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Abstract: Some of the most successful pathogens of
human, such as Mycobacterium tuberculosis (Mtb), HIV, and
Leishmania donovani not only establish chronic infections
but also remain a grave global threat. These pathogens
have developed innovative strategies to evade immune
responses such as antigenic shift and drift, interference
with antigen processing/presentation, subversion of
phagocytosis, induction of immune regulatory pathways,
and manipulation of the costimulatory molecules. Costi-
mulatory molecules expressed on the surface of various
cells play a decisive role in the initiation and sustenance of
immunity. Exploitation of the ‘‘code of conduct’’ of
costimulation pathways provides evolutionary incentive
to the pathogens and thereby abates the functioning of
the immune system. Here we review how Mtb, HIV,
Leishmania sp., and other pathogens manipulate costi-
mulatory molecules to establish chronic infection. Impair-
ment by pathogens in the signaling events delivered by
costimulatory molecules may be responsible for defective
T-cell responses; consequently organisms grow unhin-
dered in the host cells. This review summarizes the
convergent devices that pathogens employ to tune and
tame the immune system using costimulatory molecules.
Studying host-pathogen interaction in context with
costimulatory signals may unveil the molecular mecha-
nism that will help in understanding the survival/death of
the pathogens. We emphasize that the very same
pathways can potentially be exploited to develop
immunotherapeutic strategies to eliminate intracellular
pathogens.

Introduction

The immune system is highly evolved to combat and eliminate

pathogens. However, some pathogens can successfully subvert the

host immune system to establish their intracellular survival via

strategies such as the disguise or sequestration of antigens,

molecular mimicry, immunosuppression, circumvention of com-

plements and cytokines cascade, blockade of antigen presentation,

escape from apoptosis and autophagy, and modulation of

costimulatory signals [1].

T cells and antigen-presenting cells (APCs) play crucial roles in

eliminating intracellular pathogens. The optimal activation of

naive T cells is achieved by occupancy of T-cell receptor (TCR) by

the peptide-MHC complex displayed on the surface of APCs,

delivery of costimulatory signals, and the presence of proinflam-

matory cytokines [2]. The expression of costimulatory molecules

on APCs is critical in shaping the extent and nature of the immune

response. Thus, an encounter of T cells with peptide-MHC can

result in two discrete events: (a) T-cell proliferation and

differentiation into effector cells; (b) or anergy or apoptosis. The

question of which of these outcomes transpires is determined by

the delivery of appropriate costimulatory signals [3]. An array of

costimulatory molecules is displayed on the surface of APCs

(CD80/B7-1, CD86/B7-2, CD83, CD40, PDL-1, DC-SIGN, 4-

1BBL, etc.) and T cells (CD28, CTLA-4, CD40L, PD-1, OX40, 4-

1BB, etc). The level of the expression of the costimulatory

molecules may play an important role during the course of acute

disease and its remission or relapse. Hence, modulation of these

molecules by pathogens can help them to establish their existence

in the host.

Here we elaborate the mechanism by which pathogens such as

Mtb, HIV, and Leishmania sp., employ molecules viz. CD28, CD40,

CD40L, CD80, CD86, CTLA-4, PD1, PDL-1, etc., to break the

code of costimulation to establish chronic infection. The organisms

in consideration are representatives of successful pathogens from

the class of bacteria, virus, and parasites. It appears that these

pathogens adopt a common evolutionarily convergent mechanism

to evade host immune reaction. This review provides insights into

the mechanism by which pathogens suppress host immunity by

modulating the expression of costimulatory molecules. We also

suggest avenues of therapeutic intervention by exploiting costimu-

latory pathways for treating infections.

The Paradigm Shift in the Biology of
Costimulation

The unilateral ‘‘help to T-cell’’ lymphocentric paradigm of

costimulatory pathways has currently evolved into a bilateral

signaling model that influences the activity of both T cells and

APCs during their interaction (Figure 1) [4,5]. Costimulatory

molecules of CD80/CD28, tumor necrosis factor (TNF)/TNFR,

and TIM superfamilies have unmasked the plethora of the possible

ligand-receptor interactions that has expanded the understanding

of regulation of the immune responses mediated by APCs and T

cells. For example, a positive regulator like CD40L (on T cells)

when associated with CD40 (on APCs), not only activates T cells

but also results in the activation of dendritic cells (DCs); a process

that is popularly called ‘‘T-cell licensing’’ [6]. Similarly, ligation of
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CD28 with CD80 and CD86 is known to induce the secretion of

interleukin-6 (IL-6) and interferon-c (IFN-c) by DCs and

activation, proliferation, and differentiation of B cells [5,7,8]. It

is reported that 4-1BBL expressed on DCs, binds to 4-1BB on T

cells, to bolster DCs help to T cells [9]. Many reports have

highlighted the inhibitory roles of CTLA-4 (CD152) and PD-1

(expressed on T cells) with ligands CD80/CD86 and PDL-1/

PDL-2 (on APCs), respectively [10,11]. It clearly suggests that

costimulation not only amplifies the magnitude of the activation of

T cells and APCs, but fine tunes the immune response as well,

thereby controlling the hyperactivation.

Modulation of Costimulatory Molecules by
Bacteria

Intracellular pathogens like Mtb, Mycobacteria avium, M. leprae,

Salmonella typhi (S. typhi), Helicobacter pylori (H. pylori), etc., infect both

macrophages and DCs. These cells recognize bacterial compo-

nents known as pathogen-associated molecular patterns (PAMPs)

through their pathogen recognition receptors (PRRs). This triggers

innate immunity that initiates antimicrobial defense mechanisms

involving autophagy, apoptosis, release of antimicrobial com-

pounds like IFN-c and TNF-a, etc. [12]. It is followed by

activation of adaptive immunity. The adaptive immune response,

personified by specificity and memory, involves the clonal selection

of B cells and T cells that confer humoral immunity (HI) and cell-

mediated immunity (CMI) to pathogens, respectively. Pathogen-

specific Th1 cells release cytokines, especially IFN-c and TNF-a,

which plays an imperative role in activating infected macrophages

and restraining the microbial growth [13]. Further, ligation of

CD80/CD86 with CD28 is essential for preventing apoptosis in T

cells [7,14]. Moreover, CD40/CD40L interaction results in

efficient IL-12 production together with an upregulation of

costimulatory molecules, in addition to enhanced antigen presen-

tation by APCs thereby leading to a boosted T-cell response

(Figure 1) [6,15]. Hence, interference in the down-modulation of

any of these pathways by the pathogens would be detrimental to

the host.

Mtb is one of the most successful pathogens in the history of

mankind. There are numerous reports indicating the role of

mycobacteria in downregulating the expression of CD80, CD86,

and CD40 on APCs [16,17]. A recent study showed, albeit for

BCG, that MHC-II, CD80, CD86, and CD40 are down-tuned

during chronic phase of infection [16]. In such studies, it is

important to delineate the expression of these molecules on

infected versus non-infected cells, as by-stander inflammation

could interfere in the interpretation of results. An elegant study

demonstrated that the expression of costimulatory molecules and

MHC are downregulated in macrophages infected with fluores-

cent reporter bacteria [16,18]. In contrast, others suggested the

augmentation of costimulatory molecules upon infection [19]. This

discrepancy may be primarily dependent on the strain, system, or

time-point of the study.

Downregulation of CD80/CD86 or upregulation of CTLA-4 by

bacteria on APCs may induce anergy/apoptosis of interacting T

cells [20,21]. Defect in this signaling pathway is known to paralyze

the release of IL-2, which may compromise the generation of T-

cell memory [22]. Impediment in CD28 signaling interferes in

IFN-c production and hence promotes the survival of pathogens.

It has been reported that M. leprae obstructs CD28/B7 signaling

pathway for rendering antigen-specific T cell unresponsive in

lepromatous leprosy patients [21]. Recently, the importance of

CD80/CD86 in controlling mycobacterial infection has been

demonstrated in CD80/CD86 double knockout mice [23]. The

down-modulation of CD80/CD86 in chronic phase of the

infection suggests that mycobacteria may actively exploit this

pathway to anergize the T cells (Figure 2). Protective CMI is

always associated with the release of chemokines and migration of

Figure 1. Immune response against intracellular pathogens. (A) PRRs of APCs sense pathogens that result in the activation of APCs. (B) This
leads to enhanced antigen presentation, upregulation of costimulatory molecules, and secretion of proinflammatory cytokines that promote the
activation of T cells. The activated T cells help in elimination of the pathogens. (C) Engagement of costimulatory molecules on APCs by T cells also
results in ‘‘bidirectional signaling’’ that activates APCs to restrict the growth of pathogens.
doi:10.1371/journal.ppat.1002676.g001
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immune cells to the site of infection. Mtb impair chemokines

secretion by interfering with the CD28-B7 signaling pathway

thereby obstructing the surveillance of immune cells and

enhancing the propagation of the bacterium [24,25]. It has been

shown that the most abundant cell wall lipid trehalose 6, 69-

dimycolate (TDM) of Mtb and MTSA-10 inhibit the expression of

costimulatory molecules on the surface of the macrophages

[26,27]. Similarly, CD40-CD40L interaction is very important

in mediating efficient protection against mycobacteria [28].

Indeed, it has been shown in vitro and in lepromatous patients

that CD40 is downregulated by M. leprae [29,30]. There is indirect

evidence indicating the involvement of Mtb manipulating CD40/

CD40L expression. In humans, CD40L expression on Th1 cells of

tuberculosis (TB) patients has been correlated with the intensity of

IFN-c secretion [31]. However, CD40 but not CD40L knockout

mice are susceptible to Mtb infection [32,33]. It is reported that the

heat shock protein 70 (HSP70) of Mtb acts as an alternate ligand

for CD40. Corroboratively, over-expression of HSP70 interferes

with long-time persistence of Mtb and allows its clearance [34].

Interestingly, in chronic mycobacterial infections, CD40 is

suppressed on infected cells [16]. Therefore, it is intriguing to

speculate that in the chronic phase of infection, mycobacteria may

hamper CD40 expression or manipulate CD40L signaling through

binding with HSP70 instead of CD40L in order to evade host

defense mechanisms.

Mycobacteria can upregulate the expression of PD-1 and its

ligands PDL-1/PDL-2 [35]. Several studies have shown that T

cells and natural killer (NK) cells from TB patients have increased

PD-1 expression [36,37]. Blockade of PD-1 interaction with PDL-

1/PDL-2 enhances immune response. These observations suggest

that mycobacteria may exploit PD-1 and PDL-1/PDL-2 pathways

to dampen the host immune responses. In contrast, some studies

have suggested that these pathways may be involved in controlling

exuberant T-cell responses in TB and hence may be beneficial for

both the host and the pathogen [36,38,39]. Mtb retards the

development and maturation of monocyte-derived DCs to limit

the immune response [40]. These immature DCs have a

tolerogenic effect in vivo that can result in the generation of

regulatory T cells (Tregs). Tregs can restrain the proliferation of

naive and memory T cells, thereby suppressing pre-existing T-cell

immunity [41,42].

Besides mycobacteria, many other pathogens can exploit

CD80/CD86-CD28/CTLA-4 pathways for their persistence

(Table 1). H. pylori causes chronic infection in the gut resulting

in peptic ulcers. Further, it is known to induce the expression of

CTLA-4, resulting in the anergy of T cells and poor clearance of

the bacteria [43]. Yersinia pseudotuberculosis decreases CD86

expression on B cells and impedes the function of both B cells

and T cells [44]. S. typhi is known to suppress ICAM-1 and as a

consequence reduces the antigen uptake by APCs and inadequate

T-cell response [45,46]. H. pylori diminishes the expression of

CD40L on T cells and therefore employs CD40/CD40L pathway

for its survival. Furthermore, it upregulates PDL-1 expression on

gastric epithelial cells and inhibits the activation of T cells

recruited to gastric mucosa [47]. In addition, it has been reported

that PDL-1 upregulation not only blocks T-cell proliferation and

IL-2 secretion, but also promotes the development of Tregs [48].

Bordetella pertussis and B. bronchiseptica decrease the manifestation of

CD40 and ICAM-1 on DCs, and subsequently, render DCs

tolerogenic and promote chiefly Tregs but not Th1 cells [49,50].

Hence, costimulatory molecules could serve as attractive targets

for bacteria to modulate in order to prolong their own survival.

Figure 2. Pathogens modulate the expression of costimulatory molecules for their survival. Sensing of pathogens through PRRs triggers
the activation of APCs. (A) Costimulatory molecules, which act as the second signal for T-cell activation, are upregulated on infected cells. Persistence
of intracellular pathogens modulates the expression of costimulatory molecules, such as downregulation of CD40/CD80/CD86 and upregulation of
PDL-1 on infected APCs. Similarly, retarding the exhibition of CD28/CD40L augments PD-1/CTLA-4 on T cells. (B) Interaction of T cells with the
infected APCs impairs the function of T cells by inducing anergy, apoptosis, or exhaustion. (C) Lack of T-cell help impedes the activity of APCs,
eventually enhancing the survival of pathogens.
doi:10.1371/journal.ppat.1002676.g002
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Modulation of Costimulatory Molecules by
Viruses

To counter viral infestation, the vertebrate immune system has

evolved complex antiviral innate and adaptive immune mecha-

nisms. Some of the spectacular examples to limit viral replication

by the host cells are the production of interferons, NK cell-

mediated lysis, and apoptosis of the infected cells [51,52]. Adaptive

antiviral immunity relies greatly on the lysis of infected cells by

cytotoxic CD8+ T cells and neutralizing antibodies secreted by B

cells.

HIV is a retrovirus that is responsible for 1.9 million deaths

annually [53]. It predominantly infects CD4+ T cells. Further, it

invades DCs, monocytes, and macrophages expressing CD4 and

one of its coreceptors CCR5 or CXCR4 [54]. Additionally, HIV

can bind to DC-SIGN and mannose receptors [55]. However, the

virus preferentially replicates in the activated HIV-specific CD4+

T cells [56]. Indeed, excessive loss of CD4+ T cells is the hallmark

of HIV infection [57]. Like many other intracellular pathogens,

HIV efficiently exploits the costimulatory molecules to override

the immune responses. Its infection is associated with decreased

expression of CD40L on CD4+ T cells [58]. Upon activation,

CD4+ T cells from individuals with progressive disease show very

little upregulation of CD40L, which corroborates with their

inability to help APCs and failure to induce IL-12 in DCs [59].

Further, CD40-CD40L interaction has been demonstrated to be

important in engendering a robust HIV-specific CD8+ T-cell

response. Furthermore, HIV interferes in the CD40 signaling

pathway in B cells and hinders T cell help, thereby impairing the

secretion of IgG and IgA antibodies [60,61]. AIDS patients suffer

from a defective humoral immunity, which may be due to loss of

T-cell function, or B-cell intrinsic defects [62,63]. HIV upregulates

Fas and FasL (members of TNF superfamily) on CD8+ T cells and

APCs, respectively, which leads to the apoptosis of the interacting

CD8+ T cells [64,65]. Thus, in HIV infections, the hunter

becomes the hunted!

During viral infections, continual expression of CD80/CD86 on

DCs is decisive to maintain the effector function of CD8+ T cells

[66]. Intriguingly, HIV downregulates the expression of CD80/

CD86 and their ligand CD28 on infected APCs and T cells,

respectively [67,68]. The expression of costimulatory molecules

such as 4-1BBL, CD70, OX40, and OX40L is affected during

HIV-1 infection [9,69]. Measles, herpes, and hepatitis C viruses

(HCV) retard the expression of CD80, CD86, CD25, CD83, and

CD40 that leads to poor CD8+ T-cell priming [70–72]. In

addition, Herpes virus suppresses ICAM-1 on APCs, thereby

obstructing immunological synapse with T cells [73].

Chronic viral infections are associated with loss of function in T

cells, a phenomenon popularly known as T-cell exhaustion.

Exhausted T cells highly express PD-1 and have poor effector

function [74]. PD-1 expression on HIV-specific T cells is

associated with T-cell exhaustion and disease progression [75].

PD-1 is known to make CD8+ T cells more susceptible to Fas-

mediated lysis [76]. Signaling through PD-1 can suppress IL-2

secretion by CD8+ T cells. IL-2 is known to rescue T cells from

anergy and boost the memory response [77]. In addition,

upregulation of PDL-1 on APCs during HIV or hepatitis B virus

(HBV) infection supports the survival of pathogens (Table 1)

Table 1. Exploitation of costimulatory molecules by intracellular pathogens.

Intracellular Pathogens Costimulatory Molecules Loss of Function References

Bacteria

M. tuberculosis CD80Q, CD86Q, CD40Q,
PDL-1/PDL-2q, PD-1q

Hampers effective T-cell activation. Induces anergy or
apoptosis in T cells, paralyzes IL-2 and chemokines secretion,
and inhibits NK cell function.

[16,20,35,37]

M. leprae CD80Q, CD28Q Blockade of IL-12 secretion, defective T-cell response [21]

S. typhimurium ICAM-1Q Impedes antigen uptake ability of APCs [45,46]

B. anthracis CD40Q, CD80Q, CD86Q Impairment of antigen specific B-cell and T-cell immunity,
suppresses the function of DCs

[104,105]

H. pyroli PDL-1q, CTLA-4q Exhaustion of DCs, obstructs cytokines secretion, induces
anergy in T cells

[43,106]

B. bronchiseptica CD40Q Hampers maturation of DCs [49]

B. pertussis CD40Q, ICAMQ Promotes differentiation of Tregs [50]

Viruses

HIV PD-1q, PDL-1q, CTLA-4q, CD80Q,
CD86Q, CD33Q, CD40LQ, 4-1BBQ,
OX40Q

Blocks IL-2 but augments IL-10 secretion, induces exhaustion
of T cells, defective CTLs response, and hampers antigen
uptake ability of APCs

[58,60,69,75]

HBV PDL-1q, PD-1q Induces IL-10 secretion, enhances apoptosis and anergy in T cells [79]

HCV CD83Q, CD86Q Reduces stimulatory capacity of DCs [72]

Measles CD40Q, CD80Q, CD86Q, CD25Q,
CD83Q, CD69Q

Abnormal DCs differentiation, improper CD8 T-cell proliferation [70]

Herpes simplex virus ICAM-1Q Blocks APCs T-cell communication [71,73]

Protozoans

L. donaovani CD80Q Inefficient T-cell response [81,107]

T. gonodii CD80Q Inhibits T-cell stimulatory activity [82]

q,upregulation;
Q, downregulation.
doi:10.1371/journal.ppat.1002676.t001
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[78,79]. In essence, viruses can exploit costimulatory molecules in

restraining the function of both T cells and APCs.

Modulation of the Expression of Costimulatory
Molecules by Intracellular Protozoan Parasites

T cells play a significant role in controlling the protozoa-

inflicted diseases like malaria, visceral leishmaniasis, and trypano-

somiasis. Humoral responses play a less important role. However,

complement-mediated killing or opsonization is responsible for

control of pathogen during the intermittent extracellular phase of

its replication cycle within the vertebrate host [80].

Parasites like Leishmania donovoni, L. chagasi, Toxoplasma gonodii (T.

gonodii), T. cruzi, and Plasmodium falciparum can manipulate the

costimulatory molecules for evading immune system. L. donovani

and L. chagasi infect macrophages and are reported to downreg-

ulate both CD80 and ICAM-1 [21,81]. Such APCs fail to

optimally activate T cells. T. gondii and T. cruzi, selectively dampen

the exhibition of CD80 and CD28, respectively to impair the

function of T cells [82]. CD40-CD40L signaling is crucial for Th1

immunity against L. major, because CD40L/CD40 knockout mice

sparsely secrete IL-12, favoring Th2-biased response [83,84].

Interestingly, L. major can differentially modulate the expression of

CD40 and thus anergizes T cells and promotes Tregs population

[83]. Plasmodium interferes in the signaling mechanism of CD40 in

DCs [85]. CD40 deficient mice succumb to plasmodium infection.

This signifies that this pathway is detrimental in providing

sterilizing immunity to parasites, as it activates APCs and

protective Th1 responses. In conclusion, parasites can efficiently

empower the immune system by dampening the expression of

costimulatory molecules.

Mechanism Involved in Immunomodulation of
Costimulatory Molecules

Induction of the expression of costimulatory molecules on exposure

to various inflammatory cytokines (IL-6, IL-12, TNF-a, IFN-c) or

PAMPS/DAMPs is regulated by transcription factors such as NF-kB,

IRF-3, AP-1, NFAT [86,87]. Activation of these transcription factors

is tightly regulated by various kinases or phosphatases that include

mitogen-activated protein kinases (MAPKs), TNF receptor-associat-

ed factor proteins (TRAF), IL-1 receptor-associated kinase 4

(IRAK4), phosphoinositide 3-kinase (PI3K), and Janus-kinase. For

example, triggering of TLR-4 with lipopolysaccharides (LPS) elicits

pathways dependent on myeloid differentiation primary response

gene 88 (MyD88) and TIR-domain-containing adapter-inducing

interferon-b (TRIF). Both the molecules induce downstream

signaling to activate MAPKs, NF-kB, and IRF family proteins,

which are responsible for the enhanced expression of CD40 and

CD86 [86,88]. Further, T-cell interaction with APC involving TCR

and costimulatory molecules activates a plethora of downstream

signaling molecules, leading to the induction of the expression of

CD40L, PD-1, and CD28 [89,90].

Intracellular pathogens utilize an array of mechanisms to

manipulate costimulatory molecules. Upon infection, pathogens

trigger IL-10 secretion by inhibiting p38MAP kinases and

promoting ERK phosphorylation [91]. IL-10 blocks the degrada-

tion of IkB-a that inhibits the NF-kB activation eventually

inhibiting the expression of costimulatory molecules [92]. Inter-

ference in TLRs signaling by the intracellular pathogens is

considered to be a foremost event in the suppression of

costimulatory molecules. Mannosylated lipoarabinomannan

(ManLAM) of Mtb binds to DC-SIGN and compromises the

LPS-induced activation of DCs by interfering in the TLRs’

signalling [93]. Binding of Mtb early secreted antigenic target

protein 6 (ESAT-6) to TLR-2 activates AKT and prevents

interaction between the MyD88 and IRAK4, consequently

abrogating NF-kB activation that suppresses CD80 expression

[94]. Similarly, HIV upregulates PDL-1 on DCs and monocytes

by attenuating the signaling of TLR-7 and TLR-8 [95]. In

addition, HIV-mediated PI3K activation upregulates PDL-1 on

APCs and thus suppresses the activation of HIV-specific CD8+ T

cells [96]. Rapid endocytosis of costimulatory molecules upon

infection is suggested as one of the mechanisms to interrupt the

function of APCs. For instance, Nef protein of HIV modulates the

actin-dependent trafficking mechanism to remove CD80/CD86

from the monocytes surface, making them inefficient to activate T

cells [97].

TCR signaling is central for the optimum expression of

costimulatory molecules and effector function of T cells. There-

fore, it may serve as an important target for pathogens to paralyze

T-cell activity [98]. Mtb glycolipids interfere with TCR signaling

and block the activation of CD4+ T cells [99]. HIV gp120

interacts with CD4 (a coreceptor for TCR) that inhibits

intracellular signal transduction through TCR, leading to

decreased hydrolysis of polyphosphoinositide (PI), Ca2+ influx,

activation of protein kinase C (PKC), and eventually failure of

NFAT translocation. These events culminate in the inhibition of

CD40L expression. Decline of CD40L on T cells abrogates the

bidirectional signaling and reduces the exhibition of CD80 on

APCs [100]. In contrast, Nef activates NFAT and stimulates IL-2

release to overcome the exogenous requirement of IL-2 to

promote T-cell proliferation, consequently disseminating the

infection [101]. However, Nef retards CD28 and CD4 expression,

thereby making T cells incapable of promoting CMI [98].

Corroborative with these observations, Nef-mutated HIV is

unable to cause persistent infection. Similarly, core protein of

HCV inhibits TCR signaling and upregulates PD-1 [102]. The

above-mentioned mechanisms imply that pathogens can effectively

utilize various costimulatory pathways to subvert immune response

to persist in the host.

Therapeutic Implications

The noncompliance with the relatively high dose and extended

therapeutic regime reduces the effectiveness of current drugs,

leading to global emergence of MDR/XDR/TDR pathogenic

strains. Interestingly, costimulatory molecules have been suggested

for therapeutic intervention to treat lymphoma patients [4,103].

To develop alternative or adjunct (with drugs) therapies, an

intensive effort has been undertaken in last decade to understand

how intracellular pathogens exploit costimulatory molecules,

which are the tour de force of the immune system [27,31,68,78].

The potent role of costimulatory molecules is aptly established in

the optimum activation of T cells and APCs; the cells that play a

cardinal role in curbing the infections. Hence, immunotherapy

involving costimulatory molecules can be a breakthrough strategy

to treat various diseases, minimizing side effects inflicted by drug

therapies and in restricting the emergence of drug resistance.
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