
entropy

Article

Real Space Triplets in Quantum Condensed Matter:
Numerical Experiments Using Path Integrals,
Closures, and Hard Spheres

Luis M. Sesé

Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación
a Distancia (UNED), Avda. Esparta s/n, 28232 Las Rozas, Madrid, Spain; msese@ccia.uned.es

Received: 28 October 2020; Accepted: 21 November 2020; Published: 25 November 2020 ����������
�������

Abstract: Path integral Monte Carlo and closure computations are utilized to study real space triplet
correlations in the quantum hard-sphere system. The conditions cover from the normal fluid phase to
the solid phases face-centered cubic (FCC) and cI16 (de Broglie wavelengths 0.2 ≤ λ∗B < 2, densities
0.1 ≤ ρ∗N ≤ 0.925). The focus is on the equilateral and isosceles features of the path-integral centroid
and instantaneous structures. Complementary calculations of the associated pair structures are also
carried out to strengthen structural identifications and facilitate closure evaluations. The three closures
employed are Kirkwood superposition, Jackson–Feenberg convolution, and their average (AV3).
A large quantity of new data are reported, and conclusions are drawn regarding (i) the remarkable
performance of AV3 for the centroid and instantaneous correlations, (ii) the correspondences between
the fluid and FCC salient features on the coexistence line, and (iii) the most conspicuous differences
between FCC and cI16 at the pair and the triplet levels at moderately high densities (ρ∗N = 0.9, 0.925).
This research is expected to provide low-temperature insights useful for the future related studies of
properties of real systems (e.g., helium, alkali metals, and general colloidal systems).

Keywords: quantum triplets; path integral Monte Carlo; closures; quantum hard spheres; fluid–solid
transition; FCC solid; cI16 solid

1. Introduction

The study of equilibrium triplet structures in 3D N-particle systems with quantum behavior
remains a pending task in condensed matter research at low temperatures. Apart from a number of early
developments focused mainly on the proposal and indirect testing of the so-called closures [1–11] or on
the use of alternative order parameters [12], just a few computational works based on Feynman’s path
integrals (PI) [13] can be found in the recent literature on this field [14–18]. Not much is known about the
behavior of quantum triplets, hence the interest in undertaking this task. This is not only a logical step
further in current statistical mechanics, allowing one to formulate thermodynamic properties beyond
the pairwise approach [19], but also it is central to outstanding condensed matter properties. Among
the latter, one can mention the following: phonon–phonon interactions in helium-II [4], the N-particle
interpretation of fluid entropies [20–22], multiple scattering [23], theories of phase transitions [24,25],
and glassy dynamics [26–28]. Although the whole PI quantum triplet task is computationally daunting
at the present time, one can always seek to identify the main triplet features that may serve as a guide
for the necessary future work on this topic.

The triplet topic encompasses both real-space {r}–triplets and reciprocal (Fourier)-space {k}–triplets.
Nevertheless, there is no direct experimental determination of triplet functions [29,30]. Thus, one must
resort to theoretical computations for extracting this sort of information, which makes these
computations the only “experimental” method of solving the triplet problem. In the quantum

Entropy 2020, 22, 1338; doi:10.3390/e22121338 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-9033-2962
http://dx.doi.org/10.3390/e22121338
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/12/1338?type=check_update&version=2


Entropy 2020, 22, 1338 2 of 27

case, a rigorous framework for triplets is given by PI, albeit the computations are truly exacting [14–18].
In this regard, and leaving aside exchange interactions for simplicity, one notes that just the quantum
thermal delocalization of the particles is sufficient to bring about a much higher complexity in the
quantum study than that present in the classical domain. This helps to understand the key role in this
topic that was played by closures, which represent fluid triplet correlation functions g3(r, s, u) utilizing
pair information g2(r), thus involving affordable computations. Noticeable among the closures for the
fluid triplets g3(r, s, u) are the early Kirkwood superposition KS3 [1,3], and the key Jackson–Feenberg
convolution JF3 [4,24], although other forms with even a wider scope are available (e.g., triplet direct
correlation functions c3(r, s, u)) [5,24,29]. Despite the fact that closures are approximations to the
actual fluid triplet functions, they are still highly valuable in that they may provide insightful physical
pictures of the underlying structure of the triplet correlations. Therefore, even nowadays, closures
should not be disregarded without giving them the opportunity to prove their worth as interpretative
tools in the quantum domain [17,18].

The PI formalism is perfectly suited for performing path integral Monte Carlo (PIMC) and molecular
dynamics (PIMD) computer simulations of quantum N-particle systems at nonzero temperatures [31–55].
With due attention to the special characteristics of quantum averages [33,38,44–47], the latter PI
simulations can follow classical-like procedures [56–60]. To illustrate this situation, it is sufficient to
recall the most basic PI description in the canonical ensemble (N, V, T) of an actual quantum monatomic
system in which exchange interactions can be neglected. Such an actual system is represented by
a PI model composed of N necklaces with P beads apiece, the whole set of N × P beads obeying a
classical-like partition function [31–33]. It is important to note that P is an integer number, P > 1, which
is to be optimized to obtain statistical convergence for the properties. (The actual quantum system is
retrieved in the Trotter’s limit P→∞ [61], while the classical limit is P = 1). Special techniques are
available to improve the P description and reduce computations (e.g., pair actions and higher-order
propagators [33–35,37,38] combined with algorithms for moving the beads) [33,41,47,62,63]. In this
connection, depending on the technique selected, there may or may not exist equivalence between
all the beads in the model sample, which is a fact that turns out to be crucial for the study of
structures [33,35,38,47]. Thus, one speaks in this context of the structurally significant (equivalent
among themselves) beads; their number, say X, takes the convenient values P or P/2.

The PI applicability covers from quantum diffraction effects (PIMC and PIMD for atomic and
molecular fluids and solids [64–69]) to bosonic quantum exchange (PIMC) [33,36,41,43]. PIMC and
PIMD are said to be “exact” in that they produce results with controllable statistical errors. These results
have been proven to be in excellent agreement with experimental data [33,41,42,48]. In addition to
this, PIMC approaches to fermionic exchange can also be devised [70], although the “sign problem”
precludes the related PIMC applications from being definitive. These facts, together with the PI
flexibility, make PIMC and PIMD most powerful tools in quantum condensed matter research.

By focusing attention on quantum monatomic systems at equilibrium, with diffraction
effects dominating their behavior, it is worthwhile to specify the three general categories of
physically significant structures [31,33,38,39,47] that are revealed by PI: (a) instantaneous; (b) total
thermalized-continuous linear response; and (c) centroids (centroid = proper center-of-mass of a
PI necklace) [38,47]. For each of these categories, three points must be highlighted [47]. First,
a given category is associated with the linear response from the system to a distinct weak external
field: the instantaneous case is associated with a δ−localizing field (e.g., as in elastic neutron
scattering), this usually being the category linked to “the structure” of a quantum system; the total
thermalized-continuous linear response with, for example, a continuous field; and the centroids with
specifically a constant-strength field. Second, a given category can be formulated in a two-fold way
(real space and Fourier space), which extends over the corresponding n-body functions (gn correlation
functions and S(n) static structure factors). Third, a given category is defined by special forms of the
averages over the NX bead positions. These averages scale with X in different forms: the instantaneous
with X, the total thermalized-continuous linear response with Xn, and the centroids with X0 = 1.
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In stark contrast, the classical system only shows one category of a physically significant structure [56].
Therefore, it is easy to understand the much higher complexity and computational cost of the quantum
problem when treated in depth.

The aim of the present article is to expand the study of the PI triplet features in many-body
quantum systems [14–18]. The system selected is that composed of quantum hard spheres (QHS system
hereafter). Hard spheres are known to be a very useful reference. They have been used to model
classical and quantum systems, ranging from helium [33,36,66,67,71–73] to complex colloids [74,75],
and under very different conditions (i.e., fluid, boson superfluid, superlattices, solids, and suspensions).
This work concentrates on the real space instantaneous and centroid triplets, leaving aside the
total thermalized-continuous linear response case to keep the related computations affordable [17].
As stressed earlier, in understanding triplets through closures, a thorough consideration of the
pair structures is needed. This benefits the triplet-closure computations and the analysis of the
correspondences between the salient pair and triplet features (in different phases or within the same
phase). Therefore, the necessary attention is also paid to the pair prerequisite.

The exact computational method chosen is PIMC, which avoids the PIMD difficulties linked to
the discontinuity of the hard-sphere potential, and it is complemented with the closures: KS3, JF3,
and their average AV3 = (KS3 + JF3)/2. A wide range of QHS fluid and solid conditions, within
the purely diffraction regime, is studied: reduced de Broglie wavelengths 0.2 ≤ λ∗B < 2 and reduced

number densities 0.1 ≤ ρ∗N ≤ 0.925, where λ∗B = h/(2πMkBTσ2)
1/2, ρ∗N = Nσ3/V, σ and M being the

hard-sphere diameter and mass, respectively. The specific {r}-space targets pursued are the following:

(i) Analyzing in detail the potential usefulness of AV3 for quantum fluid triplet studies. This is
prompted by the encouraging results obtained in [17] for liquid para-hydrogen and liquid neon.

(ii) Gaining triplet structural insights from the comparison, in the short–medium range of distances,
between the coexisting fluid and FCC (face-centered cubic) solid [66,67].

(iii) Comparing the salient triplet features of the cubic solids FCC and cI16 at moderately high
densities, (ρ∗N = 0.925, λ∗B = 0.2) and (ρ∗N = 0.9, λ∗B = 0.8). The so-called cI16 lattice is a distorted
superstructure of the body-centered cubic (BCC) lattice [76,77]. (Hard-sphere BCC lattices are
known to be mechanically unstable in both classical and quantum applications [78,79]). One also
notes that cI16 phases have been reported for Li and Na at very high pressures [76,77], hence the
interest of this point.

(iv) In connection with (iii), there is the question of establishing a clear identification of the QHS
bcc-qIII phases, observed in [67,78], as genuine cI16 phases. (The bcc-qIII phases arise from the
PIMC evolution of initially perfect BCC lattices). The cI16 lattice has been identified recently
for classical hard spheres in the insightful simulation work reported in [80], and the patterns of
the related results suggest that bcc-qIII is in fact cI16. Proof of this is given in this article, which
adds more value to the QHS system for modeling quantum solid–solid changes of phase [67]
and enhances the meaning of the related triplet calculations.

It is hoped that the reported “experimental” results will form a useful basis for comparison when
extensive studies of triplets in real quantum systems are undertaken. The outline of this article is as
follows. Section 2 contains the theoretical background. Section 3 describes the relevant computational
details. Section 4 gives the results and their discussion, and Section 5 collates the main conclusions of
this work.
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2. Theory

2.1. Path Integral Monte Carlo (PIMC)

The canonical partition function Z(N, V, T) of a quantum monatomic system (number density
ρN = N/V), under conditions where exchange interactions can be neglected, can be approximated by
the accurate PI formula (Tr = trace) [31–33]

Z = Tr
{
exp(−βHN)

}
�

1
N!

(
MP

2πβ}2

)3NP/2 ∫ ∏N

j=1

∏P

t=1
drt

j × exp[−βWNP], (1)

where HN is the Hamiltonian, assumed normally to be composed of one- and two-particle terms,
M is the particle mass, β = 1/kBT, P is the discretization in beads of the necklace representing and
actual particle j, rt

j denotes the real space coordinates of bead t (t = 1, 2, . . . , P) belonging to necklace j,
and WNP is the “effective potential” ruling the whole set of N×P beads (hereafter all of them equivalent:
X = P). In what follows, the optimal P will be assumed. In addition, it is worthwhile to note that
(a) consecutive beads, t and t + 1, in a necklace are separated by β}/P in Euclidean imaginary time β};
(b) then, a given bead labeled t is associated with the imaginary time β}t/P; and (c) the cyclic property
t + 1 = P + 1 ≡ 1 is satisfied.

In the case of the QHS system, an appropriate choice for WNP is based on Cao–Berne’s CBHSP
pair action [35], and it can be written as [14,78]

WCBHSP
NP = WF

1 + WCB
2 + WHS

2 , (2)

WF
1 =

MP
2β2}2

∑N

j=1

∑P∗

t=1

(
rt

j − rt+1
j

)2
, (3a)

WCB
2 = −β−1ln

∏
j<m

∏P∗
t=1

1−
σ
(
rt

jm+rt+1
jm −σ

)
rt

jmrt+1
jm

× exp

−MP
(
rt

jm−σ
)(

rt+1
jm −σ

)
2β}2

(
1 + cos

(
rt

jm, rt+1
jm

))
, (3b)

WHS
2 = P−1

∑
j<m

P∑
t=1

ωHS(rt
jm) =

 ∞ i f rt
jm =

∣∣∣∣rt
j − rt

m

∣∣∣∣ < σ
0 i f rt

jm > σ

. (3c)

In Equation (3a), one recognizes the superposition of the free-particle behaviors [13]. Equation (3b)
shows Cao–Berne’s correction, where the adjacent-bead effects are to be noted. Equation (3c) is the
expression of the singular hard-sphere potential extended over all the pairs of necklaces, which interact
in an equal “t–time” bead-to-bead fashion (ET). The symbols P∗ in the sum and product above mark
the t−cyclic property already mentioned. For the specific thermodynamic property formulas that can
be derived from CBHSP, the reader is referred to [67,78]. At this point, it is important to give the
definition of the CBHSP centroid of a given necklace j

RCM, j = P−1
∑P

t=1
rt

j. (4)

This quantity plays an important role in PI theoretical developments [13,47], in particular in
(a) the appealing centroid approaches to quantum dynamics [81–85]; (b) the exact formulation
of the equation of state of quantum fluids [39,86]; and (c) the characterization of quantum solid
phases [67].

A key feature of the QHS system is that its state points can be uniquely characterized by giving two
parameters, namely the reduced number density ρ∗N and the reduced de Broglie thermal wavelength
λ∗B. This fact was early realized at the level of semiclassical treatments based on }–expansions (see,
for instance, [87–90]). Within PI, the same fact is just a property contained in the mathematical structure
of the QHS partition function, regardless of the particular proper form that WNP may take (see [47]
for a discussion of QHS propagators). Accordingly, the QHS system properties can be expressed in
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reduced units, thereby being independent of the actual parameters M, σ, T, and ρN employed [66,67].
Therefore, for example, internal energies E can be given as E∗ = E/RT, and pressures p can be given as
p∗ = pMσ5/}2. For the pressure, an indication to guide the interested reader will suffice: when using
different sets of parameters to define the state points 1 and 2, if

(
ρ∗N,λ∗B

)
1
=

(
ρ∗N,λ∗B

)
2
, then necessarily

(PV/RT)1 = (PV/RT)2, and also p∗1 = p∗2.

The same general type of argument applies to the real space structures gn
(
q1, q2, . . . , qn

)
, for which,

when reporting QHS system results, it is most useful to do it using interparticle distances in reduced
form: r∗12 =

∣∣∣q1 − q2

∣∣∣/σ. In order not to burden the notation, the formulation of the structural concepts
below will utilize the distances and related quantities in their non-reduced forms, as in Equations (1)
to (4).

Another technical point seems worth placing here. It is related to the three- (and higher-order)
particle contributions to the quantum Hamiltonian HN of the system, which may yield more complete
and elaborate forms for the propagators and WNP. While this is a question that can be tackled in
various ways when continuous interparticle potentials are involved [91–93], to this author’s knowledge,
no QHS system PI actions beyond the pair level are available, and such an extension remains intractable
for now. Nevertheless, because of the strong similarity between helium atoms and quantum hard
spheres, the related effects on the QHS system can be expected to become significant at very high
solid-phase densities (and sufficiently low temperatures) [33]. Furthermore, owing to the QHS infinite
repulsion at the hard core, Equation (3c), the wave functions of the QHS system must vanish for
interparticle distances r ≤ σ (i.e., there can be no tunneling); hence, quantum hard spheres repel one
another before “classical contact” can occur [89,90]. (Within PI, this means that the related forbidden
region brought about by Equation (3c) arises only for the “equal-time” bead gn correlations). Therefore,
given the lack of any attraction, the “preemptive” QHS repulsions can be expected to cause a strong
impediment to the coming together of triplets of quantum hard spheres. Using the quantum diffraction
parameter γ = ρ∗Nλ

∗3
B , the latter triplet effects should not play any significant role unless γ becomes

truly high. The largest value of γ in this work is � 2.8, which is compatible with the QHS pair modeling
of normal fluid and solid helium-4 [66]. Therefore, the pair-level CBHSP approach can be deemed
adequate to compute structures under the fluid and solid conditions investigated in this work.

2.2. PI Triplet Structures

Within PI-CBHSP, the centroid (CM3) and the instantaneous (ET3) three-point number densities
can be cast as the ensemble averages [17]

ρ
(3)
CM3

(
q1, q2, q3

)
= 〈

∑
j,l,m, j

δ
(
RCM, j − q1

)
δ
(
RCM,l − q2

)
δ
(
RCM,m − q3

)
〉, (5)

ρ
(3)
ET3

(
q1, q2, q3

)
= P−1

〈

∑P

t=1

∑
j,l,m, j

δ
(
rt

j − q1

)
δ
(
rt

l − q2

)
δ
(
rt

m − q3

)
〉, (6)

where one notices that (i) the multi-index summations run over the whole set of permutations of
N particles taken three at a time; (ii) the instantaneous case contains a further P average involving
“equal-time” beads in different necklaces; and (iii) these definitions are completely general, since they
depend on the position vectors of the representative set of three particles and can be applied to
the statistical description of monatomic systems, which are either fluid or solid. Due to the high
computational cost, no attempt is made in this work at calculating total thermalized-continuous linear
response triplets [14,17].

For homogeneous and isotropic fluids, one finds simpler formulas [17]

ρ
(3)
CM3

(
q1, q2, q3

)
= ρ3

N gCM3
(
q1 − q3, q2 − q3

)
= ρ3

N gCM3(r12, s13, u23), (7)

ρ
(3)
ET3

(
q1, q2, q3

)
= ρ3

N gET3
(
q1 − q3, q2 − q3

)
= ρ3

N gET3(r12, s13, u23), (8)
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where the triplet correlation functions gCM3 and gET3 depend only on the three generic interparticle
distances: r12 =

∣∣∣q1 − q2

∣∣∣, s13 =
∣∣∣q1 − q3

∣∣∣, and u23 =
∣∣∣q2 − q3

∣∣∣. This exact reduction from nine to three
independent variables makes the intricate triplet problem more accessible for the study of monatomic
fluid state points [14–17].

Rigorously speaking, the related exact framework for a monatomic solid is contained in
Equations (5) and (6). Nevertheless, affordable approximations to this even more costly problem
can be obtained by applying Equations (7) and (8). Actually, such an approach is consistent with
the same idea, already exploited successfully, at the pair level in the study of regular solid phases,
since the gCM2(r) and gET2(r) pair radial functions retain many significant traits of the underlying
solid structure [66,67,80]. Furthermore, as a first step, the use of Equations (7) and (8) facilitates the
comparison of the global salient triplet features appearing in different solid phases.

The functions defined in Equations (7) and (8) must satisfy several properties [4,6,7,57,58]. The most
relevant to this work are:

(1) Symmetry

g3
(
q1, q2, q3

)
= g3

(
q2, q3, q1

)
= . . . ; ET3 and CM3. (9a)

(2) QHS instantaneous behavior at close distances

lim
|q j−qm |→σ+

gET3(r, s, u) = 0. (9b)

(3) Asymptotic behavior in fluids

lim
r→∞

g3(r, r, r) = 1; ET3 and CM3, (9c)

lim
s→∞

g3(r, s, s) = g2(r); ET3/ET2 and CM3/CM2. (9d)

Equation (9a) follows from Equations (7) and (8). Equation (9b) for the instantaneous case arises
from the singular character of the hard-sphere potential Equation (3c). For centroids, a behavior similar
to Equation (9b) is expected to occur, albeit the limiting distance may be different from σ. Finally,
Equations (9c) and (9d) follow from the weakening of particle correlations in fluids when considering
increasing distances, and both are very useful to check the inner consistency of the related calculations.

2.3. Additional Pair Structural Quantities

To supplement the PIMC triplet calculations in the canonical ensemble, the following quantities
can also be computed:

(a) The pair radial functions for the centroid (CM2) and the instantaneous (ET2) correlations, in both
the fluid and the solid phases [47]. Their PI ensemble averages can be cast as

ρ2
N gCM2(r12) = 〈

∑
j,m

δ
(
RCM, j − q1

)
δ
(
RCM,m − q2

)
〉, (10)

ρ2
N gET2(r12) = P−1

〈

∑P

t=1

∑
j,m

δ
(
rt

j − q1

)
δ
(
rt

m − q2

)
〉, (11)

where r12 =
∣∣∣q1 − q2

∣∣∣.
(b) The pair static structure factors S(2)

CM(k) and S(2)
ET (k) associated with the foregoing pair radial

structures in the fluid phase [47]

S(2)
CM(k) = 1 + ρN

∫
dr12 exp(ik·r12)hCM2(r12) =

(
1− ρNc(2)CM(k)

)−1
, (12)
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S(2)
ET (k) = 1 + ρN

∫
dr12 exp(ik·r12)hET2(r12) �

(
1− ρNc(2)ET (k)

)−1
, (13)

where h2 = g2 − 1 stands for the corresponding pair total correlation function, and c(2)(k) stands
for the corresponding pair direct correlation function in Fourier space (k = |k|). These structure
factors can be fixed with great accuracy, at a very low cost and for every k ≥ 0 wave number [48],
via the Ornstein–Zernike framework [94–96] developed by this author [47,86,97,98]. Apart from
their intrinsic usefulness, they are decisive in achieving a number of significant improvements in
the study of fluids with quantum behavior [39,47–49]. In particular, S(2)

CM(k) and S(2)
ET (k) can be

utilized for (i) extending the ranges of the simulated gCM2(r12) and gET2(r12) [47], which serves to
perform triplet closure computations; and (ii) gaining insight into their associated triplet structure
factors S(3)

CM(k1, k2) and S(3)
ET (k1, k2) [17,18].

(c) In simulation work using cubic boxes, the PI sample size is composed of NS necklaces, each
with P beads, enclosed in a volume VS = L3. To characterize solid phases, one can employ the
normalized-to-unity solid-phase configurational structure factors at the centroid and instantaneous
pair levels [67,99,100]. They can be written as

S(C)
CM2(k) = N−2

S

∣∣∣∣∣∑NS

j=1
exp

(
ik·RCM, j

)∣∣∣∣∣2, (14)

S(C)
ET2(k) =

(
N2

SP
)−1 ∑P

t=1

∣∣∣∣∣∑NS

j=1
exp

(
ik·rt

j

)∣∣∣∣∣2, (15)

and are taken at their maximal values arising from the simulation runs [67,78]. In these simulation
conditions, the wave vectors k to be analyzed must be commensurate with the box, which means
k = 2πL−1

(
kx, ky, kz

)
, where the components

(
kx, ky, kz

)
take integer values [56]. In connection

with this, notice that cubic-based perfect lattices can be associated with sets of three commensurate
wave vectors, {kw}n = {k1, k2, k3}n, which are maximal in that:

(i) For the perfect FCC and BCC lattices, one can single out sets {kw}n such that they reach the

maximum value, S(C)
2 (kw) = S(C)

2 (kmax) = 1, (w = 1, 2, 3). For a perfect cI16 lattice, which is not

so highly regular, one obtains S(C)
2 (kw) = S(C)

2 (kmax) < 1, (w = 1, 2, 3), as will be shown later on.

(ii) The following result holds ∣∣∣k1·(k2 × k3)
∣∣∣ = (2π)3NS/VS. (16)

Therefore, comparison of the above standard perfect-lattice results with those arising from the
simulated cubic solid phase allows one to identify its type and relative order. Obviously, the values of
the simulated configurational structure factors are lower than the perfect reference values; they appear
associated with each of the three maximal wave vectors and are close to one another, but, as a rule, they
are not equal: one of them can be singled out as the maximum, whereas the other two remain slightly
below [67,78]. As a guide for quantum work [99], the following centroid estimates are worth quoting:
0.4 . S(C)

CM2(kmax) for partially crystalline solids, while typically S(C)
CM2(kmax) < 0.2 for fluid phases.

(Amorphous phase maximal values for S(C)
CM2(kmax) should be between the two foregoing limits).

It is important to stress that although somewhat expensive to calculate, the quantities S(C)
CM2(kmax)

and S(C)
ET2(kmax) are global for the simulation sample. Therefore, in this context, these quantities seem

more complete than local-order parameters (e.g., the rotationally invariant Ql) [67,80,101].
Before going any further, it is convenient to consider the general issue of the simulation sample

size NS for the solid phases, thus allowing one to introduce cI16 basic details. The conditions for
FCC and BCC are well-known, and for NS > 100, one finds: (i) NS(FCC) = 4n3, with n = 3, 4, 5, . . .;
and (ii) NS(BCC) = 2n3, with n = 4, 5, 6, . . .. However, the case of cI16 is not so standard. cI16 is a
distortion of BCC and is characterized by the so-called fractional displacement parameter, which is usually
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denoted by x [76,77], so as to have the particles occupying the 16c Wyckoff site (x, x, x) of the space
group I43d. This means that its body-centered unit cell does contain 16 particles. Consequently, there
are some extra restrictions that may make the NS(cI16) values different from those of BCC. Thus, again
for NS > 100, one finds (iii) NS(cI16) = 16n3, with n = 2, 3, 4, . . .. The reader is referred to [76,77,80]
for specific details.

2.4. Closures for Fluid Triplets

The two basic closures analyzed in this work are Kirkwood superposition KS3 and
Jackson–Feenberg convolution JF3. Both can be applied to the fluid centroid (CM3) and instantaneous
(ET3) triplet correlations. Their expressions can be written as follows [1,4]:

gKS3(r12, s13, u23) = g2(r12)g2(s13)g2(u23), (17)

gJF3(r12, s13, u23) = gKS3(r12, s13, u23) − h2(r12)h2(s13)h2(u23) + ρN

∫
dq4h2(v14)h2(v24)h2(v34), (18)

where v j4 =
∣∣∣∣q j − q4

∣∣∣∣, h2 = g2 − 1, and g2 = gCM2 or gET2. Although explicitly stated in Equation (18),
it is important to remark that JF3 lacks the triplet-product term h2(r12)h2(s13)h2(u23), which should
appear in an h2−expansion. This absence has deep consequences as will be shown in this article.
An easy and direct way to recover such contribution (half of it), while at the same time keeping the
convolution integral (half of it) contained in Equation (18), is via the average closure AV3 that reads as

gAV3(r12, s13, u23) =
1
2

(
gKS3(r12, s13, u23) + gJF3(r12, s13, u23)

)
. (19)

As regards the properties of these closures, suffice it to say that (i) KS3, JF3, and AV3, satisfy Equations
(9a), (9c), and (9d); and (ii) only KS3, as induced by its construction, satisfies Equation (9b), which
is a special case of the general triplet behavior g3 → 0 when two particles approach closely each
other [14–17].

3. Computational Details

The main target of this work is the determination of QHS equilateral and isosceles triplet
correlations (centroid and instantaneous), namely the types of functions g3(r, r, r) (or gEQ

3 for brevity
when necessary) and g3(r, s, s). For the sake of interpretation, they are complemented with the
additional structural properties discussed in Section 2.3. The state points studied are shown in Table 1.
They span a wide range of conditions, from the normal fluid phase to the distinct solid phases FCC and
cI16. Special attention is paid to the two sides of the fluid–FCC coexistence line, as determined in [67](
λ∗B ≤ 0.8

)
and [66]

(
λ∗B > 0.8

)
. Moreover, the study is extended to (i) fluid state points under very strong

diffraction effects
(
λ∗B ≈ 2

)
, with a view to establishing a meaningful correlation of triplet structures

when going toward the change of phase by increasing ρ∗N at constant temperature, and (ii) the lattices
FCC and cI16 at (ρ∗N = 0.925, λ∗B = 0.2) and (ρ∗N = 0.9, λ∗B = 0.8), which are conditions that are
significantly far from the very high-density regions.

Table 1. Fluid and solid-state points of the hard-sphere system studied. Reduced densities ρ*
N, reduced

de Broglie wavelengths λ*
B, path integral Monte Carlo (PIMC) sample size NS × P.

I.1. PHASE TRANSITION 1

FLUID PHASE FCC PHASE

λ*
B ρ*

N NS×P ρ*
N NS×P

0.2 0.789 864 × 12 0.863 864 × 12

0.4 0.672 864 × 12 0.731 864 × 12
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Table 1. Cont.

I.1. PHASE TRANSITION 1

FLUID PHASE FCC PHASE

λ*
B ρ*

N NS×P ρ*
N NS×P

0.6 0.589 864 × 12 0.635 864 × 12

0.8 0.533 864 × 12
864 × 24 0.573 864 × 12

864 ×18

1.2543 0.442 864 × 24 0.465 864 × 24

1.9832 0.348 864 × 30
864 × 40 0.360 864 × 30

I.2. FLUID PHASE

1.9832 0.1 864 × 30 ——— ———

1.9832 0.3 864 × 30 ——— ———

I.3 SOLID PHASES

cI16 PHASE FCC PHASE

0.2 0.925 1024 × 12
1024 × 24 0.925 864 × 12

864 × 24

0.8 0.900
1024 × 12
1024 × 24
1024 ×36

0.900
864 × 12
864 × 24
864 ×36

1 Phase transition de Broglie wavelengths and densities fixed in [66,67].

3.1. PIMC Calculations

The PIMC simulation procedures utilized can be found elsewhere [14–17,67,78], although for
completeness, the basic lines follow below.

The necklace normal mode algorithm [62,63] is used to generate the collective P movements
of a given necklace, with a Metropolis acceptance ratio of 50%. (As in previous works, the actual
hard-sphere parameters are M = 28.0134 amu and σ = 3.5 Å; 1 Å = 10−10 m). The necklace sample
sizes NS are 864 for the fluid and the FCC solid phases, and 1024 for the cI16 solid phases. The quantum
P convergence for the results is studied as shown below (12 ≤ P ≤ 40). One kpass is defined as a set of
103NS × P attempted bead moves, and one Mpass is then 103 kpasses. After equilibration, most of the
simulation runs are arranged into 40 blocks for the g2 calculations and 30 blocks for the g3 calculations.
The respective block sizes are (i) 92.6 kpasses for the fluid simulations; (ii) 92.6 kpasses for the FCC
simulations; and (iii) 78.125 kpasses for the cI16 simulations. Therefore, the run lengths associated
with the g2 and g3 calculations are in between 2.34 Mpasses and 3.7 Mpasses. (The extra simulations
using P = 36 and 40 have lengths of about 1 Mpass). Block subaverages for g2 and g3 are obtained
by gathering statistics every 5000 (g2)/7000–8000 (g3) configurations generated. The configurational
structure factors given by Equations (14) and (15) are analyzed four times per block, at equally spaced
intervals, by recording the ten largest values for the final assessment. To do so, triplets of integers(
kx, ky, kz

)
are monitored in the mesh 25 ≤ k2

x + k2
y + k2

z ≤ 200, with the components in −10 ≤ kν ≤ 10
(symmetry properties allow one to reduce the calculations). Given that the information provided by
the correlation functions, complemented with that arising from the structure factors, is more than
sufficient to characterize the current solid structural results, the Ql order parameters [101] are not
evaluated, thereby alleviating the considerable computational effort involved in this work.

The pair and triplet sructures g2 and g3 are fixed in the established ways using histograms.
The case of g2 is straightforward and well-known [56], and the simulations are utilized as the reduced
width of the bins ∆

∗

= 1/35 (or σ/35 =0.1 Å). However, the case of g3 includes a good number of
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subtleties [57,58]. The detailed description of the related procedure can be found in [14]. For the current
purposes, suffice it to say that for a triplet of distances (R, S, U), the basic g3 expression is given by

g3(R, S, U) =
(∆nT)

Nρ2
N(∆V)RSU

; ET3 and CM3 (20)

where (∆nT) is the number of times mutual distance triplets lie within the ranges R − ∆ < r12 ≤ R,
S− ∆ < s13 ≤ S, and U − ∆ < u23 ≤ U, and (∆V)RSU stands for the appropriate volume element [58].
Once again, in these calculations, ∆

∗

= 1/35. The histogramming of triplets extends up to distances
r12, s13, and u23, which are < L/4. Statistical errors (one-standard deviation) for the average structures
computed with PIMC are fixed with the corresponding block subaverages. For example, for the first
peaks heights of g2 and g3, the errors remain below 1% for most of the present calculations. In this
connection, Table 2 gives some representative g3 results (mean first peaks (FP)) in the close vicinities
of the absolute maxima of the structure indicated, together with the associated errors. (More on
this in the Supplementary Materials). Note that the P convergence is influenced by both λ∗B and ρ∗N.
For the fluid and FCC state points on the coexistence line, under the most extreme quantum conditions
studied herein (λ∗B = 1.9832, γ � 2.7− 2.8), P = 30 is sufficient to produce practical convergences in
the centroid and in the instantaneous functions. For the solid state points at densities ρ∗N = 0.9, 0.925,
it is worthwhile to note that there is a slowing down of this convergence with decreasing temperatures
(λ∗B = 0.2→ 0.8) , which becomes more noticeable (a) for the triplet centroid quantities and (b) for the
cI16 lattice, its openness playing a significant role in the fixing of the final particle distributions.

Table 2. Selected PIMC convergence features. Centroid (CM3) and instantaneous (ET3) first peaks (FP)
in the close vicinities of the equilateral absolute maxima. Number in parentheses are one-standard
deviation affecting the last digit(s) 1.

λ*
B ρ*

N NS×P r*
FP−CM3 gEQ

CM3
r*

FP−ET3 gEQ
ET3

FLUID PHASE (fluid–FCC coexistence line)

1.9832 0.348 864 × 30
864 ×40 1.5 19.7 (5)

19.9 (5) 1.4714 4.51 (2)
4.53 (3)

FCC PHASE (fluid–FCC coexistence line)

0.8 0.573 864 × 12
864 × 18 1.3 55.6 (4)

56.3 (5) 1.3 15.4 (0)
15.4 (0)

FCC PHASE

0.2 0.925 864 × 12
864 × 24 1.1 160.1 (7)

160.0 (15) 1.1286 93.4 (2)
93.1 (3)

0.8 0.9
864 × 12
864 × 24
864 × 36

1.1571
2339 (7)

3028 (16)
3177 (24)

1.1571
112.2 (1)
114.7 (2)
114.1 (2)

cI16 PHASE

0.8 0.9
1024 × 12
1024 × 24
1024 × 36

1.1571
1469 (11)
1233 (10)
1334 (14)

1.1286
158.0 (2)
96.7 (2)
97.8 (3)

1 19.7(5) ≡ 19.7± 0.5; 160.0 (15) ≡ 160.0± 1.5; 2339(7) ≡ 2339± 7.

3.2. Closure Calculations

The current calculations at the actual fluid state points on the coexistence line use the new PIMC
information obtained with sample sizes larger than those employed in [49]. (The new and the former
results are in excellent agreement). The JF3 convolution integrals involve the h2 extension to longer
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distances fixed with the fluid S(2)
CM(k) and S(2)

ET (k). The convolutions can be obtained by employing a
well-known expansion in Legendre polynomials Pn [10,24]∫

dq4h2(υ14)h2(υ24)h2(υ34) �
∑nmax

n=0
π(2n + 1)Pn(cosφ)In(h2, Pn), (21a)

In(h2, Pn) =

∫ ymax

0
dy y2h2(y) fn(y, s13) fn(y, u23), (21b)

fn(y, z) =
∫ +1

−1
dx Pn(x)h2

(√
y2 + z2 − 2xyz

)
, (21c)

where φ is the angle between s13 and u23. The final JF3 results reported in Section 4 employ
(a) nmax = 30 for the Legendre expansion; (b) ymax = 20σ = 70 Å (i.e., y∗max = 20) as the maximum
distance for h2 data; and (c) trapezoidal quadratures with discretizations consisting of 2000 points for
the y integrations and 1000 points for the x integrations. The latter parameters are sufficient to yield
JF3 and AV3 results that can be compared with PIMC in a meaningful way. To grasp this point, some
results at the highest-density fluid state point

(
ρ∗N = 0.789, λ∗B = 0.2

)
will suffice. The JF3 centroid

(CM3) and instantaneous (ET3) results in the close vicinities r∗FP (first peaks FP) of their respective
equilateral (EQ) absolute maxima, (rFP = 3.85 Å, or r∗FP = 1.1), behave as follows. (i) nmax = 10,
ymax = 50 Å (y∗max ≈ 14.3), using 1000-point y integration, plus 500-point x integration leads to:
gEQ

CM3 = 42.930, gEQ
ET3 = 27.183. (ii) nmax = 10, ymax = 70 Å (y∗max = 20), using 2000-point y integration

plus 1000-point x integration leads to gEQ
CM3 = 42.931, gEQ

ET3 = 27.183. (iii) nmax = 30, ymax = 70 Å

(y∗max = 20), using 2000-point y integration plus 1000-point x integration, lead to: gEQ
CM3 = 42.932,

gEQ
ET3 = 27.185.

4. Results and Discussion

The results reported in this section are complemented with data in the Supplementary Materials.

4.1. The Pair Level Structures

Figure 1 shows representative pair radial correlation functions, centroid, and instantaneous,
along the fluid–FCC solid coexistence (see also the Supplementary Materials for more information).
The fluid functions (Figure 1a,b) display clear fluid-like features. Analogously, the FCC solid functions
(Figure 1c,d) display the expected traits of FCC lattices. General comments on these pair radial
functions are (i) the higher order in the solid functions that does not disappear with increasing
distances; (ii) the outward shift and smoothing of the features with increasing quantum effects (on the
coexistence line analyzed, one has 0.006 < γ < 2.81); and (iii) the proximity between the locations of
the fluid and solid first maxima (also between the dominant second-maximum regions), revealing that
the system is ready to effect the change of phase. It is also interesting to note in passing that on the
fluid side, the absolute maxima of the pair structures show dependences upon γ that can be fitted in
the form g2(Max) = aγ−b, the associated linear correlation coefficients rcorr. being reasonably good:
(a) for the centroid functions, a � 3.0042, b � 0.0687, rcorr. = −0.9982; and (b) for the instantaneous
functions, a � 1.8863, b � 0.1233, rcorr. = −0.9999. Furthermore, the concordance at the pair level
between the results in the {r} and the {k} spaces is excellent. The fluid radial functions are fully
consistent in particular with the configurational maximal values arising from Equations (14) and (15):
the fluid phase maximal values obtained remain S(C)

2 < 0.1. Moreover, Table 3 contains the observed

variations in the maximal values of S(C)
2 corresponding to the FCC centroid and instantaneous cases.

For the current calculations, a representative FCC-set of maximal wave vectors can be defined by their
k-integer components:

{
(−6, 6, 6), (−6, 6,−6,), (6, 6, 6)

}
.
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Figure 1. PIMC pair radial correlation functions along the quantum hard spheres (QHS) fluid–FCC
(face-centered cubic) solid coexistence line (six state points in Table 1). The arrangement should be
clear according to the (ρ∗N, λ∗B) values shown. (a) Fluid centroid functions. (b) Fluid instantaneous
functions. (c) FCC centroid functions. (d) FCC instantaneous functions. The vertical line at r∗ = 1 in
(b,d) marks the position of the hard core.

Table 3. Solid phase variations in the maximal values of the centroid (CM2) Equation (14)
and instantaneous (ET2) Equation (15) configurational structure factors at the pair level fixed with PIMC.

FCC PHASE on the Coexistence Line

λ*
B ρ*

N NS×P S(C)
CM2(kmax) S(C)

ET2(kmax)

0.2 0.863 864 × 12 0.803–0.764 0.786–0.748

0.4 0.731 864 × 12 0.791–0.751 0.738–0.702

0.6 0.635 864 × 12 0.778–0.738 0.686–0.649

0.8 0.573 864 × 12 0.784–0.752 0.643–0.613

1.2543 0.465 864 × 24 0.771–0.732 0.532–0.503

1.9832 0.360 864 × 30 0.743–0.691 0.393–0.356

FCC PHASE

0.2 0.925 864 × 12
864 × 24

0.886–0.866
0.883–0.865

0.867–0.849
0.864–0.847

0.8 0.9
864 × 12
864 × 24
864 × 36

0.986–0.984
0.989–0.987
0.989–0.988

0.898–0.894
0.902–0.898
0.901–0.900

cI16 PHASE

0.2 0.925 1024 × 12
1024 × 24

0.726–0.698
0.732–0.705

0.710–0.682
0.717–0.689

0.8 0.9
1024 × 12
1024 × 24
1024 × 36

0.793–0.784
0.781–0.774
0.777–0.771

0.741–0.732
0.712–0.705
0.708–0.702



Entropy 2020, 22, 1338 13 of 27

Figure 2 shows the pair radial correlation functions, centroid and instantaneous, of the FCC and
cI16 state points at the moderately high densities ρ∗N = 0.9, 0.925. There is a sharp contrast between the
FCC and cI16 structures, since the usual coordination shells existing in the highly regular FCC lattice
are absent from cI16. The most characteristic trait of cI16 is, perhaps, the presence of a convoluted
inner structure, with two conspicuous big dips, for distances below r∗ ≈ 2.5. The FCC solid structures
(Figure 2a,c) are the “compression” (at constant temperature) of the corresponding FCC structures
on the coexistence line. The current cI16 results (Figure 2b,c) agree feature for feature with the pair
structures displayed by the bcc-qIII phases in [67]. (Differences between the first peaks are due to the
B-spline smoothing carried out in Figure 9 of [67]; see the Suppplementary Material for non-smoothed
data). This deserves to be highlighted, since the PIMC-QHS origins of both types of structures are not
related: the former bcc-qIII phases arose from the evolution of initially perfect BCC lattices (NS = 432),
while the present (delocalized) cI16 phases are just the results obtained from the evolution of initially
perfect cI16 lattices (NS = 1024). To complete the foregoing information, Table 3 also contains the
variations in the maximal values of the respective cI16-configurational S(C)

2 structure factors. They are
consistent with the behavior reported in [67]. For the current calculations, a representative cI16-set of
maximal wave vectors can be defined by their k-integer components

{
(−8, 8, 0), (0, 8,−8,), (8, 8, 0)

}
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Figure 2. PIMC pair radial correlation functions in the region of moderately high densities for the
cubic-based QHS solid phases FCC and cI16. No smoothing of the simulation results has been carried
out. The vertical line at r∗ = 1 in (a–c), marks the position of the hard core.

There is still the further question related to the characterization of cI16 phases via the fractional
displacement parameter x. In the quantum case, the delocalization makes this task a three-fold one,
since there are three types of distinct structures. Given the current scope, only the centroid and
instantaneous x estimates are determined in this work. A convenient way is through the tabulation for

perfect cI16 lattices of
(
x, S(C)

2 (kmax)
)
, which can be computationally fixed by varying x. Thus, for the
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interval 0.025 ≤ x ≤ 0.038, using ∆x = 0.001, the related parabolic least-squares fitting (better than just
linear) leads to

S(C)
2 (kmax) = 1.0931− 8.269x− 108.75x2; CM2 and ET2, (22)

which guarantees absolute errors of orders ≤ 10−4 in the estimated values of the reference maximal
structure factors (for higher precision, the reader is referred to the tabulation in the Supplementary
Materials). Note that the higher the x is, the lower the S(C)

2 (kmax) becomes, as expected. In this
regard, note that for x = 0, which is out of the above interval, one must retrieve the perfect BCC
limit S(C)

2 (kmax) = 1. Consideration of the actual calculated values of the maximal S(C)
CM2(kmax)

and S(C)
ET2(kmax) in Table 3 yields the cI16 variations: (i) at (ρ∗N = 0.925, λ∗B = 0.2; P = 12),

0.0314 ≤ x ≤ 0.0332 for CM2, and 0.0325 ≤ x ≤ 0.0343 for ET2; and (ii) at (ρ∗N = 0.9, λ∗B = 0.8; P = 24),
0.0277 ≤ x ≤ 0.0282 for CM2, and 0.0323 ≤ x ≤ 0.0328 for ET2. These values show the expected
behavior: (a) they are larger for the instantaneous structures; (b) they are consistent with cI16 values
reported in the literature [76,77,80]; and (c) the CM2–ET2 differences increase with the quantum
effects. Another point to consider here is related to the fact that samples of classical hard spheres
can be “squeezed” more than samples of quantum hard spheres, because of the latter’s “preemptive”
repulsions. This means that via low temperatures, one can expect QHS–cI16 phases to appear for lower
densities than in the classical hard-sphere system

(
ρ∗N ≥ 1.1

)
[80], which is indeed the case.

4.2. Triplets in the Fluid Phase

Figures 3–5 show the main features of the fluid triplet correlations analyzed in this work. Several
general trends can be easily identified in Figure 3, which collects results at two state points along the
lowest isotherm λ∗B = 1.9832. First, as occurred on the pair level, the centroid CM3 features are far
more pronounced than those of the instantaneous ET3 case. Second, and associated with the equilateral
data, one notes that the first maximum and the first minimum positions of a given g3(r∗, r∗, r∗) occur in
the close vicinities of the corresponding first maximum and first minimum of the associated g2(r∗)
shown in Figure 1. Third, although the closures KS3 and JF3 fail to reproduce the exact PIMC behavior,
their average AV3 shows a remarkable performance for both the centroid and the instantaneous
correlations. Fourth, as the density increases along isotherms, and when going toward longer distances,
AV3 loses predictive power to fit the profiles of the isosceles correlations g3(r∗, s∗, s∗). In relation to this,
see Figure 3d, where s∗ = s∗M is such that g3

(
s∗M, s∗M, s∗M

)
� absolute equilateral maximum.

Finer equilateral facts follow. (i) Figure 3a,b displays explicitly, at state point
(ρ∗N = 0.1,λ∗B = 1.9832), the equilateral asymptotic behavior g3(r∗, r∗, r∗)→ 1 with increasing
r∗ for the PIMC centroid and instantaneous correlations. (ii) Figure 3c illustrates the isosceles
asymptotic behavior g3(r∗, s∗, s∗)→ g2(r∗) , when the two s∗ distances increase. (iii) As seen,
the short-range behavior of AV3 is non-correct (due to that of JF3), whereas KS3 behaves properly.
(iv) At constant temperature, there is a sharpening and shifting inwards of the structures with
increasing density. For example, at λ∗B = 1.9832 in the vicinities

(
r∗FP

)
of the equilateral first

maxima, the gEQ
3 = g3(r∗, r∗, r∗) behave as follows: (1) ρ∗N = 0.1,

(
r∗FP = 1.9, gEQ

CM3 = 2.16
)

and
(
r∗FP = 2, gEQ

ET3 = 1.41
)
; (2) ρ∗N = 0.3,

(
r∗FP = 1.5571, gEQ

CM3 = 12.65
)

and
(
r∗FP = 1.5429, gEQ

ET3 = 3.54
)
;

and (3) ρ∗N = 0.348,
(
r∗FP = 1.5, gEQ

CM3 = 19.74
)

and
(
r∗FP = 1.4714, gEQ

ET3 = 4.51
)
. An analogous behavior

can be observed at the pair level. (Use σ = 3.5 Å and rounding-off to two decimal places to
transform the foregoing r∗ into the actual r of the (M, σ) system utilized in the current calculations, e.g.,
r∗ = 1, 5571→ r∗ = 5.5 Å).
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Finer equilateral facts follow. (i) Figure 3a,b displays explicitly, at state point (𝜌∗ = 0.1, 𝜆∗ =1.9832), the equilateral asymptotic behavior 𝑔 (𝑟∗, 𝑟∗, 𝑟∗) → 1 with increasing 𝑟∗  for the PIMC 
centroid and instantaneous correlations. (ii) Figure 3c illustrates the isosceles asymptotic behavior 𝑔 (𝑟∗, 𝑠∗, 𝑠∗) → 𝑔 (𝑟∗), when the two 𝑠∗ distances increase. (iii) As seen, the short-range behavior of 

Figure 3. Typical behaviors of the centroid and instantaneous triplet correlations in the QH fluid
at two representative state points. KS3 = Kirkwood superposition, Equation (17); AV3 = average
closure, Equation (19); PIMC = path integral Monte Carlo. (a) Centroid equilateral; (b) instantaneous
equilateral; (c) instantaneous isosceles, with pair g2(r∗) asymptotic values shown (increasing s∗) at three
selected r∗ (close to the pair first maximum fp, close to the pair first minimum fv, and with 0 being
a pair close-range distance); (d) r∗ profiles of the heights in the close vicinity of the first maxima of
the instantaneous isosceles correlations (s∗M = distance in the close vicinity of where the absolute
equilateral maximum appears). The vertical line at r∗ = 1 in (b–d) marks the position of the hard core.
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Figure 4. Typical forms of the centroid and the instantaneous equilateral correlations in the QHS fluid
at three representative state points on the fluid–FCC coexistence line. Acronyms for methods as in
Figure 3. (a) Fluid centroid functions. (b) Fluid instantaneous functions. The vertical line at r∗ = 1 in
(b) marks the position of the hard core.
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Figure 5. Typical behaviors of the centroid and instantaneous isosceles correlations in the QHS fluid at
two representative state points on the fluid–FCC coexistence line. Acronyms for methods as in Figure 3.
Results at three especial r∗ distances of the equilateral correlations very close to the respective: first
maximum (FP), first minimum (FV), and second maximum (SP). (a) Upper plots shifted by +20 and
+40. (b) Upper plots shifted by +10 and +20. (c) Upper plots shifted by +5 and +10. (d) Upper plots
shifted by +2 and +4. The vertical line at r∗ = 1 in (b,d) marks the position of the hard core.

Figure 4 shows the equilateral correlations at three representative state points on the fluid side of
the coexistence line. The aforementioned trends of KS3 and AV3, as compared to PIMC, appear again
for both types of correlations CM3 (Figure 4a) and ET3 (Figure 4b). In going from higher to lower
densities/temperatures on the fluid side, one observes that the larger the quantum effects, the flatter
the structural triplet features become.

Table 4 contains the absolute maxima, fixed with quadratic interpolations of the adequate PIMC
data, of the fluid equilateral correlations. (See the Supplementary Materials for more related numerical
data). Once more, in an attempt to connect the foregoing maximum behaviors with the quantum
parameter γ, one notes that simple empirical decay fittings gEQ

3 (Max) = aγ−b can be found for the
centroid and for the instantaneous cases, their associated linear correlation coefficients rcorr. being
reasonably good. Thus, one finds for the centroid case a � 23.6702, b � 0.1877, rcorr. = −0.9959
and for the instantaneous case a � 6.437, b � 0.3449, rcorr. = −0.9999. This general pattern is to be
regarded as a reflection of the very same observed at the pair level. Three additional points are
worthwhile to mention: (i) the quality of this type of fitting remains comparable if one tries the
modification gEQ

3 (Max) = aγ−b + c; (ii) exponential decays, e.g., gEQ
3 (Max) = aexp(−bγ), give poor

fittings; and (iii) the potential energy discontinuity at r∗ = 1 precludes one from retrieving the classical
limit at λ∗B = 0. Although there is no apparent physical basis for the empirical γ pattern found, this
line of thought might be well worth exploring in future work.
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Table 4. Absolute maxima of the PIMC equilateral correlations gEQ
3 = g3(r∗, r∗, r∗) on the fluid and

the FCC sides of the QHS coexistence line. Discretizations at λ∗B = 0.8 and 1.9832: P = 12 and 30,

respectively. r∗ = r/σ. Four decimals shown in gEQ
3 to avoid rounding-off errors.

FLUID–CENTROID– FCC–CENTROID–

λ*
B ρ*

N r*
Max gEQ

CM3
ρ*

N r*
Max gEQ

CM3

0.2 0.789 1.1029 63.1089 0.863 1.1097 87.4597

0.4 0.672 1.1690 42.9419 0.731 1.1867 66.8718

0.6 0.589 1.2313 32.7749 0.635 1.2504 56.1959

0.8 0.533 1.2841 29.4898 0.573 1.3042 55.7136

1.2543 0.442 1.3841 25.1954 0.465 1.4051 48.7081

1.9832 0.348 1.5096 19.8989 0.360 1.5360 40.1005

FLUID–INSTANTANEOUS– FCC–INSTANTANEOUS–

λ*
B ρ*

N r*
Max gEQ

ET3
ρ*

N r*
Max gEQ

ET3

0.2 0.789 1.1101 36.7840 0.863 1.1255 55.7274

0.4 0.672 1.1832 19.2805 0.731 1.1990 31.3301

0.6 0.589 1.2419 12.9259 0.635 1.2584 20.1514

0.8 0.533 1.2890 10.0773 0.573 1.3029 15.4292

1.2543 0.442 1.3752 6.8439 0.465 1.3880 9.1774

1.9832 0.348 1.4820 4.5227 0.360 1.4947 5.4411

Figure 5 contains a quick description of the isosceles correlations g3(r∗, s∗, s∗) at two representative
fluid state points, for the centroids CM3 in panels (a)–(c) and for the instantaneous ET3 in panels
(b)–(d). Three especial r∗ distances are selected from the g3(r∗, r∗, r∗) information obtained at each state
point, namely r∗FP, r∗FV , and r∗SP, which are positions in the close vicinities of the equilateral maxima and
minima: first maximum (FP), first minimum (FV), and second maximum (SP), respectively. Apart from
the expected AV3 unphysical behavior for r∗ ≤ 1, the good overall performance of AV3 is certainly
surprising. Two weak points are to be remarked. First, the AV3 (and KS3) behavior for low s∗ distances,
1 < s∗ < 1.5, when r∗ increases: for example, at r∗SP where the closure maxima are overestimated.
(This is directly related to the AV3 trend displayed by the upper profile plot in Figure 3d). Second,
Figure 6 shows a detailed image of the isosceles deterioration of the PIMC–AV3 agreement with
increasing densities, the worse results for centroids being a consequence of this key fact (centroids
mimic a fluid at a higher density than the actual one).
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A general idea can be obtained by observing Table 4. The fluid and solid absolute maximum 
positions are close to one another, and the structures are shifted outwards with increasing quantum 
effects. Moreover, higher 𝑔  values appear on the solid side (e.g., at 𝜆∗ = 0.2, ≈ +39% for CM3, 
and ≈ +51% for ET3). This trend is far more pronounced for the centroid correlations, the ratio 

Figure 6. QHS fluid centroid (CM3) and instantaneous (ET3) r∗ profiles of the heights in the
close vicinities of the first peaks of the isosceles correlations at two selected state points on the
fluid–FCC coexistence line. (a) Fluid functions at (ρ∗N = 0.789, λ∗B = 0.2). (b) Fluid functions at
(ρ∗N = 0.533, λ∗B = 0.8). s∗M = distance in the close vicinity of the absolute maximum of the equilateral
correlations. Acronyms for methods as in Figure 3. The vertical line at r∗ = 1 marks the position of the
hard core.
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4.3. FCC triplets on the Fluid–Solid Coexistence Line

Table 4 and Figures 7 and 8 show selected results for the PIMC equilateral and isosceles correlations
of FCC state points on the solid side of the fluid–FCC coexistence line, within the approximations
obtainable from Equations (7) and (8). For visualization purposes, the associated PIMC fluid results
are also incorporated into these figures.
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functions at λ∗B = 0.2. (c) Centroid functions at λ∗B = 1.9832. (d) Instantaneous functions at λ∗B = 1.9832.
The vertical line at r∗ = 1 in (b,d) marks the position of the hard core.
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A general idea can be obtained by observing Table 4. The fluid and solid absolute maximum
positions are close to one another, and the structures are shifted outwards with increasing quantum
effects. Moreover, higher g3 values appear on the solid side (e.g., at λ∗B = 0.2, ≈ +39% for CM3,
and≈ +51% for ET3). This trend is far more pronounced for the centroid correlations, the ratio increasing
monotonically with λ∗B (e.g., at λ∗B = 1.9832, ≈ +102% for CM3). However, for the instantaneous ET3
correlations, such a ratio is not monotonic; it goes through a maximum (at λ∗B = 0.4, ≈ +62%) and then
falls monotonically (at λ∗B = 1.9832, ≈ +20%). These behaviors can be ascribed to the two effects
present on the coexistence line. On the one hand, there is the decreasing density, which contributes to
diminishing the structural features. On the other hand, there is the increasing delocalization with λ∗B,
which makes PI structures become more and more smeared out, the instantaneous case being always
much more sensitive to this. As regards the question of finding a γ−fitting of the solid equilateral
absolute maxima, the situation is less clear than on the fluid side (γ is slightly higher on the solid
side). Although one can obtain reasonable dependences gEQ

3 (Max) = aγ−b (rcorr. < −0.991), on closer
inspection, these fittings cannot cope with the apparent inflection in 0.13 < γ < 0.3 (or in 0.6 < λ∗B < 0.8)

for centroids gEQ
CM3(Max), nor with the large discrepancies for low γ between the original and the

estimated instantaneous values gEQ
ET3(Max).

In Figure 7, one observes that the equilateral FCC and fluid g3(r∗, r∗, r∗) patterns are qualitatively
similar within the first maximum regions. It is also noticeable that the FCC state points develop
easily identifiable peak structures with increasing distances (r∗ & 2). The main two maxima of the FCC
equilateral triplets can be put into direct correspondence with the main two maxima obtained at the
FCC pair level (Figure 1), since they appear located close to one another.

The FCC g3(r∗, r∗, r∗) display deep first valleys, almost at the zero-ground level, appearing for both
the centroid and the instantaneous structures, e.g., for centroids and ρ∗N = 0.573, the region in Figure 7
located in 1.6 . r∗ . 2.1. In general, this feature is far more pronounced in the centroid structures than
in the instantaneous structures and is consistently shifted outwards with increasing quantum effects.
If comparison with Figure 1c,d is made, one notes that this triplet region corresponds to the FCC pair
region where the smallest maximum shows up. (Such region fades away with increasing quantum effects
in the instantaneous case, Figure 1d). To get a feeling of the depth of these valleys, it seems worthwhile
to quote some significant results: (a) at

(
ρ∗N = 0.863,λ∗B = 0.2

)
, within the range 1.4143 ≤ r∗ ≤ 1.8143,

the equilateral centroid and instantaneous values remain gEQ
CM3 . 0.07 and gEQ

ET3 . 0.09, respectively;

(b) at
(
ρ∗N = 0.573,λ∗B = 0.8

)
, within the range 1.6143 ≤ r∗ ≤ 2.0714, the equilateral centroid values

remain gEQ
CM3 . 0.1, whereas the equilateral instantaneous values reach the same upper bound

gEQ
ET3 . 0.1 within the narrower range 1.6714 ≤ r∗ ≤ 1.9571; and (c) at

(
ρ∗N = 0.360,λ∗B = 1.9832

)
, within

the range 1.9 ≤ r∗ ≤ 2.3571, the equilateral centroid values remain gEQ
CM3 . 0.08, whereas the equilateral

instantaneous values gEQ
ET3 do not go below 0.15 within their related first valley. (See the Supplementary

Materials for more data on the coexistence line).
In addition, Figure 8 contains typical isosceles g3(r∗, s∗, s∗) behaviors of the fluid and the FCC

solid at the lowest (λ∗B = 0.2) and the highest (λ∗B = 1.9832) de Broglie wavelengths. These graphs
display significant r∗−slices (i.e., at r∗FP and r∗SP) of the tabulated functions in the close vicinities of the
corresponding first (FP) and second (SP) maxima of the equilateral correlations. The parallels between
the triplets of the solid and fluid phases coexisting at equilibrium are manifest once more.

4.4. Triplets in the FCC and cI16 Denser Solid Structures

Figure 9 and Table 5 contain equilateral PIMC results for the FCC and cI16 state points in the
region of moderately high densities (ρ∗N = 0.9, 0.925). The centroid CM3 and the instantaneous ET3
correlation results, with P = 12 for both lattices at (ρ∗N = 0.925, λ∗B = 0.2), are P converged (Table 2).
At (ρ∗N = 0.9, λ∗B = 0.8), convergence for the instantaneous correlations with P = 36 is guaranteed
(practical convergence already occurs with P = 24), whereas for the centroid correlations, there is still
room for further improvement. Nevertheless, the centroid results obtained with P = 36 are expected to
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capture well the related global features. This contrasts with the more rapid P convergence for centroids
at the pair level.Entropy 2020, 22, x FOR PEER REVIEW 20 of 27 
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Figure 9. PIMC results for the FCC and cI16 equilateral structures in the region of moderately high
densities ρ∗N . The graphs are split horizontally into two parts to avoid the flat g3 range of distances and
show the secondary maximum regions on a visible scale. (a) Centroid functions in the short-distance
range. (b) Centroid functions in the medium-distance range. (c) Instantaneous functions in the
short-distance range. (d) Instantaneous functions in the medium-distance range. The vertical line at
r∗ = 1 in (c) marks the position of the hard core.

Table 5. Average salient features of the cI16 and FCC equilateral centroid (CM3) and instantaneous
(ET3) correlations gEQ

3 = g3(r∗, r∗, r∗). PIMC results in the close vicinities of the maxima and minima.
Maxima: first FP, second SP, third TP, fourth F4P. Minima: first FV, second SV, third TV.

(ρ*
N=0.925, λ*

B=0.2)

cI16−(r*,gEQ
3 )−PIMC−P=12 FCC−(r*,gEQ

3 )−PIMC−P=12

CM3 ET3 CM3 ET3

FP (1.1, 146.80) (1.1, 79.46) (1.1, 160.07) (1.1286, 93.38)

FV (1.4714, 0) (1.4714, 4 × 10−5) (1.5571, 0) (1.5571, 0)

SP (1.7571, 2.52) (1.7571, 2.25) (1.9857, 13.53) (1.9857, 10.80)

SV (1.8143, 1.87) (1.8143, 2.02) (2.1571, 0.31) (2.1571, 0.51)

TP (1.9, 2.91) (1.9, 2.61) (2.3, 7.82) (2.3, 6.42)

TV (2.0429, 0.51) (2.0429, 0.75)

F4P (2.1857, 6.40) (2.1857, 5.86)
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Table 5. Cont.

(ρ*
N=0.9,λ*

B=0.8)

cI16-(r*,gEQ
3 )−PIMC-P=36 FCC-(r*,gEQ

3 )−PIMC-P=36

CM3 ET3 CM3 ET3

FP (1.1571, 1334) (1.1286, 97.82) (1.1571, 3177) (1.1571, 114.08)

FV (1.4429, 0) (1.4571, 0) (1.5857, 0) (1.5857, 0)

SP (1.7571, 83.72) (1.7571, 4) (2.0143, 425.91) (2.0143, 18.70)

SV (1.8714, 0) (1.8429, 0.92) (2.1429, 0) (2.1714, 0.245)

TP (1.9571, 72.32) (1.9571, 3.12) (2.3286, 260.89) (2.3286, 11.90)

TV (2.1, 0) (2.0714, 0.43)

F4P 1 (2.3, 0.44) (2.2143, 5.68)
1 There is a cI16 small bump at r∗ = 2.2143, gEQ

CM3 = 0.01 (P = 12), 0.18 (P = 24), 0.14 (P = 36).

In Figure 9, the equilateral correlations of the FCC and cI16 state points at (ρ∗N = 0.925, λ∗B = 0.2)
are considered within r∗ < 2.5. Three well-defined features can be seen in each case, and they can be
put into correspondence with the results obtained at the related distances on the pair level (Figure 2).
Thus, three separated maxima arise from the triplet FCC calculations (as occurred on the coexistence
line). However, four maxima arise from the triplet cI16 calculations, with the second and third forming
an overlapping structure. This reminds one of the characteristic shallow split showing up past the first
maximum in the g2(r∗) of amorphous systems [99]. Moreover, the FCC features are more pronounced
than those of cI16, as was to be expected. In addition, for 1.5 < r∗ < 2.5, cI16 and FCC are somewhat
complementary regarding the positions of their peaks. One observes the clear quantitative differences
between the centroid CM3 and the instantaneous ET3 results. The patterns of the salient features
shown in Table 5 for the two density–temperature conditions are fully consistent with each other and
with the underlying pair information (Figure 2).

A closer inspection of the equilateral flat regions between the first and the second maxima
may be worth carrying out. The following results correspond to the discretizations: (i) P = 24 at
(ρ∗N = 0.925, λ∗B = 0.2), although P = 12 results are not significantly different; and (ii) P = 36 at
(ρ∗N = 0.9, λ∗B = 0.8).

(a) As regards the FCC results, these regions are related to those found on the coexistence line,
but now the behavior is much more extreme: the zero-ground level is effectively reached.
At (ρ∗N = 0.925,λ∗B = 0.2), centroid values gEQ

CM3 ≡ 0 are obtained within 1.4714 ≤ r∗ ≤ 1.6429, while

instantaneous values gEQ
ET3 ≡ 0 are within 1.5286 ≤ r∗ ≤ 1.5857. Moreover, at (ρ∗N = 0.9,λ∗B = 0.8),

centroid values gEQ
CM3 ≡ 0 are obtained within 1.2714 ≤ r∗ ≤ 1.9, while instantaneous values gEQ

ET3 ≡ 0
are within 1.4714 ≤ r∗ ≤ 1.7.

(b) The situation of cI16 is less severe, although with increasing quantum effects, some of the previous

traits also arise. Thus, at (ρ∗N = 0.925, λ∗B = 0.2), centroid values remain gEQ
CM3 . 0.04 within

1.3286 ≤ r∗ ≤ 1.5857, with gEQ
CM3 ≡ 0 only for 1.44 ≤ r∗ ≤ 1.47, while the instantaneous values

are above zero in that latter region (0 < gEQ
ET3 . 0.08). At (ρ∗N = 0.9, λ∗B = 0.8), centroid values

gEQ
CM3 ≡ 0 appear within 1.2429 ≤ r∗ ≤ 1.6429, while instantaneous values gEQ

ET3 ≡ 0 do only for
1.44 ≤ r∗ ≤ 1.47.

The solid triplet flat regions arise from the combination of the role of the QHS interactions and the
unavailability of space due to the variations in ρ∗N and λ∗B. As a result, the solid equilateral structures
analyzed turn out to be simpler than their pair radial counterparts (Figure 2), which is especially true
of the cI16 lattice. Use of this fact might find application to characterizing irregular solid structures
and/or monitoring their formation. (See the Supplementary Materials for more information on these
structures). Another observation is related to the order shown by these two lattices. FCC appears as
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more ordered than cI16, which is clear from the respective regularities in their pair and triplet correlation
functions and also from the maximal configurational structure factors (Table 3). Therefore, under the
same (ρ∗N,λ∗B) conditions, FCC entropies (and free energies) [67] must be lower than those of cI16,
the determination of these properties being possible via the Einstein crystal quantum technique [66,67].

5. Conclusions

This article has analyzed several real space triplet correlation issues in the PI–QHS system under
conditions in which quantum exchange can be neglected. Triplet PI centroid and instantaneous
correlations (equilateral and isosceles) in significant fluid and FCC–solid-state points have been
studied. Furthermore, the positive identification of the formerly denoted bcc–qIII solid phases [67,78]
with proper quantum cI16 solid phases has been achieved by utilizing information at the pair level
(radial structures and maximal structure factor values). Triplet calculations have also been carried out
at two cI16 state points. The results lead to the following conclusions.

(1) Fluid phase and the use of closures.

(a) The centroid results display far more structured triplet functions than the instantaneous
results. These structures tend to be shifted outwards with increasing λ∗B (delocalization)
and inwards with increasing ρ∗N (localization).

(b) From the comparison between PIMC and the closure results, one concludes that the role of
pair correlations in shaping triplet structures is more relevant in the quantum domain than
previously thought. The combined use of KS3 (for short range) plus AV3 = (KS3+JF3)/2
(beyond short range), although not exact, is found to be a useful and simple choice to
understand the related main {r} triplet features, either centroid or instantaneous, of fluids
with quantum diffraction effects.

(c) The AV3 success appears to be linked with the fact that this closure adopts the form of a
“complete” h2 expansion truncated to first order in the density, which includes explicitly
the triple-h2 product absent from JF3. Given that along isotherms, AV3 deteriorates with
increasing distances as the fluid–solid coexistence is approached, improvements on AV3
may be of interest and should incorporate at least second-order density terms in the
h2 expansion.

(d) The foregoing finding extends the previous results obtained in [17] for liquid para-hydrogen
and liquid neon, since the current study has involved a purely repulsive interparticle
potential. Therefore, applications of an improved AV3 (supplemented with KS3 as said
above) might be expected to provide reliable pictures of what is behind triplet correlations
in fluid helium over a wide range of conditions [4,15].

(2) The fluid–FCC solid coexistence line.

(a) There is a close correspondence between the positions of the main structural features
at short range of both phases at equilibrium, not only at the pair level but also at the
triplet level. Such a phase correspondence between triplet positions appears in both the
equilateral and the isosceles correlations. These are clear signs of the system readiness to
undergo the phase transition.

(b) The triplet features are far more pronounced on the solid side. In addition, the centroid
features are always sharper than those of their instantaneous counterparts (e.g., more elevated
peak regions and lower valley regions for centroids).

(3) On the fluid side, the absolute maxima of the pair and the triplet-equilateral correlations, centroid
and instantaneous, appear to follow empirical behaviors that depend on the quantum parameter
γ = ρ∗Nλ

∗3
B in the general form gEQ

3 (Max) = aγ−b. For systems in which repulsive particle
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interactions dominate, this might be a further structural signature of the fluid phase on the
quantum crystallization line [17,18,49], and it deserves further examination.

(4) FCC and cI16 solid phases.

(a) FCC state points show a significantly higher order than their cI16 counterparts, at the
same density–temperature conditions, which can be ascribed to the openness of the cI16
lattice. This is observed for the two structures, centroid and instantaneous, in all the forms

computed
(
g2, g3, S(C)

2

)
. Roughly speaking, at a given state point, using the maximal

values of the configurational structure factors, one finds that S(C)
CM2(FCC)/S(C)

CM2(cI16) ≈

S(C)
ET2(FCC)/S(C)

ET2(cI16). FCC entropies must certainly be lower than their cI16 counterparts,
and it is tempting to explore the relationships between the solid entropy and the values of
the quantum structure factors in future work.

(b) Within the short–medium range of distances (i.e., 1 < r∗ < 2.5) the equilateral functions
adopt shapes simpler than the pair radial functions. This effect turns out to be much
more remarkable for cI16 state points, which show quite a convoluted peak/valley
behavior. Accordingly, for the purposes of monitoring the onset of crystallization
and/or characterizing irregular solid phases in general, triplet centroid information
may advantageously complement the usual pair level information.

(c) PIMC calculations of solid centroid triplet structures converge slowly with increasing
quantum effects, which contrasts with the more rapid convergence of the centroid
pair calculations. This fact should be kept in mind when studying centroid triplets in
high-density solid phases at low temperatures.

(5) Finally, one must dwell a little more on the (mechanically stable) QHS–cI16 phase that, as is
shown in this work and [67], arises for lower densities than in the classical case. Once the
question of its appearance from the PIMC evolution of perfect BCC lattices has been settled, there
are no symmetry problems related to the calculations of cI16 free energies [67]. The selection
of an appropriate reference system (Einstein crystal [66,67]) can be well defined now [80],
and the way to computational studies of stability is open. Although there is every reason for
believing that, as in the classical case [80], quantum–cI16 is metastable with respect to FCC
(or to HCP = hexagonal close-packed) at low temperatures, due to the cI16 higher energies
and pressures [67], the assessment of such behavior seems highly valuable. In this connection,
one notes the potential QHS-cI16 relations to (i) the high-pressure solid–solid transitions in
alkali metals at low temperatures and (ii) the special responses to external fields that these solid
structures, which are less tight than FCC (or HCP), might exhibit.

There is work in progress to tackle the issues raised above and to identify some essential facts
associated with quantum condensed matter triplets in the real and the Fourier spaces.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/12/1338/s1.
SupMat2_Entropy.zip. File1: LMS_SupMat_20S_X1.pdf, contents: PIMC-g2(r) for bcc–qIII and cI16, PIMC
convergence, Structure factors values for perfect cI16 lattices, PIMC salient features on the fluid–FCC coexistence line,
complete set of fluid pair radial functions (Figure), cI16 and FCC isosceles correlations, comparison between FCC and
cI16 equilateral results (Figure). Triplet functions at (ρ∗N = 0.672, λ∗B = 0.4): File2: LMS_SupMat_20S_zgcm3_l4.r672
(centroids), and File3: LMS_SupMat_20S_zget3_l4.r672 (instantaneous).
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