
nial size, estimated intracranial volumes were extracted for use in all statistical models. Finally,
to increase interpretability, estimated brain volumes and intracranial volumes were z-stan-
dardized within the sample. Statistical models were run using both standardized and unstan-
dardized values to ensure transformations did not alter the interpretation of results.
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Fig 1. Graphical representation of the structural equation model used to assess the longitudinal relationship
between brain region volume and BMI z-score.

https://doi.org/10.1371/journal.pone.0221995.g001

Statistical analysis

All statistical analyses were conducted using R version 3.4.3. To initially assess the concurrent
relationship between BMI z-score and region volumes at either baseline or follow up, linear
regression models were calculated with BMI z-score as the dependent variable and region vol-
ume at the associated time point as an independent variable. Individual models were used for
each brain region. Intracranial volume, age, sex, and pubertal status were entered in to the
regression as independent variables to control for these variables in the model. Sex-specific
analyses were also conducted (see S1 and S2 Tables).

To further elucidate the temporal relationship between BMIz and a priori defined brain
region volumes, a structural equation model (SEM) was implemented using the ‘lavaan’ pack-
age.[36,37] SEM modeling allows for the estimation of the association between brain region
volume and BMIz while controlling for the stability of the variables over time and accounting
for covariation between the variable parameters [38,39]. As we were primarily interested in
examining the hypothesis that brain region volume is predictive of BMIz based on previous
research [3,11], our SEM paths are designed to test if current and previous brain region vol-
umes are predictive of BMIz (Fig 1).

Only those samples with complete data (both time 1 and time 2) were used, for a total of
n =47 in the SEM model. A generalized least squares estimator was used to fit each of the
models. As in the linear regression models, individual models were computed for each brain
region. Models were adjusted for age at current timepoint, sex, puberty score, and intracranial
volume (Eq 1).

Region, = f, x Region, + B, x CranialVolume, + f; x Age, + B, x Sex + B; x Puberty + Cygion:
BMI, = B x Region, + f, X CranialVolume, + B, x Age, + B, x Sex + B,, X Puberty + Gy,
B

BMI, = B, x BMI, + B,, x Region, + B,; X CranialVolume, + f,, x Region,,
+ B,; X CranialVolume, + 5 X Age, + f,; x Sex + B,g X Puberty + Gy,
ty

Due to the exploratory nature of this analysis as well as small sample size, covariates in the
structural equation models were iteratively assessed while removing the variable with the larg-
est p-value until all variables included had a p-value of 0.1 or less. This was done to improve
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overall model fit, as measured using a chi-square goodness of fit test, by removing variables
that had little impact on the overall model. To maintain interpretability, individual brain
regions of interest and total intracranial volume remained in all models. Model significance
was assessed using an alpha of 0.05. To account for multiple comparisons, p-values in the SEM
analysis were adjusted using Benjamini-Hochberg correction (q = 0.1; total comparisons = 12

[6 regions x 2 timepoints]) for an overall pFDR<0.05.

Results

Sex stratified participant characteristics and brain volumes are summarized in Table 1. In the
total sample the majority of families had at least one parent that had completed college or

Table 1. Participant characteristics stratified by sex.

Males (n = 39) Females (n = 27)
N (%) N (%) Chi-Square (X?) p-value
Age (Time 1)
9 6(16.7) 3(11.1)
10 18 (50.0) 9 (33.3)
11 12 (33.3) 12 (44.5)
12 0(0.0) 3(1L1) 2.74 0.43
Puberty (Time 2)
1 = Not Started 7 (17.9) 1(3.7)
2 = Early 28 (43.6) 17 (63.0)
3=Mid 4(10.3) 2(7.4)
4 = Late 0(0.0) 7 (25.9)
5 = Completed 0(0.0) 0 (0.0) 13.10 0.004
Weight Status (Time 1)
Healthy Weight 27 (69.2) 25(92.5)
Overweight/Obese 12 (30.7) 2(7.4) 10.15 0.001
Brain Volumes Mean + SD Mean + SD t-value p-value
L. Nucleus Accumbens Time 1 91.41 + 13.18 87.70 + 11.51 1.18 0.24
R. Nucleus Accumbens Time 1 87.05 + 10.43 81.39 + 8.47 2.33 0.02
L. Entorhinal Cortex Time 1 180.26 + 32.59 167.52 + 40.60 1.41 0.16
R. Entorhinal Cortex Time 1 164.07 + 32.20 142.98 + 29.43 2.70 0.009
L. Hippocampus Time 1 415.22 + 38.05 401.21 + 40.46 1.43 0.15
R. Hippocampus Time 1 419.92 + 31.38 395.56 + 37.19 2.87 0.006
Estimated Intracranial Time 1 144482.34 + 13090.61 134323.52 £ 11074.01 3.29 0.001
L. Nucleus Accumbens Time 2 86.42 +13.05 88.26 + 16.45 0.45 0.65
R. Nucleus Accumbens Time 2 84.13+9.03 82.69 +11.48 0.50 0.61
L. Entorhinal Cortex Time 2 200.62 + 36.27 179.38 + 33.73 2.19 0.03
R. Entorhinal Cortex Time 2 187.50 + 39.18 173.95 + 28.41 1.36 0.17
L. Hippocampus Time 2 413.44 + 35.94 407.92 + 48.88 0.47 0.63
R. Hippocampus Time 2 422.05 + 31.66 411.74 + 43.45 0.99 0.32
Estimated Intracranial Time 2 143550.51 + 14407.51 133819.89 + 13918.93 2.48 0.01
All volume values expressed have been converted from mm? to cm?
Chi-Square and t-tests conducted to test for differences between males and females
OW/OB = Children with overweight or obesity; Healthy weight = <85™ and OW/OB = >85 BMI-age-sex-percentile
Sample size at time 2: n = 53 (29 male)
Time 1 = Baseline; Time 2 = 1 Year Follow Up
https://doi.org/10.1371/journal.pone.0221995.t001
6/12
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Table 2. Adjusted linear regressions of BMIz on concurrent regional brain volumes at times 1 and 2.

Regression Brain Region Model Estimate
B (95% CI)

Baseline Left Right
Nucleus Accumbens 0.11 (-0.13, 0.35) 0.06 (-0.20, 0.32)
Entorhinal Cortex -0.09 (-0.34, 0.14) -0.21 (-0.47, 0.04)
Hippocampus -0.07 (-0.41, 0.25) 0.23 (-0.10, 0.56)

1-year Follow Up
Nucleus Accumbens 0.13 (-0.17, 0.43) 0.10 (-0.22, 0.43)
Entorhinal Cortex -0.27 (-0.59, 0.04) -0.14 (-0.43, 0.14)
Hippocampus 0.16 (-0.18, 0.51) 0.43 (0.10,0.77) *

* Indicates p<0.05.

Models include control variables for estimated intracranial volume, age, sex, and pubertal status.

Volumes are reported as sample standardized z-scores = Volume-Sample Mean Volume / Sample Standard
Deviation.

Sample size at time 1: n = 66 (39 male); Sample size at time 2: n = 53 (29 male).

https://doi.org/10.1371/journal.pone.0221995.t1002

graduate school (89.8%) and the majority of families had above average household income
(75.6% of households >$65,000/year). The sample at time point 1 (n = 66) included 39 males
(59.0%) and 27 females (41.0%) and at time point 2 (n = 53) included 29 males (54.7%) and 24
temales (45.3%). The longitudinal sample (n = 47) including 27 males (57.4%) and 20 females
(42.6%). The mean child age at time point one was 10.40 years (SD = 0.76; range:9.33-12.92)
and 11.86 years (SD = 0.81; range:10.25-13.53) at time point 2. Mean BMIz was 0.34 (SD =
0.95; range = -2.34-2.37) at time point 1 and 0.34 (SD = 1.03; range = -2.15-2.30) at time point
2. In the total sample 52 of the 66 children (78.78%) were considered healthy weight. Only one
relationship was apparent in the cross-sectional analysis, a correlation between right hippo-
campal volume at time 2 and child BMIz at time 2 (8 = 0.43, 95% CI = (0.10, 0.77)). None of
the other brain regions tested showed significant cross-sectional associations. The unstandard-
ized model estimates for the remaining cross-sectional analyses are summarized in Table 2.
The longitudinal SEM analysis identified a negative association between the right entorhinal
cortex volumes at time point 1 and BMIz at time point 2 (one-year follow-up) (8 = —0.25, 95%
CI = (-0.44, -0.07)). A positive association was identified between the right hippocampal volume
at time point 2 and concurrent BMIz at time point 2 (8 = 0.40, 95% CI = (0.12, 0.67)) replicating
the result seen in the cross-sectional model. No other relationships were apparent from the longi-
tudinal analysis. The main effects from the SEMs between BMIz scores and regional brain vol-
umes at baseline and one-year follow up are summarized in Table 3 and visualized in Fig 2.

Discussion

The purpose of the current analysis was to determine the cross-sectional and longitudinal rela-
tionships between child BMIz and volumetric measures of the entorhinal cortex, hippocam-
pus, and nucleus accumbens. We had hypothesized that nucleus accumbens volume would be
positively associated with BMIz both cross-sectionally and prospectively. Our hypothesis was
motivated by a recent study in children that observed that nucleus accumbens volume was pos-
itively correlated with concurrent BMIz, [3] as well as our previous finding in our larger study
that nucleus accumbens volume was positively associated with genetic risk for developing obe-
sity as measured by FTO rs9939609 [11]. However, in the current analysis, we observed no
cross-sectional or longitudinal relationship between nucleus accumbens and BMIz. Our small
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Table 3. Regressions from the SEMs between BMIz scores and regional brain volumes at baseline and 1-year follow up.

Outcome Brain Region Predictor Model Estimate
B (95% CI)

BMIz at Time 1 Left Right
Nucleus Accumbens T1 -0.15 (-0.47,0.18) -0.13 (-0.43,0.17)
Entorhinal Cortex T1 -0.01 (-0.43,0.25) 0.02 (-0.32, 0.37)
Hippocampus T1 0.04 (-0.40,0.48) 0.31 (-0.08,0.71)

BMIz at Time 2
Nucleus Accumbens T1 -0.18 (-0.38,0.03) -0.01 (-0.19,0.17)
Entorhinal Cortex T1 -0.08 (-0.20,0.05) -0.25 (-0.44, -0.07)*
Hippocampus T1 0.10 (-0.18,0.39) -0.21 (-0.54,0.13)
Nucleus Accumbens T2 -0.01 (-0.17,0.16) 0.13 (-0.03,0.29)
Entorhinal Cortex T2 0.17 (-0.07,0.41) 0.09 (-0.01,0.21)
Hippocampus T2 0.13 (-0.12,0.39) 0.40 (0.12,0.67)*

*Indicates Benjamini-Hochberg corrected p<0.05.

N =47 (27 male)

Models include control variables for estimated intracranial volume, age, sex, and pubertal status where significant

Volumes are reported as sample standardized z-scores = Volume-Sample Mean Volume / Sample Standard Deviation.

T1 = Baseline; T2 = 1 Year Follow Up.

https://doi.org/10.1371/journal.pone.0221995.t1003

sample size in the current study, particularly within the SEM, prohibited the examination of
genetic risk factors in relation to brain volume.

We did not find evidence to support the hypotheses that entorhinal cortex volume was
cross-sectionally associated with BMIz in children, however, we did find that entorhinal cortex
volume was negatively associated with changes in BMIz longitudinally. Therefore, while our
findings do not support cross-sectional results like those found in adults[4] it does suggest a
negative longitudinal relationship between entorhinal cortex volume and increases in BMIz
over a one-year period within this small sample. The lack of replication of the cross-sectional
relationship between entorhinal volume and BMIz may be in part due to the limited number
of children with overweight or obesity in our sample or our sample’s younger age range. As
the prevalence of obesity in early childhood is lower than that of adulthood [40], it is possible
that a small difference in weight gain related to volume may not be easily observable as a cross-
sectional association until adulthood, when excess weight has more time to accrue. Therefore,
our results, alongside those of Vainik and colleagues, suggest that future studies should give
more consideration to the entorhinal cortex as a region of interest particularly if study out-
comes are related to BMIz.

Based on previous studies, we hypothesized that hippocampal volumes would negatively
correlate with BMIz [6,41,42]. We further hypothesized hippocampal volume would be nega-
tively associated with changes in BMIz. Using SEM, we did not observe any prospective rela-
tionship within our sample. However, contrary to our initial hypothesis we did observe a
positive association between concurrent right hippocampal volume and BMIz at timepoint 2
in both cross-sectional and SEM results. Our cross-sectional findings add support to those pre-
viously reported in adolescents [6] however, we note that there are conflicting results in the
current literature with some studies showing no relationship [3,4] and others observing the
opposite relationship to that observed in this study [16,25,43]. The lack of a relationship with
BMIz at baseline may suggest that BMIz-related associations with this region do not emerge
until later in development. This relationship should be clarified by future studies employing
large-scale longitudinal designs.
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Fig 2. Graphical representation of the beta values derived from the structural equation model (SEM) for each brain region of
interest. Error bars indicate 95% confidence interval. T1 = Baseline; T2 = 1 Year Follow Up. * indicates p<0.05.
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While these results provide novel insight into potential relationships between pediatric obe-
sity and structural brain development, the current analyses include several limitations that
should be considered. Although the sample size reported here is comparable to other recent
analyses [3], the number of participants may be underpowered to detect significant relation-
ships, or alternatively, may overestimate the significance of positive tests. More specifically our
sample was underpowered for full SEM analysis. Therefore, these results should be viewed as
exploratory and further follow up is needed to confirm our findings. Further, our sample was
largely homogeneous in terms of BMI z-scores and other demographic characteristics such as
education and income, which may reduce generalizability and may have limited our ability to
detect cross-sectional relationships with BMIz. Primarily, the fact that the sample was primar-
ily healthy weight likely limits the robustness of the overall results. Additionally, height and
weight measurements were only assessed once during each visit, as opposed to duplicate/tripli-
cate assessments and this may have introduced some small amount of measurement error.
However, this analysis has several strengths. The first is that both brain volumetric data and
BMIz scores were measured at two time points separated by a year. Second, our structural
equation models allowed for analysis of two timepoints while simultaneously controlling for
covariance between the two measures of BMIz and brain volumes. This type of modeling also
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has advantages over other types of modeling that could be employed, such as linear mixed
models, as it provides statistical indications of causality. Finally, by employing both visual
inspection and quantitative assessment of FreeSurfer segmentation, we assured only high-
quality segmentation data were included in the analysis.

In summary, we observed that right entorhinal cortex volume negatively correlated with
BMIz change over one year in children. Furthermore, we found a positive relationship between
right hippocampal volume at time 2 and concurrent BMIz. These results suggest that measured
brain region volumes are associated with concurrent BMIz and BMIz change over one-year
within a primarily healthy weight sample of children. Therefore, brain morphometry may be a
useful predictive marker of longitudinal weight gain, particularly in children. Furthermore, as
the entorhinal cortex integrates signaling from both reward and control regions of the brain
our findings suggest that this region may be particularly important to regulating weight during
child development. Future large-scale longitudinal neuroimaging studies are needed to further
investigate the relationship between brain structures and BMIz in children.
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