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Abstract Cancer poses danger because of its unregulated growth, development of resistance,

and metastatic spread to vital organs. We currently lack quantitative theory for how preventive

measures and post-diagnostic interventions are predicted to affect risks of a life threatening cancer.

Here we evaluate how continuous measures, such as life style changes and traditional treatments,

affect both neoplastic growth and the frequency of resistant clones. We then compare and contrast

preventive and post-diagnostic interventions assuming that only a single lesion progresses to

invasive carcinoma during the life of an individual, and resection either leaves residual cells or

metastases are undetected. Whereas prevention generally results in more positive therapeutic

outcomes than post-diagnostic interventions, this advantage is substantially lowered should

prevention initially fail to arrest tumour growth. We discuss these results and other important

mitigating factors that should be taken into consideration in a comparative understanding of

preventive and post-diagnostic interventions.

DOI: 10.7554/eLife.06266.001

Introduction
Mathematical models play an important role in describing and analysing the complex process of

carcinogenesis. Natural selection for increases in tumour cell population growth can be represented as the

net effect of increased cell division rates and/or decreased apoptosis (e.g., Wodarz and Komarova,

2007). Relatively rare driver mutations confer such a net growth advantage, whereas numerically dominant

passenger mutations with initially neutral or mildly deleterious effects (Marusyk et al., 2012; Bozic et al.,

2013;McFarland et al., 2013) can increase in frequency due to genetic hitchhiking or subsequent positive

selection. Amongst the many passengers in a growing tumour, some can contribute to chemoresistance,

and sufficiently large tumours could contain different clones that, taken as a group, can resist some, if not

most, chemotherapies (see Michor et al., 2005 for resistance to imatinib). Chemotherapeutic remission

followed by relapse suggests that these resistant cells are often present at low frequencies prior to

therapy, either due to genetic drift or costs associated with resistance. Resistant phenotypes

subsequently increase in frequency during radiotherapy or chemotherapy, and through competitive

release they may incorporate one or more additional drivers, resulting in accelerated growth compared

to the original tumour (for related discussion on pathogens, see Huijben et al., 2013).

Previous mathematical studies have considered alternatives to attempting to minimize or eradicate

clinically diagnosed cancers with maximum tolerated doses (MTDs) of chemotherapeutic drugs. This body

of work indicates that MTD is particularly prone to select for chemoresistance (e.g., Foo and Michor,

2009; Foo and Michor, 2010; Lorz et al., 2013), and what little empirical work exists supports this

basic prediction (Turke et al., 2010), but see (Kouyos et al., 2014) for other disease systems.

Numerous alternatives to the goal of cancer minimization/eradication have been proposed and

investigated (e.g., Maley et al., 2004; Komarova and Wodarz, 2005; Foo and Michor, 2009;
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Gatenby et al., 2009a, 2009b; Bozic et al., 2013; Jansen et al., 2015). For example, Komarova and

Wodarz (2005) considered how the use of one or multiple drugs could prevent the emergence or curb

the growth of chemoresistance. They showed that the evolutionary rate and associated emergence of

a diversity of chemoresistant lineages is a major determinant in the success or failure of multiple drugs vs

a single one. Lorz and co-workers (Lorz et al., 2013) recently modelled the employment of cytotoxic

and cytostatic therapies alone or in combination and showed how combination strategies could be

designed to be superior in terms of tumour eradication or managing resistance than either agent used

alone. Foo and Michor (2009) evaluated how different dosing schedules of a single drug could be used

to slow the emergence of resistance given toxicity constraints. One of their main conclusions is that

drugs slowing the generation of chemoresistant mutants and subsequent evolution are more likely to be

successful than those only increasing cell death rates.

These and other computational approaches have yet to consider the use of preventive measures

to reduce cancer-associated morbidity and mortality whilst limiting resistance. Prevention includes

life-style changes and interventions or therapies in the absence of detectable invasive carcinoma

(e.g., Etzioni et al., 2003; Lippman and Lee, 2006; William et al., 2009; Hochberg et al., 2013),

for example, reduced cigarette consumption (Doll and Peto, 1976) or chemoprevention (Steward and

Brown, 2013). In depth consideration of preventive measures and their likely impact on individual risk

and epidemiological trends is important given the likelihood that all individuals harbour pre-cancerous

lesions, some of which may transform into invasive carcinoma (Bissell and Hines, 2011;Greaves, 2014),

and concerns as to whether technological advances will continue to make significant headway in treating

clinically detected cancers (Gillies et al., 2012; Vogelstein et al., 2013).

Here, we model how continuous, constant measures affect tumour progression and the emergence

of resistant lineages. We assume that an individual can contract at most a single cancer, originating

from a single lesion. Importantly, we consider cases where the measure may select for the evolution of

resistant phenotypes and cases where no resistance is possible. Our approach is to quantify the daily

extent to which a growing neoplasm must be arrested in order to either eradicate it or to delay a

potentially lethal cancer. Several authors have previously argued how constant or intermittent low toxicity

therapies either before or after tumour discovery could be an alternative to MTD chemotherapies

eLife digest About one person in every two will get cancer during their lives. Surgery and

chemotherapy have long been mainstays of cancer treatment. Both, however, have substantial

downsides. Surgery may leave behind undetected cancer cells that can grow into new tumours.

Furthermore, in response to chemotherapy drugs, some cancer cells may emerge that resist further

treatment. There is therefore interest in whether preventive strategies—including lifestyle changes

and medications—could reduce the likelihood of confronting a life-threatening cancer.

Now, Akhmetzhanov and Hochberg have developed a mathematical model to help compare the

effectiveness of preventive strategies and traditional cancer treatments. The model—which assumes

that a person can only develop a single cancer from a single region of pre-cancerous cells—suggests

that long-term cancer prevention strategies reduce the risk of a life-threatening cancer by more than

traditional treatment that begins after a tumour is discovered. The preventive measures may be less

effective in some cases compared to traditional treatments if they initially fail to stop a tumour

growing, although on average they still work better than treating the cancer after detection.

According to Akhmetzhanov and Hochberg’s model, surgical removal followed by chemotherapy

is less likely to be successful than prevention, and when successful, requires larger impacts on the

cancer (and therefore creates more side-effects for the patient) to achieve the same level of control

as prevention. The model also suggests that even at very low levels of impact on residual cancer cells,

chemotherapies are likely to be counterproductive by boosting the subsequent emergence of

treatment-resistant tumours.

Akhmetzhanov and Hochberg’s model predicts how effective preventive measures need to be in

terms of slowing the growth of cancer cells to result in given reductions in the future risk of a life-

threatening cancer. Future work should test this model by measuring the effects on tumour growth

of prevention and of traditional therapies.

DOI: 10.7554/eLife.06266.002
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(Wu and Lippman, 2011; Hochberg et al., 2013), but to our knowledge, no study has actually

quantified based on empirical parameter estimates, the extent to which cancer cell population

growth needs to be arrested for such approaches to succeed (see related discussion in Bozic et al.,

2010; Gerstung et al., 2011; Bozic et al., 2013). Below we employ the terms ‘treatment’, ‘measure’,

and ‘therapy’ interchangeably, all indicating intentional measures to arrest cancer cell population

growth.

We first derive analytical expressions for the expected total number of cells within a tumour at

any given time. We explore dynamics of tumour sizes at given times, and times to detection for

given tumour sizes. Specifically, we show that the expected mean tumour size in a population of

subjects can be substantially different from the median, since the former is highly influenced by

outliers due to tumours of very large size. We then consider constant preventive measures and

show that treatment outcome is sensitive to initial conditions, particularly for intermediate-sized

tumours. Importantly, we provide approximate conditions for tumour control both analytically and

numerically using empirical parameter estimates. We next consider post-diagnostic interventions in

which tumour resection either is not complete and leaves residual cells or undetected metastases

are present. We contrast these with prevention scenarios where (1) there is no difference in the age

at which either prevention or post-diagnostic intervention commences, and (2) prevention and

post-diagnostic interventions are alternatives, that is, the former always occurs before the latter.

We show as expected that therapeutic outcomes are generally superior under prevention vs post-

diagnostic intervention, and that higher impacts on the cancer cell population are usually required

for post-diagnostic interventions to achieve a level of control comparable to prevention. Moreover,

we find that should resection leave sufficiently large numbers of residual cells (or metastases are

not discovered), then a range of the most successful outcomes under prevention is not attainable

under post-diagnostic intervention, regardless of potential cell arrest. Finally and importantly,

whereas there is little gained in terms of outcomes in post-diagnostic intervention beyond

approximately 0.3% cell arrest per day for both small (10,000) and large (1 million) cancer cell

populations, prevention outcomes may achieve continual gains for the latter cell number, up to

about 0.6% cell arrest per day.

Modeling framework
Previous study has evaluated the effects of deterministic and stochastic processes on tumour growth

and the acquisition of chemoresistance (Komarova andWodarz, 2005; Bozic et al., 2010; Reiter et al.,

2013, see review Beerenwinkel et al., 2015). We first consider both processes through exact solutions

and numerical simulations of master equations, using the mean field approach (see Appendix 1 for

details). A mean field approach assumes a large initial number of cells (Krapivsky et al., 2010) and

averages any effects of stochasticity, so that an intermediate state of the system is described by

a set of ordinary differential equations (i.e., master equations; Gardiner, 2004). Solutions to these

are complex even in the absence of the explicit consideration of both drivers and passengers (Antal

and Krapivsky, 2011; Kessler and Levine, 2013).

We do not explicitly model the different pre-cancerous or invasive carcinoma states. Rather, our

approach follows the dynamics of the relative frequencies of subclones, each composed of identical

cells (Baake and Wagner, 2001; Saakian and Hu, 2006). We simulate tumour growth using a discrete

time branching process for cell division (Athreya and Ney, 1972; Bozic et al., 2010). For each

numerical experiment, we initiate a tumour of a given size and proportion of resistant cells.

Briefly, the model framework is as follows. Each cell in a population is described by two characteristics.

The first is its resistance status to the measure, which is either ‘not resistant’ (j = 0) or ‘resistant’ (j = 1).

The second property is the number of accumulated driver mutations (maximum N) in a given cell line.

At each time step of 4 days, cells either divide or die, and when a cell divides, its daughter cell has

a probability u of producing a driver mutation and v of producing a resistant mutation. We assume no

back mutation, and that cells do not compete for space or limiting resources.

The fitness function fij, the difference between the birth and death rates of a cell, is defined by the

number of accumulated drivers (i = 0, 1, …, N) and resistance status (j = 0, 1): a sensitive cancerous cell

with a single driver has selective advantage s, and any accumulated driver adds s to fitness, while

resistance is associated with a constant cost c. Exposure to a single treatment affects only non-resistant

cells (j = 0), incurring a loss σ to their fitness. Thus, the fitness function is:
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fij = sði +1Þ− σð1− jÞ− cj:

The assumption of driver additivity is a special case of multiplicative fitness, and both are

approximately equivalent for very small s.

We conducted numerical experiments, each with the same initial states but each using a unique

set of randomly generated numbers of a branching process. For each simulation and each time step,

the number of cells at time (t + 1) was sampled from a multinomial distribution of cells at time t (see

Bozic et al., 2010 for details). Table 1 presents baseline parameter values employed in this study.

Hereafter, we refer to σ as the treatment intensity (applied once every cell cycle of 4 days), while the

corresponding daily arrest level to non-resistant cells is approximated by σ/4.

Results

Preventive measures
We first study preventive interventions where a patient has a high risk of developing a cancer and/or

a biomarker that indicates the probable presence of a cancer. In either case, so that we can compare

and contrast different intervention levels, we assume that the (undetected) tumour contains M0 cells

when prevention commences. We examine effects on the mean by considering the distribution of

tumour sizes at different times using mean-field dynamics (see Appendix 1). Numerical experiments

were then conducted by assuming that tumours initially contained M0 = 106 identical cells (i = 0), of

which 0.01% were resistant. These assumptions are obviously oversimplifications, and we relax some

of them below and in the next sections.

There is an excellent correspondence between analytical and numerical results for σ varied in range

of s (Appendix 1—figure 1A). A more detailed study of the distribution of tumour sizes reveals that

the mean diverges considerably from median behaviour in the majority of cases, since the former is

strongly influenced by outliers with high-tumour cell numbers (see Appendix 1—figure 1B).

Figure 1 shows four examples of numerical experiments. An untreated tumour reaches the

assumed detection threshold of 109 cells by about 18 years on average and because it is not subject to

strong negative selection (we assume low c), any emerging resistant cell-lines are likely to remain at

low frequency (0.03% at the detection time in the example of Figure 1A). In Figure 1B, low-treatment

intensity delays tumour growth and thus time of detection by approximately 16 years, while an

increase in dose tends to result in tumours dominated by resistant cells (Figure 1C). Despite being

unaffected by treatment, resistant cell populations are sometimes observed to go extinct stemming

Table 1. Baseline parameter values used in this study

Parameter Variable Value Range Ref.

Time step (cell cycle length) T 4 days 3–4 days (Bozic et al., 2010)

Selective advantage s 0.4% 0.1–1.0% (Bozic et al., 2010)

Cost of resistance c 0.1%

Mutation rate to acquire an additional
driver

u 3.4 × 10−5 10−7–10−2 (Bozic et al., 2010)

Mutation rate to acquire resistance v 10−6 10−7–10−2 (Komarova and Wodarz, 2005)

Maximal number of additional drivers N 5 (Figures 1, 2) 9 (other figures) 0–9

Initial cell population M0 106 cells –

Pre-resistance level κ 0.01% – (Iwasa et al., 2006)

Number of replicate numerical
simulations (excluding extinctions)

– 106 –

Detection threshold M 109 cells 107–1011 (Beckman et al., 2012)

‘Range’ is values from previous study and employed in the present study.

DOI: 10.7554/eLife.06266.024
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from stochasticity (Figure 1D), and this tends to occur more at high-treatment levels, because there

are fewer sensitive tumour cells to seed new (mutant) resistant cell populations.

We next considered how therapies affected the distribution of tumour detection times in cases where

the cancer cell population attained a threshold of 109 cells. The magnitude of the selective advantage s

shows that tumour growth is largely driven by its non-resistant part for relatively low-impact treatments

σ < 2s (Figure 2A). Importantly, the tumour shifts from being mainly non-resistant to resistant at σ ≈ 2s,

which is reflected by the inflection point in the trajectory of the median (indicated by point B in

Figure 2A,B). Notice that detection times are also most variable at σ ≈ 2s. The median changes

smoothly at high-treatment levels (σ > 2s), tending to a horizontal asymptote. This is explained by the

fact that the sensitive part is heavily suppressed at high-treatment levels, meaning that the dynamics are

strongly influenced by the actual time point at which the first resistance mutation occurs.

We find, counterintuitively, that early-detected tumours are more likely to be resistant under

constant treatments than those detected at later times (A, B, and C in Figure 2C). This is because

tumours under treatment that by chance obtain resistance early grow faster than those that do not. By

the time of detection, non-resistant tumours usually accumulate up to 4 additional drivers on average,

while resistant tumours have fewer. For larger values of cost c, an additional non-regularity emerges at

σ ≈ 3s (segment DEF in Figure 2B), and is associated with tumours having a majority of cells with

maximum numbers of drivers. This region is also characterized by a different transition to complete

resistance (cf. Videos 1, 2 for relatively low and high costs of resistance, respectively). For example, at

point D, tumours with a majority of non-resistance have less variable detection times than tumours with

a majority of resistant cells (points E and F in Figure 2B and corresponding panels in Figure 2C).

Treatment levels along the segment DEF result in tumours that are more likely to be resistant as

one goes from the centre to the tails of the distribution of detection times. This differs

qualitatively from the previous case of a lower cost of resistance, where the tumours are less

resistant in the tail of the distribution of detection times (cf segments ABC and DEF in Figure 2B

and corresponding panels in Figure 2C).

Figure 1. Treatments curb or eliminate tumours. Examples of single patient tumour growth for (A) no treatment.

(B) σ = 0.6%. (C) σ = 1.0%. (D) σ = 2.0%. The shaded area shows the change in total tumour size and the hatched

area, the resistant part of a tumour. The treatment intensity σ in this and all other figures are represented as cell

arrest per day (σ/4). Parameter values as in Table 1.

DOI: 10.7554/eLife.06266.003
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The inflection point at σ ≈ 2s in Figure 2A is due to the accumulation of additional drivers within

tumours and associated increases in the likelihood that the tumour eventually resists treatment.

Since the initial population consists of 106 cells, in the absence of treatment, a mutant cell with one

additional driver and associated fitness 2s will appear very rapidly. Such a tumour can be suppressed

only if σ > 2s. This is supported by additional numerical experiments where we vary the maximal number

of additional driver mutations N: the inflection point σ ≈ 2s disappears when N = 0 (Figure 2—figure

supplement 1A). The inflection points at σ = 3s, 4s emerge at treatment levels that effectively suppress

sensitive subclones with the most drivers before resistance mutations are obtained (cf Figure 2—figure

supplement 1A–C with Figure 2—figure supplement 1D and Video 3). Specifically, the peaked

distributions, corresponding to better therapeutic outcomes, tend to disappear when resistant

subclones emerge.

The initial cancer cell number M0 affects both the median and distribution of detection times

(Figure 2—figure supplement 1B). For large initial tumours, growth is deterministic and exponential.

As the initial size is decreased from 106 to 105, stochastic effects are increasingly manifested by

greater variability in tumour inhibition and an inflection point observed at the 95th percentile.

Figure 2. Treatment level affects both detection time and frequency of resistance. The median (lines) and 90%

confidence intervals (shaded areas) of detection times, measured as years beyond the initiation of the preventive

measure. Effects of: (A) the selective advantage of each additional driver and (B) the cost of resistance. (C) Samples

of the distribution of detection times (in relative frequencies, adjusted for 3-month bins) for corresponding points,

indicated in A and B. Dashed black line is the mean and the dashed-and-dotted line is the median. The colour-code

indicates the average level of resistance in detected tumours over 3 month intervals (see inset in B). All cells j = 0 at

t = 0. Other parameters as in Table 1. Detection time is log-transformed in A and B.

DOI: 10.7554/eLife.06266.004

The following figure supplements are available for figure 2:

Figure supplement 1. Sensitivity analysis for several key parameters.

DOI: 10.7554/eLife.06266.005

Figure supplement 2. Effects of initial neoplasm size (A, B) and resistance level (C) on preventive measure success.

DOI: 10.7554/eLife.06266.006
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Moreover, we find that a tumour is likely to be eradicated under a range of constant treatments

when M0 = 105 or fewer initial cells; in contrast, a tumour is virtually certain to persist regardless of

treatment level for M0 = 107 cells or greater (Figure 2—figure supplement 2A,B). In other words,

our model indicates that tumours that are c. 1% the size of most clinically detectable, internal

cancers will typically be impossible to eradicate by single molecule chemoprevention when

resistance is possible.

Given the mutation rates assumed here, many tumours with 1 million cells will either already contain

or rapidly subsequently acquire resistant cells (Iwasa et al., 2006). It is therefore not surprising that the

initial fraction of resistant cells in a tumour has little impact on dynamics (Figure 2—figure supplement

1C). In contrast, another measure of success in control (the fraction of persons with tumours that remain

undetected after 50 years of growth) improves substantially with lower numbers of initial resistance

mutations, particularly at higher treatment levels

(Figure 2—figure supplement 2C). This is be-

cause the initial phases of treatment have a major

impact on the potential for new resistant mutants:

should few be initially present or emerge, they will

either go stochastically extinct or will not grow to

detection levels (1 billion cells) in the 50 year time

frame of these numerical experiments.

We conducted further sensitivity analyses by

varying accumulation rates u of additional driver

mutations. We find that tumours exhibit more

or less deterministic growth depending on the

initial number of cells M0 and driver mutation

rate u whereby the larger the population

(Figure 2—figure supplement 1B) or the higher

the mutation rate (Appendix 1—figure 4A),

the less apparent are stochastic effects. The

corresponding analysis is presented in ’Varying

mutation rate and initial tumour size‘ in

Appendix 1 and Appendix 1—figure 4.

Finally, we considered scenarios where

the cost of resistance is dose-dependent

and specifically situations of drug addiction

Video 1. Treatment level affects both detection time

and frequency of resistance. (A) The median (thick line)

and 90% confidence intervals (shaded areas with dashed

boundaries) for the distribution of detection times.

(B) Arbitrary samples of the distribution of detection

times and distribution of the mean number of accumu-

lated drivers. The colour-code indicates the average

level of resistance in detected tumours over 3 month

intervals. Parameters as in Table 1.

DOI: 10.7554/eLife.06266.007

Video 2. Treatment level affects both detection time

and frequency of resistance. (A) The median (thick line)

and 90% confidence intervals (shaded areas with dashed

boundaries) for the distribution of detection times.

(B) Arbitrary samples of the distribution of detection

times and distribution of the mean number of accumu-

lated drivers. The colour-code indicates the average

level of resistance in detected tumours over 3 month

intervals. Parameters as in Table 1 except for the cost of

resistance c = 0.4%.

DOI: 10.7554/eLife.06266.008

Video 3. Treatment level effects on detection times

assuming no resistance is possible. (A) The median (thick

line) and 90% confidence intervals (shaded areas with

dashed boundaries) for the distribution of detection

times. (B) Arbitrary samples of the distribution of

detection times and the distribution of the mean number

of accumulated drivers. The colour-code indicates the

average level of resistance in detected tumours over

3 month intervals. The resistance mutation is knocked out

(v = 0). Otherwise parameters as in Table 1.

DOI: 10.7554/eLife.06266.009
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(Das Thakur et al., 2013). Numerical studies presented in more detail in ’A simple form of drug

addiction for resistant cell-lines‘ in Appendix 1 show that under dose-dependent costs, a drug

treatment only applied when the number of non-resistant cells exceeds the number of resistant cells

(e.g., a metronomic therapy [Fischer et al., 2015]) leads to slower long-term tumour growth than

does a constant therapy.

Post-diagnostic interventions
We next investigated how a post-diagnostic measure (usually some form of chemotherapy or radiation

therapy, but could also involve adjuvants after an initial therapy) affects the probability of treatment

success, the distribution of times for tumour relapse, and resistance levels. We assume that a tumour grows

from one cell (i = 0, j = 0) and is discovered either at 109 (early) or 1011 (very late) cells, whereupon the

primary tumour is removed, leaving a small number (104 or 106) of residual, and/or undetected or

inoperable neighbouring micro-metastatic cells, and/or distant metastatic cells. Below, we contrast this

with prevention without discriminating the age at which either intervention type commences, whereas in

the following section, we consider these as competing alternatives. Figure 3A and Figure 3—figure

supplement 1A present the distributions of driver mutations for each scenario. (Recall that in the previous

section, we assumed that when a measure commenced, tumours had no additional drivers (i = 0)).

First, we examine the case where post-diagnostic resection leaves 106 cells. As suggested by our studies

above on prevention, 1 million cells have a high probability of already containing resistant subclones, and

deterministic effects dominate subsequent tumour growth dynamics. Comparing the median expectations

of years from tumour excision to relapse, early discovery (at 109 cells) yields an additional 3.4 years

compared to late discovery (at 1011 cells) at σ = 1.5% (medians for low vs high detection thresholds are

14.8 and 11.4 years, respectively; Figure 3B). Consider the following example: 20 years after resection

and commencing treatment, the probability of tumour non-detection (i.e., the tumour is either

eradicated or does not reach the detection threshold) is close to zero, regardless of treatment intensity

(Figure 3C). Contrast this with cases of prevention starting at the same cancer cell population size (106

cells) but which fail to control the incipient tumour for the 50 years of the simulation: the detection time

of these potentially life-threatening tumours is substantially longer than either of the excision cases

(median 25.5 years for σ = 1.5%, i.e., 0.3–0.4% potential cell arrest per day), and tumours are managed

below the detection threshold after 20 years in more than 80% of cases for any σ > 1.0% (Figure 3C).

Now consider a residual population of 1/100th the previous case, that is, 104 cells. Here, stochastic

effects play a more important role in dynamics (Figure 3—figure supplement 1A,B). Due to initial

heterogeneity (i.e., the co-occurrence of many subclones), when there are 4 and 5 (5 and 6) additional

drivers in the dominant subclones of a residual cancer from an excised tumour of 109 (1011) cells, we

observe a double peak at 4s and 5s (5s and 6s) (cf Figure 3—figure supplement 1B). These peaks in

variability of outcomes are a result of the stochastic nature of the appearance of the first resistance

mutations and of additional driver mutations. Interestingly, the secondary detection times (i.e., when

residual or metastatic cells grow to form a new tumour) are more variable for small initial tumours

compared to larger ones (cf the median 35.8 years, 90% CIs [17.0, 70.5] years vs 22.4, [13.7, 37.0] years

for 109 vs 1011, respectively, with σ = 1.5%). This effect is due to resistance emergence in more

aggressive subclones for larger tumours, such that the tumour relapses more deterministically (i.e., with

less variability and faster on average). The probability of tumour non-detection after 20 years and the

distribution of the mean number of accumulated drivers within tumours are shown in Figure 3—figure

supplement 1C,D, respectively (cf with the previous case, shown in Figure 3C,D).

Importantly, for both thresholds of tumour excision, subsequent cancer cell arrest levels beyond

approximately σ = 1.5% make little difference in terms of tumour growth (Figure 3B-D, Figure 3—figure

supplement 1B-D), since virtually all of the sensitive cells post-excision will be arrested or killed by the

measure beyond this level, leaving uncontrollable resistant cells to grow and repopulate the primary

tumour site and/or metastases. (Note that this level is above that found in the previous section. This is

because drivers accumulate throughout tumour growth in the results given in Figure 3, whereas tumours

were assumed to only start accumulating the first drivers after growth from M0 cells in Figure 2 and

Figure 2—figure supplements 1, 2). Moreover, we find that for post-diagnostic interventions knowledge

about the number of drivers at the time of tumour discovery is a far better predictor of outcome than

information about the time from tumour initiation to discovery, and that increases in treatment intensity

tend to decrease predictive accuracy (Figure 3—figure supplements 2–5).
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Figure 3. Effects of preventive and post-diagnostic interventions against tumours consisting of 1 million cells.

(A) The distribution of mean sizes of subclones (hatched bars = before removal and solid bars = post removal).

(B) The time distribution of cases in which either intervention type fails to control the tumour below the

detection threshold after 50 years (thick line = median, filled area with dashed boundaries = 90% CIs) for

different constant treatment intensities. (C) The percentage of cases where the tumour consists of less than

100 resistant cells at 4 years after treatment commences (solid lines), and the percentage of cases where

tumour size is below the detection threshold 20 years after the measure begins (dashed-and-dotted lines).

(D) The mean number of accumulated drivers within a tumour at the time of detection. Parameter values as

in Table 1.

DOI: 10.7554/eLife.06266.010

The following figure supplements are available for figure 3:

Figure supplement 1. Effects of preventive and post-diagnostic interventions against tumours consisting of 10,000

cells.

DOI: 10.7554/eLife.06266.011

Figure supplement 2. Time to first discovery as a predictor of post-diagnostic treatment success.

DOI: 10.7554/eLife.06266.012

Figure supplement 3. The R2 of regressions from numerical experiments for different treatment levels of time to

tumour relapse following resection as function of the mean number of drivers in a resected tumour.

DOI: 10.7554/eLife.06266.013

Figure supplement 4. Mean number of additionally accumulated drivers in resected tumour as a predictor of

post-diagnostic treatment success.

DOI: 10.7554/eLife.06266.014

Figure supplement 5. The R2 of regressions from numerical experiments for different treatment levels of time to

tumour relapse following resection as function of the mean number of drivers in a resected tumour.

DOI: 10.7554/eLife.06266.015
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Prevention vs post-diagnostic intervention
The above results consider preventive measures and post-diagnostic interventions as independent

rather than alternative approaches. Thus, although prevention delays tumour growth for longer times

on average than does post-diagnostic intervention, because prevention is always initiated before

diagnosis, when considering the relative benefits and risks of each, the actual time gained by the

former relative to the latter in terms of cancer-free life will be less than the differences reported in

Figure 3B and Figure 3—figure supplement 1B.

Figure 4 presents a hypothetical comparative scenario of prevention vs post-diagnostic intervention.

Prevention may either succeed without recurrence, or should the measure initially fail and a tumour be

clinically detected, the patient has a ‘second chance’ whereby the tumour is resected and treatment

Figure 4. Hypothetical process of preventive (with a ‘second chance’) and post-diagnostic measures. A tumour is

initiated by one cell and grows to size M0 (either 104 or 106 cells in our numerical studies). Prevention (A) arrests

tumour growth at intensity σ (daily level = σ/4). Should the tumour grow to 109 cells, it is diagnosed and resected to

M = M0 cells and then treated again at intensity σ. Post-diagnostic intervention (B) does not discover the growing

tumour until 109 cells (i.e., σ =bσ = 0), whereupon it is resected to M = M0 cells and then treated at intensity σ > 0.

Either intervention finally ‘fails’ should the tumour attain 109 cells a second time, no later than 50 years after the initial

lesion of sizeM0. Should the tumour be eradicated or not exceed 109 cells by 50 years after the initial lesion, then the

intervention is deemed a ‘success’.

DOI: 10.7554/eLife.06266.016
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continued (assumed at the same treatment intensity σ), either to a further relapse (failure) or non-

detection (success) (Figure 4A). Compare this scenario with the more standard post-diagnostic

resection followed by treatment, which either results in relapse or detection-free life (Figure 4B). These

numerical experiments assume the same starting point (time at which the cancer cell population equals

M0, and drivers and resistant subclones are present) for each tumour, and because of a ‘second chance’

following initial failure in prevention, are run for a maximum of 50 years after the starting point (same as

the numerical studies in the previous section). We also assume, as before, that potential therapeutic

resistance mechanisms to all intervention types are identical.

Figure 5 presents the comparative outcomes (see also Videos 4, 5). When prevention starts at

(or tumour resection misses) relatively large cancer cell populations (1 million cells), only small

comparative gains occur from higher cell arrest in terms of outright treatment success (Figure 5A),

whereas interventions starting at much smaller cancer cell numbers (10,000) result in considerably

greater outright success (Figure 5B). Looking at situations of relapse only for prevention vs post-

diagnostic intervention, the former generally results in superior outcomes in terms of delaying

tumour growth, particularly for large residual cell populations (cf Figure 5C,D). In contrast, for lower

numbers of residual cells, some post-diagnostic resected tumours in the sample will be initially

resistance free (cf Figure 5—figure supplement 1A,B). This, together with fewer accumulated

drivers in the highest driver subclones, contributes to improved outcomes should relapse occur

(Figure 5D) and overall treatment success at sufficiently high treatment intensities (Figure 5A,B,E,F).

Importantly, resected tumours in both the prevention (when it initially fails) and post-diagnostic

scenarios may contain numerous resistant cells (example of 0.25% daily cellular arrest:

Figure 5—figure supplements 2, 3). Prior selection for resistance in initially failed prevention

generally results in larger residual resistant cell populations than pre-therapeutic residual

populations in post-diagnostic situations (filled bars, cf captions A and B in Figure 5—figure

supplements 2, 3), but smaller residual resistant cell populations than treatment failures following

post-diagnostic resection (hatched bars, cf captions A and D in Figure 5—figure supplements 2, 3).

Note that, as expected, secondary failures are associated with larger percentages of resistant subclones

and a shift in the distributions towards more drivers (cf captions C and D in Figure 5—figure

supplements 2, 3).

Figure 5E,F shows the distributions of detection times for all numerical experiments. We see that

when both non-relapse (Figure 5A) and relapse (Figure 5C) are taken into account for large cancer cell

populations (1 million cells), treating preventively at levels beyond about 0.3% arrest per day increases

median delays in detection times due to outright success (i.e., survival beyond 50 years) but has no

effect on the lower 95th percentile (Figure 5E). (Although not shown, arrest beyond approximately

0.6% per day does not yield further gains). In contrast, post-diagnostic intervention improves only

marginally beyond daily arrest levels of about 0.3% (Figure 5E). Figure 5F shows the corresponding

results for smaller cancer cell populations (based on integrating the results in Figure 5B,D), whereby

a high median probability of full success is obtained >0.1% and >0.3% daily arrest for prevention and

post-diagnostic intervention, respectively (Figure 5F). Thus for both cell population levels, prevention

generally results in better outcomes compared to post-diagnostic intervention.

Discussion
MTD chemotherapies present numerous challenges, a major one being the selection of resistant

phenotypes, which are possible precursors for relapse (Gerlinger and Swanton, 2010).

We mathematically and numerically investigated how the intensity of an anti-cancer measure, modelled

as the arresting effect on a cancer cell population, resulted in success (i.e., either eradication or long-

term tumour control) or failure (tumours growing beyond a threshold indicative of a life threatening

cancer). Our central result is that beyond low impact thresholds—approximated by the Darwinian fitness

of the subclone with the most driver mutations—little additional control is achieved when resistant

subclones are present or likely to emerge during the long-term intervention assumed here.

We considered two contrasting scenarios. In the first, people at high risk of contracting a life

threatening cancer make life-style changes or receive continuous, chemopreventive therapies, and in

the second, more usual situation, a tumour is discovered and removed, and the patient treated with

specific cytotoxic or cytostatic chemicals and/or with radiation. We found that, as expected, to

achieve a given outcome, prevention requires smaller effects on cancer cell populations of a given size

than do post-diagnostic interventions, the latter having smaller probabilities of complete cure and
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shorter times to tumour relapse. Inversely and importantly, for any given cell arrest level, prevention

is, on average, superior to comparable post-diagnostic interventions, even when including cases

where prevention initially fails, and resection and additional therapy are needed.

Specifically, based on empirical parameter estimates, we find that maximal long-term control

occurs at surprisingly low daily levels of arrest. In the example where interventions target 1 million

Figure 5. Comparison of preventive (blue lines and shading) and post-diagnostic (red lines, yellow shading) interventions.

Tumours are either treated at M0 = 106 cells (left panels) or M0 = 104 cells (right panels). (A, B) Probability of treatment

success, defined as the proportion of cases where the tumour remains undetected (either extinct or below 109 cells) by 50

years after the initial lesion of M0 cells. (C, D) Distribution of times to relapse for treatment failures. (E, F) Distribution of

detection times for all cases including relapsed tumours and tumours remaining undetected prior to and after 50 years

(detection times are assigned to 50 years in the latter case). Parameters as in Table 1. See Figure 3 for details.

DOI: 10.7554/eLife.06266.017

The following figure supplements are available for figure 5:

Figure supplement 1. Resistant cell populations after initial failure.

DOI: 10.7554/eLife.06266.018

Figure supplement 2. Distribution of mean sizes of subclones.

DOI: 10.7554/eLife.06266.019

Figure supplement 3. Distribution of mean sizes of subclones.

DOI: 10.7554/eLife.06266.020
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cancer cells, these levels are approximately 0.6% and 0.3% for preventive and post-diagnostic

interventions, respectively. That the level is higher for preventive scenarios is because effective ‘cure’

(i.e., relapse does not occur during the 50 year period assumed in our numerical experiments) is

possible, especially at cell arrest levels beyond 0.3%, whereas ‘cure’ is far less probable for post-

diagnostic interventions. However, should prevention initially fail and a tumour be diagnosed and

resected, any residual or metastatic cells are likely to contain more resistant clones than the

corresponding situation for a post-diagnostic tumour. We stress that this latter result is contingent on

our assumption that the same mutations (and mechanisms) are responsible for resistance to both

preventive and post-diagnostic interventions. Should preventive and post-diagnostic measures differ

substantially in their targets (and therefore resistance mechanisms), then evolved resistance to (failed)

prevention could be irrelevant to the efficacy of subsequent traditional therapies.

Our results point to what is perhaps an underappreciated challenge in cancer control: low impact

interventions risk being unable to control subclones with the most fitness-enhancing drivers, whereas

high levels of arrest risk selecting for resistance (Figure 6). Future models should investigate these

contingencies more extensively for alternative assumptions and a range of parameterizations for

specific cancer types. Below, we discuss challenges to cancer management for both preventive and

post-diagnostic scenarios.

Preventive interventions
Whereas primary prevention is becoming an increasingly significant approach in reducing risk

of certain cancers (e.g., Colditz and Bohlke, 2014), chemopreventive therapies are uncommon,

despite empirical support for their effects (William et al., 2009). Several theoretical and in vitro

experimental studies indicate that chemoprevention can reduce risks of life threatening cancers. For

example, Silva and colleagues (Silva et al., 2012) parameterized computational models to show how

low doses of verapamil and 2-deoxyglucose could be administered adaptively to promote longer

tumour progression times. These drugs are thought to increase the costs of resistance and the

competitive impacts of sensitive cells on resistant cancer cell subpopulations. However, some of the

most promising results have come from studies employing non-steroidal anti-inflammatory drugs

(NSAIDs), including experiments (Ibrahim-Hashim et al., 2012), investigations of their molecular effects

(Galipeau et al., 2007; Kostadinov et al., 2013), and their use (Cuzick et al., 2015). For example,

Video 4. Comparison of preventive (blue lines and

shading) and post-diagnostic (red lines, hatched) inter-

ventions. Tumours are treated at M0 = 106 cells. (A) The

median (thick line) and 90% confidence intervals (shaded

areas with dashed boundaries) for the distribution of

times to relapse for treatment failures. (B) and (C)

Arbitrary samples of the distribution of detection times

for preventive and post-diagnostic interventions, re-

spectively. The colour-code indicates the mean number

of accumulated drivers over a period of 1 year. The

rectangles on the top of B and on the bottom of C show

the fifth and 95th percentiles, the blue circle indicates

the median, and the red line is the mean. Parameters as

in Table 1.

DOI: 10.7554/eLife.06266.021

Video 5. Comparison of preventive (blue lines and

shading) and post-diagnostic (red lines, hatched) inter-

ventions. Tumours are treated at M0 = 104 cells. (A) The

median (thick line) and 90% confidence intervals (shaded

areas with dashed boundaries) for the distribution of

times to relapse for treatment failures. (B) and (C)

Arbitrary samples of the distribution of detection times

for preventive and post-diagnostic interventions, re-

spectively. The colour-code indicates the mean number

of accumulated drivers over a period of 1 year. The

rectangles at the top of B and the bottom of C shows

the fifth and 95th percentiles, the blue circle indicates

the median, and the red line is the mean. Parameters as

in Table 1.

DOI: 10.7554/eLife.06266.022

Akhmetzhanov and Hochberg. eLife 2015;4:e06266. DOI: 10.7554/eLife.06266 13 of 27

Research article Computational and systems biology | Human biology and medicine

http://dx.doi.org/10.7554/eLife.06266.021
http://dx.doi.org/10.7554/eLife.06266.022
http://dx.doi.org/10.7554/eLife.06266


Ibrahim and co-workers (Ibrahim-Hashim et al.,

2012) studied the action of NSAIDs and specifi-

cally sodium bicarbonate in reducing prostate

tumours in male TRAMP mice (i.e., an animal

model of transgenic adenocarcinoma of the

mouse prostate). They showed that mice com-

mencing the treatment at 4 weeks of age had

significantly smaller tumour masses, and that more

survived to the end of the experiment than either

the controls or those mice commencing the

treatment at an older age. Kostadinov et al.

(2013) showed how NSAID use in a sample of

people with Barrett’s oesophagus is associated

with reductions in somatic genomic abnormali-

ties and their growth to detectable levels. It is

noteworthy that it is not known to what extent

reductions in cancer progression under NSAIDs

are due to either cytotoxic or cytostatic effects

or both. Although we do not explicitly model

cytotoxic or cytostatic impacts, therapies curb-

ing net growth rates but maintaining them at or

above zero could be interpreted as resulting

from the action of either cytotoxic and/or

cytostatic processes. In contrast, therapies

reducing net growth rates substantially below

zero necessarily have a cytotoxic component.

Our model, or modifications of it to explicitly

include cytotoxic and cytostatic effects, could

be used in future research to make predictions

about optimal dose and start times to achieve

acceptable levels of tumour control (or, e.g.,

the probability of a given tumour size and

heterogeneity level by a given age).

Decisions whether or not to employ specific

chemopreventive therapies carry with them the

risk of a poorer outcome than would have been

the case had another available strategy (or no

treatment at all) been adopted (Esserman et al.,

2004). This issue is relevant to situations where

alterations in life-style, removal or treatment of pre-cancerous lesions, or medications potentially

result in unwanted side effects or induce new invasive neoplasms (e.g., Berrington de Gonzalez et al.,

2011). Chemopreventive management prior to clinical detection would be most appropriate for

individuals with genetic predispositions, familial histories, elevated levels of specific biomarkers, or risk-

associated behaviours or life-styles (Hemminki and Li, 2004; Lippman and Lee, 2006; Sutcliffe et al.,

2009; William et al., 2009; Hochberg et al., 2013). Importantly, our approach presupposes that the

danger a nascent, growing tumour presents is proportional to its size and (implicitly, all else being equal)

a person’s age. Due caution is necessary in interpreting our results, since studies have argued that

metastatic potential rather than tumour size may be a better predictor of future survival (Hynes, 2003;

Foulkes et al., 2010; Sethi and Kang, 2011). However, given the expectation that prevention typically

confronts smaller, less heterogeneous neoplasms, which are less likely to have resistant clones and to have

metastasised (Hochberg et al., 2013;Gerlinger et al., 2014), support our basic conclusion that prevention

is generally a superior strategy in terms of cancer-free survival compared to post-diagnostic intervention.

Post-diagnostic interventions
Over the past decade, several alternative approaches to MTD have been proposed, where the objective

is to manage rather than eradicate tumours (e.g., Maley et al., 2004; Komarova and Wodarz, 2005;

Figure 6. Dependence of the median time for tumour

detection on treatment intensity and pre-resistance

levels. Increasing treatment intensity selects against

subclones with increasing numbers of drivers, whereas,

regardless of treatment intensity, all resistant subclones

with s(i+1) > c increase in number. The solid lines

illustrate how selection and the initial number of

resistant cells in a treated tumour predict median

detection times and associated resistance levels. Me-

dian detection times approach a horizontal asymptote

at 100% resistance as treatment intensity increases,

whereas if the resistant mutation were to be knocked

out, then the vertical asymptote at σcrit = qs (where q is

the number of drivers in the fastest growing subclone)

would be approached instead for sufficiently small

tumours. Asymptotes are shown as dashed lines. We

illustrate three cases, each with an initial population of

100,000 identical cells (i = 0) and with one of three

different initial numbers of resistant cells: 10, 100 or

1,000 (top to bottom lines). Other parameters as in

Table 1.

DOI: 10.7554/eLife.06266.023
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Gatenby, 2009; Gatenby et al., 2009a, 2009b; Foo and Michor, 2010; Jansen et al., 2015). Tumour

management attempts to limit cancer growth, metastasis, and reduce the probability of obtaining

resistance mutations through, for example, micro-environmental modification, or competition with non-

resistant cancer cell populations or with healthy cells. These approaches usually involve clinically

diagnosed cancers: either inoperable tumours or residual or metastatic cancers after tumour excision. In

the former situation, tumours are typically large enough in size to contain numerous resistance

mutations. In many, if not most, cases, these neoplasms will have metastasized, meaning greater

variability both in terms of phenotypes and potential resistance to chemotherapies, and in penetrance

of therapeutic molecules to targeted tumour cells (Klein et al., 2002; Byrne et al., 2005). In contrast,

the latter situation involves smaller, residual, or metastatic cancer cell populations, composed of high

frequencies of resistant variants or dormant cells (Klein et al., 2002). According to our results, both

scenarios are likely to involve populations with large numbers of accumulated driver mutations (or,

although not considered in our study, fewer driver mutations but each with larger selective effect), which

ostensibly contribute to the speed of relapse. Thus, management of clinically detected tumours need not

only limit the proliferation and spread of refractory subpopulations but should also aim to control the

growth of multi-driver subclones (Figure 5—figure supplements 2, 3). In other words, in addition to

actual resistance mutations (j = 1), subclones with q drivers will be effectively resistant to therapeutic

interventions if q s ≫ σ (Figure 6).

We therefore suggest that the frequency distribution of driver mutations and the distribution of

resistant subclones within a heterogeneous cancer cell population could be used to instruct decisions of

the time course of treatment levels, with the aims of curbing tumour growth, metastasis, and resistance.

We found that tumours typically achieve several additional driver mutations by the time they reach

detection (Figure 3A; Figure 3—figure supplement 1A; Figure 5—figure supplements 2, 3), which

approximates certain estimates (Stratton et al., 2009) but falls short of others (Sjoblom et al., 2006).

Conclusion
Our results indicate that the two most important variables in determining therapeutic outcome are (1)

the size of the initial cancer cell population (i.e., when prevention commences and/or post-diagnosis,

following resection), (2) associated tumour heterogeneity in terms of accumulated drivers, and the

presence of resistance phenotypes. This highlights the importance of biomarkers as accurate

indicators of otherwise undetectable malignancies (Roukos et al., 2007), and the accurate assessment

of local or distant metastases (Pantel et al., 1999). We suggest that if order-of-magnitude estimates

of cell populations and intra-tumour heterogeneity are possible, then low dose, continuous, constant

approaches could be established that lower and possibly minimize risks of the emergence of future,

life-threatening cancers. According to our model, such options will generally be superior to more

aggressive chemotherapies if therapeutic resistance is a risk factor.

The framework proposed here is sufficiently general to portray major events in different types of

cancer with emphasis on solid tumours. However, some aspects of cancerous tumour growth are

considered only implicitly, and further research is required to formulate more realistic models to include,

for example, spatial aspects of tumour growth (Orlando et al., 2013), competition/cooperation

between different subclones (Korolev et al., 2014), combinational (multidrug) resistance (Gillet and

Gottesman, 2010; Bozic et al., 2013), drug-addiction, observed for example in certain melanomas

(Das Thakur et al., 2013), or advantageous resistant mutations, observed in some leukemias (Michor

et al., 2005). Moreover, future studies should investigate alternatives to the traditional post-diagnostic

therapeutic scenarios considered here (e.g., molecularly targeted therapies [Yap, 2015]). Our study

nevertheless predicts that the main hurdle to post-diagnostic MTD interventions remains resistant

subclones, since beyond minimal impacts on the order of 0.3% per day for the larger of the two residual

or metastatic cell populations simulated here (which are still very small by clinical diagnostic

standards—c 1 mm3), increased therapeutic intensity selects disproportionally for resistance and has

negligible benefits in terms of delaying life-threatening cancers.
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Appendix 1

Mean-field approach

We use the mean-field approach (see for example, Krapivsky et al., 2010), which

approximates the behaviour of a system consisting of many cells, so that the effects of

stochasticity are averaged, and an intermediate state is described by a set of ordinary

differential equations.

Master equations
We write master equations to track the probability Pij (t) that a randomly chosen cell from

a population of tumour cells is of type (i, j ) at time t.

The temporal dynamics of probabilities Pij (t), i = 0, 1, …, N, where N is the maximal number of

additionally acquired drivers and j = 0, 1, are described by:

dPijðtÞ
dt

=Pij + uP
ðuÞ
ij + vP

ðvÞ
ij :

Here, the right-hand side is a superposition of probabilistic in- and out-flows from different

mutational states to the current one (i, j). The function ℙij describes the growth of subclone (i, j)

and is proportional to the probability Pij (t), multiplied by the difference between fitness fij and

its average value over the whole population �f ðtÞ= ∑i;j fijPijðtÞ. Functions PðuÞ
ij and P

ðvÞ
ij represent

the probabilistic flows of mutations. For P
ðuÞ
ij , a driver is added from class (i − 1, j) to (i, j) in

proportion to the probability Pi−1;jðtÞ, the probability of cell birth bi−1,j, and the probability of

a zero locus being chosen from N total loci consisting of (N − (i − 1)) other zero loci. A similar

approach is used to define the outflow term for the probability from class (i, j) to (i + 1, j). The

second term P
ðvÞ
ij is the probability of mutating to therapeutic resistance (i, j = 0) to (i, j = 1) and

is proportional to Pi0(t) and birth rate bi0. Finally, all terms are summed, taking into account the

initial conditions: P00(0) = 1 − κ, P01(0) = κ, and Pij = 0 for any other i or j.

The above elements lead to the following system of ordinary differential equations (ODEs):

dPijðtÞ
dt

=
�
fij − �f ðtÞ

�
PijðtÞ+u

��
1−

i − 1

N

�
1+ fi−1;j

2
Pi−1;jðtÞ−

�
1−

i

N

�
1+ fij
2

PijðtÞ
�

− vð1−2jÞ1+ fi0
2

Pi0ðtÞ; (1)

where some probabilities Pij(t) could, theoretically, take on negative values, for example, P−1,j(t),

when i = 0, in which case, they are set to zero.

A simple transformation,

pijð0Þ=Pijð0Þ;   pijðtÞ=PijðtÞexp
0@Z t

0

�f ðrÞdr
1A;

allows omitting the term �f ðtÞ  from Equation 1 and to linearize the latter with respect to the

new ‘transformed’ probabilities pij(t). This gives:

dpijðtÞ
dt

= fijpijðtÞ+u

��
1−

i −1

N

�
1+ fi−1;j

2
pi−1;jðtÞ−

�
1−

i

N

�
1+ fij
2

pijðtÞ
�

+ v
1+ fi0
2

�
jpi;j−1ðtÞ+ ðj − 1ÞpijðtÞ

�
; (2)

where, for convenience, we write (jpi,j−1(t) + (j − 1)pij(t)) instead of (1 − 2j)pi0(t).
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Probability generating function approach
With Equation 2 we apply the probability generating function (p.g.f.) method (Gardiner, 2004;

Assaf, 2010) to transform the system of (2N + 1) ODEs to a Hamilton–Jacobi (HJ) equation, that

is, a first order partial differential equation.

We define the p.g.f. as the polynomial over all modified probabilities pij(t) of the form:

Gðξ; η; tÞ= ∑
N

i = 0

∑
1

j =0

ξiηjpijðtÞ; (3)

where ξ and η are the variables that can be viewed as the momentum of an auxiliary

Hamiltonian system governing the leading-order stochastic dynamics of the system (Elgart and

Kamenev, 2004). Notice that the function G(ξ, η, t) is linear with respect to η.

Suppose that the function G(ξ, η, t) is defined. One can then obtain all characteristics of the

stochastic process, such as the average tumour size n(t) and the average frequency nres(t)/n(t) of

resistant cells within a tumour. The former quantity is:

dnðtÞ
dt

= nðtÞ�f ðtÞ:

Using the normalization condition for the probability: ∑i;jPijðtÞ=1, we obtain:

Gðξ=1; η=1; tÞ= exp

0@Z t

0

�f ðrÞdr
1A;

and then:

nðtÞ=M0   exp

0@Z t

0

�f ðrÞdr
1A=M0Gðξ=1; η= 1; tÞ; (4)

where the initial tumour size n(0) = M0 is sufficiently large. The frequency of resistant cells is

defined as follows:

nresðtÞ
nðtÞ = ∑

N

i =0

Pi1ðtÞ= ∑
N

i = 0

pi1ðtÞexp
0@−
Z t

0
�f ðrÞdr

1A=  
∂G=∂η

Gðξ; η; tÞ
���� ξ=1;
η=1

: (5)

Initial conditions yield p00(0) = 1 − κ, p01(0) = κ, and pij(0) = 0 for any other i and j, so that

G(ξ, η, t = 0) = 1 − κ + κη.

To obtain the HJ equation related to the p.g.f. G(ξ, η, t), we multiply Equation 2 with ξiηj and

sum up all equations for i = 0, 1,…,N and j = 0, 1. After some algebra, we obtain:

∂G
∂t

=
�
s

�
ξ
∂
∂ξ

+ 1

�
− σ

�
1− η

∂
∂η

�
− cη

∂
∂η

+
uðξ−1Þ

2

�
1−

ξ

N

∂
∂ξ

�
+
vðη−1Þ

2

�
1− η

∂
∂η

��
G; (6)

where only terms of order greater than or equal to u, v are retained, meaning that terms

composed of the products s, c, and u, v are omitted.

Equation 6 is solved by the method of characteristics such that the HJ equation is transformed

into a system of ordinary differential equations (i.e., the system of characteristics, see e.g.,

Melikyan, 1998).

Time-varied treatment schedule
We find the characteristics for the variables ξ and η using (Equation 6):
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dξðtÞ
dt

=−sξðtÞ+uξðtÞðξðtÞ−1Þ
2N

;  
dηðtÞ
dt

= ðc − σðtÞÞηðtÞ+ vηðtÞðηðtÞ−1Þ
2

; (7)

where σ(t) is a given function of time.

The p.g.f. G(ξ, η, t) changes along the characteristic Equation 7 according to the

following ODE:

dGðtÞ
dt

=
�
s− σ +

uðξðtÞ− 1Þ
2

+
vðηðtÞ−1Þ

2

�
GðtÞ; (8)

which is straightforward to integrate. Indeed, if we use Equation 7, this yields dlnG = (s(N + 1)

− c)dt + Ndlnξ + dlnη. Thus,

Gðξ; η; tÞexp½−ðsðN+ 1Þ− cÞt −N  ln  ξ− ln  η�= const: (9)

Recall that the quantity on the left hand side remains constant only along the characteristic

curve (Equation 7).

To obtain G(ξ = 1, η = 1, t), we need to solve Equation 7 subject to ξ(t) = η(t) = 1 and find ξ(0)

and η(0). Then, given the initial condition G(ξ(0),η(0),0) = 1 − κ + κη(0), κ is a level of resistance

within a tumour (κ ∈ [0,1]), we can define G(ξ, η, t) using Equation 9.

Finally, we use Equation 4 to derive the dynamics of n(t). To obtain the mean frequency of

resistant cells within a tumour, we first write ∂G/∂η, using Equation 9 with the right hand side

implicitly dependent on η and then substitute it into Equation 5. (Note that time t is measured

in cell cycles, which are assumed to be of 4 days on average. To derive all necessary equations

with respect to the actual time, we need to divide t by the length of the cell-cycle and substitute

it in the equations.)

Constant treatment
We study the case for constant σ. Notice that this includes the case of no treatment (σ = 0).

First, we find the characteristics for the variables ξ and η. Namely, the solution of Equation 7

gives:

ξð0Þ= s+u=ð2NÞ�
s+u=ð2NÞ

ξðtÞ −
u

2N

�
e−ðs+u/ð2NÞÞt +

u

2N

;   ηð0Þ= σ − c + v=2�
σ − c + v=2

ηðtÞ −
v

2

�
e−ðσ−c+v/2Þt +

v

2

: (10)

The subsequent substitution of Equation 10 into Equation 8 leads to:

Gðξ; η; tÞ=Gðξð0Þ; ηð0Þ; 0Þexp
��

s− σ −
u+ v

2

�
t +N  ln

�
1+

ξu

2N

eðs+u/ð2NÞÞt − 1

s+u/ð2NÞ  

�
+ ln

�
1+

ηv

2

eðσ−c+v/2Þt − 1

σ − c + v/2

��
:

Taking into account u, v ≪ s, c and assuming v ≪ σ − c, we simplify further and write its

approximate form:

Gðξ; η; tÞ≅
 
1− κ+

κηeðσ−cÞt

1+ ηv
2

eðσ−cÞt −1
σ − c

!
exp

�
ðs− σÞt +N  ln

�
1+

ξu

2N

est −1

s
 

�
+ ln

�
1+

ηv

2

eðσ−cÞt −1

σ − c

��
;

which can be also written in the form:

Gðξ; η; tÞ≅  

�
ð1− κÞ

�
1+

ηv

2

eðσ−cÞt − 1

σ − c

�
+ κηeðσ−cÞt

�
exp

�
ðs− σÞt +N  ln

�
1+

ξu

2N

est − 1

s
 

��
: (11)
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As expected Equation 11 is linear with respect to η.

Thus, we derive an analytical expression for the dynamics n(t). Namely, we use Equations 4 and

11 and substitute ξ = η = 1, to obtain:

nðtÞ=M0

 
ð1− κÞ

�
1+

v

2

eðσ−cÞt − 1

σ − c

�
+ κeðσ−cÞt

!
exp

�
ðs− σÞt +N  ln

�
1+

u

2N

est − 1

s

��
: (12)

Equation 12 is simplified for two limiting cases. In the early stages of tumour growth, the value

n(t) changes according to a hyper-exponential law:

nðtÞ≅M0

 
ð1− κÞ

�
1+

v

2

eðσ−cÞt −1

σ − c

�
+ κeðσ−cÞt

!
exp

�
ðs− σÞt +u

2

est − 1

s

�
:

while at later stages, the most aggressive subclone persists, being sensitive if σ < c (n(t) ∝ es(N+1)t )

and resistant otherwise (n(t) ∝ e(s(N + 1) − c)t).

To compute the frequency of resistant cells within a tumour (Equation 5), we derive ∂G/∂η using
Equation 11:

∂G
∂η

=  

�
ð1− κÞ v

2

eðσ−cÞt −1

σ − c
+ κeðσ−cÞt

�
exp

�
ðs− σÞt +N  ln

�
1+

ξu

2N

est − 1

s
 

��
:

so that:

nresðtÞ
nðtÞ =

ð1− κÞ v
2

eðσ−cÞt − 1

σ − c
+ κeðσ−cÞt  

ð1− κÞ
�
1+

v

2

eðσ−cÞt − 1

σ − c

�
+ κeðσ−cÞt

:
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Appendix 1—figure 1 shows the excellent correspondence between numerical experiments

and analytical results for σ on the order of s. Appendix 1—figure 2 provides additional details

on distribution of tumour sizes depending on the applied treatment intensity (points B and C).

Appendix 1—figure 1. Mean field dynamics concord with numerical simulations. (A) Effect of treatment

level and observation time on mean tumour size. (Inset) Mean frequency of resistant cells within tumours

corresponding to three of the cases in A. Lines are analytically computed mean-field trajectories, while dots

are numerical simulations (see Appendix 1 for details). (B) Dynamics of mean and median tumour size, and

percentiles around the median (shaded areas), assuming a fixed constant arresting effect of 0.15% / day.

Treatments start at t = 0, and the maximal number of additionally accumulated drivers is 3. See Table 1 for

other parameter values.

DOI: 10.7554/eLife.06266.025

Appendix 1—figure 2. Trade-off between growth and resistance under different treatment regimes.

(A) Analytically derived times for a tumour to reach 109 cells (see Equation 12). (B) and (C) Sample distributions

in relative frequencies, adjusted for bins over periods of 0.5 in logarithmic scale for corresponding points B

and C, shown in plot A. Dashed black line is the mean and the dashed-and-dotted line is the median. The

bottom panel shows the mean number of additionally accumulated drivers for all detected tumours over the

same intervals of 3 months. The colour-code indicates the level of resistance in detected tumours over these

intervals. Maximal number of additionally accumulated drivers is 5. Parameters otherwise as in Table 1.

DOI: 10.7554/eLife.06266.026
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Distribution of subclones within an exponentially growing tumour
The p.g.f. G(ξ, η, t) is used to derive expressions for all Pij(t), which are the probabilities of

selecting a cell of type (i, j) from a tumour at time moment t. Namely, we need to differentiate

the p.g.f. with respect to ξ and η, so that:

PijðtÞ= 1

i!Gðξ=1; η=1; tÞ
∂i+jGðξ= 0; η=0; tÞ

∂ξi∂ηj
;

where i = 0, 1,… and j = 0, 1. Thus, we write:

P00ðtÞ=Gð0; 0; tÞ
Gð1; 1; tÞ=

1− κ

ð1− κÞ
�
1+

v

2

eðσ−cÞt − 1

σ − c

�
+ κeðσ−cÞt

�
1+

u

2N

est −1

s

�−N

;

  P01ðtÞ= ∂Gð0; 0; tÞ=∂η
Gð1; 1; tÞ =

ð1− κÞ v
2

eðσ−cÞt − 1

σ − c
+ κeðσ−cÞt

ð1− κÞ
�
1+

v

2

eðσ−cÞt −1

σ − c

�
+ κeðσ−cÞt

�
1+

u

2N

est − 1

s

�−N

;

then:

P10ðtÞ= ∂Gð0; 0; tÞ=∂ξ
Gð1; 1; tÞ =

1− κ

ð1− κÞ
�
1+

v

2

eðσ−cÞt − 1

σ − c

�
+ κeðσ−cÞt

 
u

2

est − 1

s

�
1+

u

2N

est −1

s

�−N

  ;

  P11ðtÞ= 1

Gð1; 1; tÞ
∂2Gð0; 0; tÞ

∂ξ∂η
=  

ð1− κÞ v
2

eðσ−cÞt −1

σ − c
+ κeðσ−cÞt

ð1− κÞ
�
1+

v

2

eðσ−cÞt −1

σ − c

�
+ κeðσ−cÞt

u

2

est − 1

s

�
1+

u

2N

est −1

s

�−N

:

The general formula is written as follows:

Pi0ðtÞ= 1

i!Gð1; 1; tÞ
∂iGð0; 0; tÞ

∂ξi
=

1− κ

ð1− κÞ
�
1+

v

2

eðσ−cÞt −1

σ − c

�
+ κeðσ−cÞt

PipðtÞ  ;  

Pi1ðtÞ= 1

i!Gð1; 1; tÞ
∂i+1Gð0; 0; tÞ

∂ξi∂η
=  

ð1− κÞ v
2

eðσ−cÞt −1

σ − c
+ κeðσ−cÞt

ð1− κÞ
�
1+

v

2

eðσ−cÞt − 1

σ − c

�
+ κeðσ−cÞt

PipðtÞ;

where i = 0, 1, …N, and the function:

PipðtÞ=
�
N
i

��
u

2N

est −1

s

�i�
1+

u

2N

est −1

s

�−N

;

defines the probability to pick a cell with i drivers independently of resistant status,

PipðtÞ≜Pi0ðtÞ+Pi1ðtÞ, where
�
N
i

�
denotes a binomial coefficient, equal

N!

i!ðN− iÞ!.

The distribution Pip(t) for a particular case of N = 6 is shown in Appendix 1—figure 3.
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Appendix 1—figure 3. Maximal tumour heterogeneity in terms of driver subclones occurs at intermediate

times after initial lesion.

DOI: 10.7554/eLife.06266.027

We now derive the mean time period when a given subclone with i additionally accumulated

drivers dominates within a tumour.

Defining the time moments t = ti for which Pi−1,p(ti) = Pip(ti) (i = 0, 1, 2,…,N) gives:

ti =
1

s
ln

�
1+

2sNi

uðN− i + 1Þ
�
≈
1

s
ln

2sNi

uðN− i +1Þ;

where we assume u ≪ s.

The time period when the subclone with i drivers prevails in a cell population is defined by the

following expression:

Δti = ti+1 − ti =
1

s

�
ln

�
1+

2sNði + 1Þ
uðN− iÞ

�
− ln

�
1+

2sNi

uðN− i +1Þ
��

≈
1

s
ln
ðN− i + 1Þði +1Þ

ðN− iÞi ;

where i ≠ 0. For i = 0, we have:

Δt0 =
1

s
ln

�
1+

2s

u

�
≈
1

s
ln
2s

u
:

The latter formula has been previously reported (see Equation S7 in reference Bozic et al.,

2010).

Varying mutation rate and initial tumour size

To understand better how the inflection points emerge around σ = qs (q = 1, 2, 3,…), we first

consider a much simpler case than the main text. Suppose that no additional driver mutation is

acquired during tumourigenesis, u = 0. Any treatment regime of constant intensity that lowers

the selective advantage (σ < s) only slows tumour growth. In such cases, the median detection

time increases with σ (see Figure 6). Assuming that resistance is not obtained, the median time

to detection approaches a vertical asymptote at σ = s, whereas the tumour is always eradicated

for σ > s. If v > 0, then the tumour relapses following the appearance of the resistance mutation,

and the median detection time approaches the horizontal asymptote for σ ≫ s. Thus, the final

result for the median detection time will be a line with an inflection point near σ = s, consisting

of two effects: higher treatment levels resulting in the control of sensitive clones with ever

higher numbers of drivers (blue colouring), and the lack of control of costly resistant clones (red

colouring) (Figure 6).

In the general case (u > 0, v > 0), the median follows from the different elements cited above,

consisting of several possible branches (e.g., Figure 2—figure supplement 1D) or none, where
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the latter case depends on the relation between the mutation rate u and the initial cell number

M0 (e.g., for M0 = 107 see Figure 2—figure supplement 1B).

Appendix 1—figure 4 shows an example. Panel A shows a case when u is varied and M0

remains fixed. We identify the key parameter for the appearance of the inflection points asM0u.

It defines the emergence probability of the next subclone with one additional driver. Hence, the

inflection points are more apparent for smaller values of M0u and vanish for larger values of

M0u. This same tendency can be seen in Figure 2—figure supplement 1B, where M0 is varied

and u is fixed. Panels B, C, and D provide more details on the interplay between M0u and the

inflection points.

Appendix 1—figure 4. Sensitivity analysis of (A) the mutation rate to acquire drivers and (B–D) initial

tumour size. Thick lines indicate the median and shaded areas with dashed boundaries the 90% confidence

intervals of detection times. (A) Initial tumour size is fixed at 106 cells and mutation rate is varied. (B–D) Initial

tumour size is varied and mutation rate is fixed at (B) 10−6, (C) 3.4 × 10−5, (D) 10−3. The colour code for points

indicates the average level of resistance within tumours (see the inset in B). Parameter values as in Table 1

except those being varied.

DOI: 10.7554/eLife.06266.028
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A simple form of drug addiction for resistant cell-lines

To explore the possible effects of drug addiction on tumour growth, we propose a simple

modification of the fitness function. Suppose the cost of resistance C is given by the relation:

C= c

�
1−

2σ

s

�
:

It equals c as before when no treatment is applied (σ = 0), while drug addiction increases with

larger σ. The cost equals zero at σ = 2s and becomes negative for σ > 2s, implying that further

drug administration has a beneficial effect on proliferation of resistant cells. Fischer and

colleagues (Fischer et al., 2015) argue that under drug addiction, a metronomic treatment

strategy is more beneficial than a constantly applied treatment. The metronomic strategy

imposes a simple rule: treatment is only applied when the number of non-resistant cells

exceeds the number of resistant cells.

We compare the originally studied model, where the resistant cells exhibit no drug addiction,

with a modified case of resistant cell drug addiction. In the latter, we consider two different

treatment regimes: a constantly administrated drug application and metronomic therapy. As an

example, Appendix 1—figure 5 shows the occurrence drug addiction worsens treatment

outcomes with 5% vs 31% eradicated tumours at a daily arresting effect of 0.25% (σ = 1.0%) for

presence vs absence of drug addiction, respectively. Moreover, metronomic therapy results in

a better outcome than a constantly administrated chemotherapy. For example, the former adds

6.6 additional years to the median detection time at σ = 1.0%, compared to the constant

treatment with drug addiction, but loses 11.1 years, compared to the previous case of

a constant treatment without drug addiction.

Appendix 1—figure 5. Comparing the case shown in blue in Figure 2 with the case where resistant cells

may become addicted to the drug. The latter is illustrated by two treatment regimes: metronomic strategy

(yellow) and constantly administrated drug (green). The plot shows the median and 90% confidence

intervals (shaded areas) of detection times. The inset presents the fraction of cases when the tumour goes

extinct after the initial lesion of 106 cells. Parameters as in Table 1.

DOI: 10.7554/eLife.06266.029
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