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Abstract

Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell
resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify
focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to
a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and
denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid
Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike
conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer
and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance
of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective
in imputation and denoising of scDNA-seq data.
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Introduction
Single-cell DNA sequencing (scDNA-seq) can provide unprece-
dented view of tumor copy number alterations (CNAs) at single-
cell resolution [1], and thus enable a high-resolution profiling of
clonal copy number substructure. Being a major genomic varia-
tion of tumor genome, CNA represents a change in the number
of copies of a chromosomal section, and promotes cancer ini-
tialization and progression [2]. The size of CNAs can scale from
a few kilobases to hundreds of megabases spanning an entire
chromosome, and a cutoff of ≤3Mb is usually used to define the
size of focal CNAs [3]. To comprehensively understand the clonal
copy number substructure, it is critical to precisely quantify CNAs
with different scales.

A plenty of methods have been developed to detect single-
cell CNAs from scDNA-seq data [4, 5]. Due to the low sequencing
coverage and amplification bias of scDNA-seq, these methods
typically use a large bin size (e.g. 500Kb) to measure read counts
along the genome. Under this resolution, the read counts are
less fluctuated and can be utilized to accurately call large-scale
CNAs with size >3Mb. As focal CNAs play an important role in
driving tumor evolution in multiple cancer types [6, 7], precise
identification of small-sized CNAs is equally important to get
insights into tumor evolution. Unlike arm-level CNAs, it is much
difficult to detect focal CNAs from scDNA-seq data. As shown in
Fig. 1, single-cell read counts under 20-Kb resolution are heavily

complicated with zero values and technical noise (we divide the
genome into non-overlapping bins with size of 20 Kb, and count
the reads mapped to each bin. The left subfigure is generated
by calculating the frequency of each read count value. As the
reads are from paired-end sequencing, the measured read counts
tend to be even counts.). To correctly segment the read counts
and identify copy number states, an imputation and denoising
preprocessing step is sorely required to recover the zero entries,
and remove biologically unrelated factors from the read counts.

Unfortunately, there are no currently available methods specif-
ically designed for imputation and denoising of scDNA-seq data.
Extensive efforts have been made to address the same issues of
single-cell RNA sequencing (scRNA-seq) data in the last few years
[8–11]. As technical issues, such as low capture efficiency and
sequencing coverage, make it difficult to capture transcripts of all
expressed genes during the sequencing process, dropout events
are more striking in scRNA-seq data [12]. Imputation methods aim
to restore the values of zero entries associated with dropouts, and
simultaneously make structural zeros (entries related to the genes
that are not expressed) unchanged. In addition, biological varia-
tion and technical noise inevitably induce extensive fluctuation
of the gene expression levels, and a denoising step is essential
for correcting the non-zero entries [9]. To address these issues, a
large arsenal of computational methods have been proposed to
reconstruct the scRNA-seq data [13–23]. Patruno et al. [9] divide
these methods into five groups: (1) relying on cell similarity or
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Figure 1. Read counts with 20-Kb resolution. The read counts are measured from a 10X Genomics breast cancer dataset available at https://support.10
xgenomics.com/single-cell-dna/datasets/1.0.0/breast_tissue_E_2k.

gene similarity to smooth the expression profiles [15, 18, 19, 24,
25]; (2) exploiting external knowledge or data to enhance the
quality of scRNA-seq data [20, 26, 27]; (3) machine learning-
based correction for technical noise [13, 14, 16, 17, 21, 23]; (4)
using matrix factorization to denoise scRNA-seq data [28, 29];
and (5) fitting the observed gene expression data with statistical
models to perform imputation and denoising [22, 30, 31]. For
instance, GE-Impute [18] builds a cell-cell similarity network and
updates the similarity based on graph embeddings, then uses the
averaged expression profile of the neighborhood cells to impute
the dropouts for each cell; scMultiGAN [21] employs multiple
generative adversarial networks (GAN) to impute the scRNA-seq
data; scGGAN [20] additionally leverages bulk RNA sequencing
data to construct gene network, then employs a graph-based
GAN to impute the scRNA-seq data; bayNorm [30] uses negative
binomial distribution to model the scRNA-seq data and infers the
posterior distributions under a Bayesian framework; and, finally,
TsImpute [22] identifies and imputes dropouts by fitting the data
with zero-inflated negative binomial distribution, then performs
distance weighted imputation of the data.

Despite that scRNA-seq based methods perform well in impu-
tation and denoising of gene expression data, they may not be
suitable for processing single-cell read counts data derived from
scDNA-seq. The main reasons lie in two aspects: (1) most of the
scRNA-seq based methods take an assumption of independency
between genes, while this does not hold for scDNA-seq data as
copy numbers are characterized by both local (e.g. a CNA may
affect multiple adjacent genes) and global (e.g. co-occurred CNAs
across the genome in each tumor clone) patterns; (2) statisti-
cal distributions of gene expression and read counts data are
different due to the inherent technical difference between the
two omics, which implies the preconceived model structures or
assumptions in scRNA-seq data analysis may not hold for scDNA-
seq data. As convolutional neural network (CNN) is powerful
in learning local features, and Transformer model [32] is more
effective in identifying global patterns, hybrid architectures that
combine Transformer with CNN can simultaneously capture the
local and global patterns of copy numbers, and thus enable better
imputation and denoising of read counts. Hybrid Transformer-
CNN architectures have shown high performance in fusing multi-
view features [33], especially in computer vision tasks [34, 35].
Considering the complex characteristics of scDNA-seq data, i.e.
high dimensionality, high sparsity and low signal-to-noise ratio,

how to implement an efficient Transformer-CNN architecture is
still an unresolved problem in scDNA-seq data analysis.

In this study, we develop a novel method called scTCA to
improve the quality of scDNA-seq data (Fig. 2). In scTCA, an
autoencoder (AE) is used to encode the observed single-cell
read counts into latent embeddings, and then reconstruct read
counts through decoding. To exploit correlations between genes
for precise recovery of the read counts, we employ a two-branch
Transformer-CNN mixture architecture to extract and fuse multi-
view features. The residual CNN block can identify and utilize
the local patterns to recover the data, while the Transformer
block is used to build connections between non-adjacent genes,
and thus enhance the data reconstruction quality by capturing
global patterns. As Transformer models typically suffer high
computational complexity when applied to high-dimensional
sequential data, we implement the Transformer block as a two-
stage attention module including a step-wise self-attention layer
and a window Transformer as adopted in Swin-T [36], which
reduces the computational burden. Considering copy numbers
dominantly encompass local patterns, only the residual CNN
blocks are used in the decoder network to reconstruct the read
counts with censored regression models, and this enables higher
computational efficiency. We showcase the superior performance
of scTCA on synthetic as well as real datasets, and the results
suggest our method surpasses the state-of-the-art methods in
multiple performance metrics.

Materials and methods
Overview of scTCA
The backbone of scTCA is an autoencoder that receives single-
cell read counts as input, and outputs imputed and denoised read
counts (Fig. 2). Each encoder layer of the AE is built based on
a novel Transformer-CNN hybrid architecture, and the decoder
layer consists of a residual block followed by an upsampling con-
volutional component. The Transformer-CNN module contains a
pair of parallel residual CNN and Transformer blocks, extracting
local and global features from the input. To reduce computational
complexity, the input feature map is equally split into two parts
along the channel dimension, which are fed into the CNN and
Transformer, respectively. A concatenation operation and a 1×1
convolutional layer are then employed to fuse the two types of
features into a semantically meaningful feature map.
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Figure 2. The model architecture of scTCA. The backbone of scTCA is an autoencoder that receives single-cell read counts as input, and outputs imputed
and denoised read counts. In each encoder layer, the input feature map is first processed with a 1×1 convolutional layer, then equally split into two parts
along the channel dimension; the two sub-feature maps are sent to a Transformer-CNN mixture block to learn local and global features; the features
are concatenated and fused with a 1 × 1 convolutional layer; a skip connection between the input and fused feature map is built, followed by a down-
sampling layer to reduce the feature map size. In each decoder layer, a residual CNN block and an up-sampling layer are employed to gradually recover
the data. The decoder network outputs the tobit parameters (μ, σ ) that are used to measure the likelihood of input read counts. To efficiently deal with
the high-dimensional read counts data, the Transformer block is implemented as a two-stage attention module, including a step-wise self-attention
layer and a window Transformer.

As the single-cell read counts are high dimensional sequential
data (e.g. sequence length is as large as ∼150 000 under a bin
size of 20 Kb for human genome), conventional Transformer
models such as ViT [37] and Swin-T [36] are computationally
expensive when directly applied to this type of data. To resolve this
challenge, we propose a combination of stepwise self-attention
mechanism and window Transformer to capture global features
with affordable computational costs. Specifically, the sequence is
split into several subsequences under a predefined step size, and
a self-attention module is applied to each of the subsequences,
the resulted feature maps are then merged and fed into to a
window Transformer with the window size equal to the step size.
This light-weight Transformer block is of higher computational
efficiency, and capable of building connection between any pair
of distant positions. The following sections give a detailed descrip-
tion about the workflow of scTCA.

Data preprocessing
The whole genome is divided into non-overlapping and fix-sized
bins, and read count of each bin for each cell is extracted from
the BAM file. We exclude bins with extreme GC-content percent
(<10% or >90%) from downstream analysis, and this results in a
N × M read count matrix D of N cells and M bins. As sequencing

coverage may vary between single cells, to make read counts
comparable between cells, we normalize the read counts of each
cell with the mean read count:

Xij = m · Dij

mi
(1)

where X denotes the resulted normalized read count matrix, mi

represents mean read count of the ith cell, and m denotes the
median value of mi(1 ≤ i ≤ N).

Encoder of the AE
As read count is a proxy of the copy number, the local and non-
local characteristics of copy numbers can be utilized to impute
and denoise the read counts. Considering CNN can well capture
local patterns while transformers are more effective in extracting
non-local information, we propose an efficient hybrid architec-
ture that pairs a residual convolutional block and a Transformer
block, to extract multi-view features of read counts. Specifically,
the (n + 1)th encoder layer of the AE takes Fn with size B × 2C × L
as input (here B and L denote batch size and sequence length,
respectively), and outputs feature map Fn+1 by three steps:
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1. use a 1 × 1 convolutional layer to fuse Fn, and split the
resulted feature map into two equally sized tensors Fcnn and
Ftrans (both with size B × C × L) along the channel dimension;

2. Fcnn is sent to the residual block to generate local feature
map F̃cnn:

F̃cnn = Fcnn + Conv(Fcnn) (2)

where Conv denotes convolutional layers with 1 × 3 kernel
and the LeakyReLU activation function. Ftrans is sent to the
Transformer block to get global feature map F̃trans. The Trans-
former block is implemented as a two-stage attention mod-
ule, including a stepwise self-attention layer and a window
Transformer. Specifically, give a step size W, Ftrans is split
into several small subsequences {F (1)

trans,F
(2)
trans, . . .} along the

positional dimension:

F (i)
trans = Ftrans(:, :, [i, i + W, i + 2W, . . .]) (3)

The step size W is determined by � L
τ
�, here τ denotes the pre-

defined maximum length of the subsequences. Each F (i)
trans is

transposed to a tensor with size B × Li × C, and sent to the
self-attention layer to get F̂ (i)

trans:

F̂ (i)
trans = softmax

⎛
⎜⎝F (i)

trans

(
F (i)

trans

)T

√
C

⎞
⎟⎠F (i)

trans (4)

We then merge {F̂ (1)
trans, F̂

(2)
trans, . . .} to create a tensor F̂trans with

size B × L × C:

F̂trans(:, [i, i + W, i + 2W, . . .], :) = F̂ (i)
trans (5)

After that, a window Transformer adopted in Swin-T [36] is
introduced to process F̂trans with window size equal to W, and
generate global feature map F̃trans.

3. with a concatenation operation, F̃cnn and F̃trans are merged
into a tensor with size B × 2C × L. And then, a 1 × 1 convolu-
tional layer is used to fuse features, and the skip connection
between Fn and the output is built. Finally, a convolutional
layer with stride of 2 is used for down-sampling, yielding the
tensor Fn+1 with size B × C × L′.

The encoder network outputs a tensor with size B × Ce × Le,
which is flattened and sent to a fully connected layer to generate
latent representations. We first reshape the read count matrix X to
a tensor with size N×1×M, and then employ a convolutional layer
with 128 channels and stride of 2 to get the input of the encoder.
The encoder finally generates the cell embeddings Z with size N×
d, here d denotes the latent dimension.

Decoder of the AE
Given the cell embeddings Z, the decoder network outputs
imputed and denoised read counts. We simply employ a residual
CNN block followed by an up-sampling convolution to define the
structure of the decoder layer, and do not exploit the complex
hybrid Transformer-CNN module due to two reasons: (1) local
features play a more important role in reconstructing single-cell
read counts as copy numbers dominantly exhibit local patterns;
(2) CNN-based modules are more effective in capturing local
features and computationally more efficient than the hybrid
Transformer-CNN architectures. We employ censored regression
models to characterize the distribution of X, and define the

likelihood function as follows:

f (x|μ, σ) =
(

1
σ

ϕ

(
x − μ

σ

))I(x) (
1 − �

(μ

σ

))1−I(x)

(6)

where I(x) is an indicator function that takes value of 1 when
x > 0, ϕ denotes the standard normal probability density function,
and � represents the standard normal cumulative distribution
function. The normal parameters (M, �) are inferred from the
output of the decoder:

M = exp
(
Convμ(fD(Z))

)
� = exp

(
Convσ (fD(Z))

) (7)

where fD(Z) is the output of the decoder, Convμ and Convσ repre-
sent two convolutional layers.

Optimization of the model
Given the parameters of the censored regression models, the
reconstruction loss is defined as the negative log-likelihood of
read counts:

L = −
N∑

i=1

M∑
j=1

log
(
f (Xij|Mij, �ij)

)
(8)

We use the ‘Adam’ algorithm to optimize the weights of the AE
by minimizing the reconstruction loss. After the model converges,
the parameter M is treated as the imputed and denoised read
counts. For implementation of the model, we set the number of
encoder/decoder layers to 2, and set latent dimension d to 5.

Performance evaluation
As there are no specifically developed methods for imputation
and denoising of scDNA-seq data, we compare scTCA to 9 scRNA-
seq based methods, including scImpute [38], DeepImpute [26],
bayNorm [30], GE-Impute [18], SCDD [19], scMultiGAN [21], TsIm-
pute [22], MAGIC [39], and CarDEC [40]. These methods all perform
well in imputing dropouts and/or denoising scRNA-seq data, but
their effectiveness on scDNA-seq data is underdetermined, which
inspires us to make a comprehensive comparison between scTCA
and the competitors. Details about parameter settings of each
method are given in Supplementary Methods.

Simulations
Despite that several methods [41, 42] are currently available
for simulating tumor scDNA-seq data, they all involve in time-
consuming generation of FASTQ and BAM files. We propose a
simulation pipeline that directly produces single-cell read counts
data without emulating raw sequencing reads. We generate var-
ious datasets under different configurations of the simulation-
related parameters. Specifically, given the number of clones K,
number of cells N, number of bins M and bin size s, the simu-
lation pipeline contains four sub-modules to generate single-cell
data: (1) divide the genome into non-overlapping copy number
segments; (2) build a clonal copy number tree containing K+1
nodes to represent the phylogenetic relationship between tumor
clones, and emulate copy number changes along the edges of
the tree; (3) assign cells to the nodes of the tree to generate
different-sized clonal clusters; and (4) produce read counts data
for each cell according to the copy number profile. A detailed
illustration of the simulation pipeline is given in Algorithms S1-S3
of Supplementary material. The simulation algorithms output: (1)
a S × 3 matrix defining start position, end position and length

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
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of each copy number segment, here S denotes the number of
segments; (2) a K × M matrix representing copy number profile
(CNP) of each tumor clone; (3) a 1 × N vector indicating clonal
assignment of each cell; and (4) a N × M matrix D containing read
counts data of all cells.

The main simulation parameters are configured as follows: K ∈
{7, 9, 11}, N ∈ {500, 1000}, M ∈ {12 000, 18 000, 24 000}, and s
= 10Kb. Other simulation-related parameters are also specified.
For instance, the minimum and maximum sizes of copy number
segments are set to 0.2Mb and 100Mb, respectively; the weights
of the segments with size of 1Mb∼20Mb are set to 1, and a
weight of 0.5 is assigned to other segments when emulating copy
number segments; the maximum copy number of CNAs is set
to 10; the distribution of dropout rate is inferred from a 10X
Genomics dataset obtained from https://support.10xgenomics.
com/single-cell-dna/datasets/1.0.0/breast_tissue_E_2k, and used
to mimic dropout events when generating single-cell read counts.
More details about the parameter settings are given in Algorithms
S1–S3.

Real datasets
We also obtain five tumor datasets (Breast Tissue nuclei section
{A, B, C, D, E} 2000 cells) from the 10X Genomics (https://
www.10xgenomics.com/datasets). The CNP matrix and clonal
assignments of cells for each dataset are obtained from https://
github.com/raphael-group/chisel-data. We extract single-cell
read counts from the BAM files, and exclude bins with <0.1
or >0.9 GC-content percent to get the read count matrix D for
downstream analysis.

Performance metrics
Given the ground truth (GT) cell labels, CNP matrix E of all cells,
original read count matrix D and reconstructed read count matrix
D̂ of each method, we employ three performance metrics to assess
the methods by following a previous study [9]: 1) the Spearman
correlation coefficient between D̂ and E calculated with the zero
entries in D. This metric is used to verify if each method effectively
corrects dropout events; 2) the difference between the two Spear-
man correlation coefficients (denoted by �Spearman) calculated
for (D̂, E) and (D, E). This measure is used to indicate how well each
method recovers the true read count profiles; and 3) the difference
between the average silhouette score (denoted by �Silhouette)
calculated from D̂ and that measured from D, using the GT labels
to group the cells. Higher silhouette coefficient indicates higher
consistency of the clustering with the GT labels. This metric
quantifies the effectiveness of each method in increasing intra-
cluster similarity and enlarging the inter-cluster distance. We also
employ the coefficient of variation (CV) as another metric to mea-
sure the quality of data imputation and denoising. Specifically, for
each copy number state of each cell, the difference (denoted as
�CV) between the CV of original data and that of reconstructed
data is calculated, and mean �CV across all copy number states
of all cells is calculated to assess the methods. �CV is used to
indicate how well a method reduces the dispersion degree of
single-cell read counts, and the higher the �CV, the better the
performance.

Results
Performance evaluation on the synthetic datasets
We first assess the performance of scTCA and other methods
on the synthetic datasets, and the �Silhouette scores are shown
in Fig. 3. scTCA consistently achieves high �Silhouette scores

under different data sizes and levels of heterogeneity, surpassing
the competitors by a large margin. For instance, the average
�Silhouette score of scTCA is 0.891 on datasets with 500 cells,
7 clones and 24 000 bins, while the second-best method MAGIC
yields the average �Silhouette score of 0.625. On datasets with
7 clones, scTCA shows enhanced ability of disentangling cellular
heterogeneity when the number of cells or bins increases (e.g.
the mean �Silhouette score increases from 0.789 at M = 12 000
to 0.912 at M = 24 000 on datasets with 1000 cells). When the
number of clones increases to 9, scTCA still achieves consistently
higher �Silhouette scores than other methods. scTCA exhibits
degraded performance as the number of bins increases when
there are 11 clones (e.g. the mean �Silhouette score decreases
from 0.902 at M = 12 000 to 0.825 at M = 24 000 on datasets
with 1000 cells). This implies our method may suffer insufficient
modeling of long sequence data at higher data heterogeneity,
and similar performance degradation is also observed for other
methods. In addition, the results indicate both the imputation and
denoising steps are required to accurately unscramble the cellular
heterogeneity from single-cell read counts, as demonstrated by
the higher �Silhouette scores of MAGIC, CarDEC, and scTCA
compared to other methods. To further investigate how well the
cell subpopulations are separated with each other, we visualize
the imputed and denoised read counts of each method using
tSNE as shown in Fig. 4 and Supplementary Fig. 1. Compared to
other methods, scTCA provides compact cell clusters and clear
separation of different subpopulations.

The Spearman correlation coefficients that measure the per-
formance of each method in correcting dropout events are shown
in Supplementary Fig. 2. On datasets with 500 cells, our method
shows the highest Spearman coefficients, followed by MAGIC,
CarDEC, scImpute, DeepImpute, and scMultiGAN. For instance, for
datasets with 11 clones and 12 000 bins, the average Spearman
coefficient of scTCA is 0.757, while those of MAGIC, CarDEC,
scImpute, DeepImpute and scMultiGAN are 0.752, 0.722, 0.678,
0.532, and 0.428, respectively. GE-Impute and TsImpute are less
effective in recovering the zero entries of read counts. With the
increased number of cells, all methods especially GE-Impute tend
to deliver more accurate imputation results. For instance, the
average Spearman coefficient of GE-Impute increases from 0.077
at N = 500 to 0.385 at N = 1000 when the number of clones is 7,
and that of scTCA increases from 0.658 to 0.67. In general, scTCA,
MAGIC and CarDEC exhibit similar overall average Spearman
coefficients. These results imply scTCA performs robustly against
the change of data size and heterogeneity.

Next, we assess the performance of each method in recovering
the true read count profiles, and the �Spearman scores are
shown in Supplementary Fig. 3. In general, our method surpasses
other methods across all test conditions. The overall average
�Spearman of scTCA is 0.427, while the second-best method
MAGIC yields the overall average �Spearman of 0.414. As the
�Spearman metric measures the overall Spearman coefficient by
considering both the zero and non-zero entries of read counts,
methods that only conduct imputation of the data are undoubt-
edly at a disadvantage. For instance, scImpute, DeepImpute, GE-
Impute, SCDD and TsImpute provide the average �Spearman
scores of 0.219, 0.161, 0.092, 0.103, and 0.027, respectively, falling
evidently short of MAGIC, CarDEC and scTCA. The differences
are also obvious when investigating the imputed and denoised
read counts of each method (as shown in Fig. 5). Although MAGIC
and CarDEC significantly improve the quality of single-cell read
counts, they fall short of scTCA in mapping read counts to the GT
copy number states. For instance, they do not well reconstruct the
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Figure 3. �Silhouette scores of the methods on the simulated datasets. The number of cells N in {500, 1000}, number of clones K in {7, 9, 11}, and number
of bins M in {12 000, 18 000, 24 000} are used to generate the simulated datasets.

quantitative relationship between copy number and read count
in small segments harboring focal CNAs (as observed for cluster
4 in Fig. 5), which may lead to biased estimation of the copy num-
ber states in downstream analysis. By comparison, our method
correctly rebuilds the read counts associated with different copy
number states, and largely reduces the variance of the data. These
improvements make it easier to get unbiased inference of the
single-cell copy number profiles.

We proceed to assess how well each method reduces the vari-
ance of single-cell read counts data, and the results are shown
in Supplementary Fig. 4. scMultiGAN, MAGIC and CarDEC show
good performance with average �CV scores of 0.698, 0.724, and
0.711, respectively. By comparison, our method surpasses the
competitors by achieving average �CV score of 0.783. We also
assess the runtime performance by comparing the peak memory
and time required by each method. As shown in Supplementary
Table 1, our method tends to be computationally less efficient
than conventional statistical methods as the convolutional and
Transformer blocks of scTCA involve in extensive computation.

Finally, we conduct several ablation experiments to examine
the effectiveness of model architecture of scTCA. To demonstrate
the critical role of the hybrid Transformer-CNN module, we gen-
erate two model variants, denoted as scTCA-wot and scTCA-woc,
by switching off the Transformer and residual blocks, respectively.
In addition, we change the model architecture by employing MSE-
based loss function (denoted as scTCA-mse), to verify the effec-
tiveness of the censored regression model in data reconstruction.

Performance comparison is conducted between the full model
and the three variants under same hyper-parameters. As shown
in Supplementary Fig. 5, the full model generally outperforms
the variants in the different performance metrics, especially in
deciphering the cellular heterogeneity. For instance, the mean
�Silhouette scores of scTCA, scTCA-wot, scTCA-woc and scTCA-
mse are 0.823, 0.814, 0.576, and 0.704, respectively. This verifies the
advantage of the hybrid Transformer-CNN module and the cen-
sored regression model in imputation and denoising of single-cell
read counts. Furthermore, when capturing non-local information
with a two-stage attention module in scTCA, the maximum length
(denoted as τ ) of the subsequences may have a significant impact
on learning of non-local features, therefore we tune the value
of τ to investigate how it affects the performance of scTCA. As
depicted in Supplementary Fig. 6, our method performs robustly
against the change of τ , and yields consistently high Spearman
coefficient, �Spearman, �Silhouette and �CV scores across the
different conditions. As such, we set the default value of τ to 500,
and conduct all experiments under this setting.

Performance evaluation on the real datasets
The breast cancer datasets (denoted as A, B, C, D, and E) consist of
2008, 1693, 1254, 1384, and 1446 cells, respectively. It is reported
that there are three subpopulations in dataset A that show dis-
tinct copy number profiles [43]. Datasets B and C contain six cell
subpopulations, while datasets D and E are both comprised of five

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
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Figure 4. Visualization of the imputed and denoised read counts using tSNE on a simulated dataset with 12 cell subpopulations. The dimension of read
counts data is first reduced to 50 with the principal component analysis, and then reduced to 2 with tSNE. The cell subpopulations include a normal
subpopulation and 11 tumor clones. The �Silhouette scores of the methods are 0.076, 0.024, −0.002, 0.015, 0.013, −0.025, 0.002, 0.645 (MAGIC), 0.398
(CarDEC), and 0.895 (scTCA), respectively.

Figure 5. Comparison between the reconstructed read counts and GT copy number profiles on a simulated dataset with eight cell subpopulations.

clonal clusters. These datasets are derived from different tumor
sections of a breast cancer patient, and we obtain the BAM files
that contain read alignments of the sequenced cells from the
10X Genomics (https://www.10xgenomics.com/datasets). As the

differences of copy number profiles between the tumor clones
mainly come from the chromosomes 2, 3, 4, 5, 6, 8, and 11, we
only extract single-cell read counts from these chromosomes
for downstream analysis. The bin size is set to 20 Kb when

https://www.10xgenomics.com/datasets
https://www.10xgenomics.com/datasets
https://www.10xgenomics.com/datasets
https://www.10xgenomics.com/datasets
https://www.10xgenomics.com/datasets
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counting reads in each bin, and bins with <0.1 or >0.9 GC-
content percent are excluded since they are considered as con-
founders and outliers. The GT copy number profiles and cell labels
are obtained from https://github.com/raphael-group/chisel-data.
Given the single-cell read counts, we use scTCA as well as other
methods to impute the dropouts and denoise the data. Due to
runtime errors or excessive memory consumption, we fail to
get the results of scImpute, scMultiGAN, and TsImpute on these
datasets, therefore exclude them from performance evaluation.

As shown in Fig. 6, our method achieves generally better per-
formance than the competitors, especially in recovering the intra-
tumor heterogeneity. For imputation of the dropouts, DeepImpute,
SCDD, MAGIC, CarDEC, and scTCA get high Spearman coefficients
(mean values are 0.753, 0.746, 0.75, 0.762, and 0.826, respectively)
on datasets B-E, while bayNorm and GE-Impute show lower accu-
racy. For recovering the true read count profiles, scTCA outper-
forms MAGIC and CarDEC by delivering higher �Spearman scores
(the mean �Spearman scores are 0.439, 0.417, and 0.418, respec-
tively). As DeepImpute, bayNorm, GE-Impute, and SCDD do not
denoise the data, they yield low �Spearman scores. In addition,
all methods exhibit low Spearman coefficients and �Spearman
scores on dataset A, which may result from the fact that dataset
A is dominantly composed of normal cells (1948 out of 2008
cells), and thus most of the entries of copy number profiles are
a fixed value of 2 when measuring the Spearman coefficients.
To check if each method correctly builds the quantitative rela-
tionship between copy number and read count, we visualize the
reconstructed read counts of all methods as depicted in Fig. 7
and Supplementary Figs 7–10, where the cell that has the nearest
average distance to other cells in each clonal cluster is selected
to make the comparison. As shown in Fig. 7, scTCA significantly
improves the data quality by making the read counts with same
copy number state more centralized, and correctly quantifies the
relationship between read counts of different copy number states.
Despite that MAGIC and CarDEC have superior ability of denoising
the single-cell read counts, they show degraded performance in
mapping read counts to correct copy number states, as observed
for clonal cluster 4 in Fig. 7. scTCA also makes it easier to detect
focal CNAs (as shown in Supplementary Fig. 11). For instance,
the cell ‘AAAGTAGCATGGCACC’ from dataset E harbors a focal
CNA with copy number of 1 on chromosomal region 5:68860001-
70660000, and the original read counts of this region are exten-
sively fluctuated, which impedes accurate estimation of the copy
number, while it is much easier to infer the copy number from the
reconstructed read counts.

The advantage of scTCA is more evident in recovering the
cellular heterogeneity (Fig. 6). For instance, the mean �Silhouette
score of scTCA is 0.779, while the corresponding metric value of
the second-best method CarDEC is 0.515. MAGIC achieves the
mean �Silhouette score of 0.285, falling short of CarDEC and
scTCA by a large margin. As observed on simulated datasets,
methods that only conduct imputation of the data are much
less effective in revealing the cellular heterogeneity from single-
cell read counts. scTCA shows relatively lower �Silhouette scores
on datasets B–E when compared to the simulated datasets. As
our simulation strategy is unable to fully model the complex
biological process, the simulated data are less noised than the real
data, which makes it easier to recover the cellular heterogeneity
from the synthetic datasets. Comparing the �CV scores of the
methods also shows the advantage of scTCA in reducing disper-
sion of single-cell read counts. For instance, the average �CV
scores of MAGIC, CarDEC and scTCA are 0.538, 0.533, and 0.599,
respectively.

We further examine the robustness of scTCA based on sub-
sampling strategy. Specifically, sub datasets are generated from
the dataset E under subsampling ratios of 0.2, 0.4, 0.6, and 0.8.
For each candidate subsampling ratio, five sub datasets are pro-
duced by conducting five trials of random sampling. To make
a comparison to other methods, we also get results of MAGIC
and CarDEC on these datasets. As shown in Supplementary Fig.
12, our method achieves similar performance as observed on the
full dataset when subsampling ratio is larger than 0.2, surpassing
MAGIC and CarDEC across different subsampling ratios.

Finally, we visualize the imputed and denoised read count
profiles of all method using tSNE, as shown in Fig. 8 and
Supplementary Figs 13–16. Compared to the competitors, scTCA
shows better ability to distinguish between the tumor clones.
For instance, on dataset E (Fig. 8), despite that scTCA divides the
subpopulations 1 and 2 into subclusters, it still gives clear sepa-
ration of different subpopulations; on dataset A (Supplementary
Fig. 13), our method correctly identifies two smaller tumor clones
and clearly separates they from each other, while other methods
tend to confuse them with the normal subpopulation.

Discussion
Precisely detecting CNAs with different scales, including arm-
level and focal CNAs, is important to identify cancer driver genes.
scDNA-seq can be used to accurately unmask CNAs of both
major and low-prevalence tumor clones from read counts, free of
complex deconvolution as required in bulk sequencing. Despite
that current CNA calling methods perform well in identifying
arm-level CNAs, they may fail to deliver accurate inference of
focal CNAs, due to the high dimensionality, high sparsity and low
signal-to-noise ratio of the read counts in small-sized bins (e.g.
≤20 Kb). This requires an imputation and denoising step prior to
CNA calling, such that focal CNAs can also be detectable with
current off-shelf computational methods.

We introduce a new method scTCA to reconstruct high-quality
single-cell read counts using an autoencoder framework. To
exploit both local and non-local patterns of copy numbers in
learning cell embeddings, we propose a novel Transformer-CNN
hybrid architecture, containing a pair of parallel residual CNN
and Transformer blocks, to extract and fuse multi-view features
of the read counts. Unlike conventional Transformers such as
ViT and Swin-T, the Transformer block in scTCA contains a
stepwise self-attention layer followed by a window Transformer,
and is computationally efficient to process the high-dimensional
read counts. When reconstructing high-quality single-cell read
counts through decoding, the censored regression models are
employed to characterize the data distributions by effectively
handling the zero values. On synthetic and real datasets, we
showcase the superior performance of scTCA, and demonstrate
its stronger ability of imputing and denoising single-cell read
counts compared to existing scRNA-seq based methods.

There are two potential improvement directions to further
enhance scTCA. First, scTCA does not utilize cell similarities
when learning latent embeddings from sparse read counts, while
exploiting information from neighborhood cells with a graph con-
volutional network may provide more semantically meaningful
representations, as well as more precise reconstruction of the
read counts. Thus, a hybrid architecture combining graph con-
volutional networks with Transformers is an effective alternative
to the Transformer-CNN mixture block of scTCA, although it
may suffer higher computational cost. Second, scTCA does not
perform well in accurately recovering the true read count profiles

https://github.com/raphael-group/chisel-data
https://github.com/raphael-group/chisel-data
https://github.com/raphael-group/chisel-data
https://github.com/raphael-group/chisel-data
https://github.com/raphael-group/chisel-data
https://github.com/raphael-group/chisel-data
https://github.com/raphael-group/chisel-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
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Figure 6. Performance comparison results on five real breast cancer datasets A–E. scImpute, scMultiGAN, and TsImpute are excluded from performance
comparison as they encounter runtime errors.

Figure 7. Comparison between the reconstructed read counts and GT copy number profiles on real breast cancer dataset B.

for low-prevalence copy number states (e.g. the first segment of
cluster 5 in Supplementary Fig. 8). Data augmentation approaches
based on generative models, such as GANs and diffusion autoen-
coders [44, 45], can be employed to generate synthetic cells for
minor clones, thus alleviating the class imbalance and improving

the quality of data reconstruction. We plan to investigate these
directions in the future works.

In summary, scTCA can be used to rebuild high-quality single-
cell read counts, and simultaneously learn discriminative latent
representations for the cells, assisting in downstream analysis

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae577#supplementary-data
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Figure 8. Visualization of the imputed and denoised read counts using tSNE on real breast cancer dataset E. The dimension of read counts data is
first reduced to 50 with the principal component analysis, and then reduced to 2 with tSNE. The real dataset E contains five cell subpopulations. The
�Silhouette scores of the methods are 0.031, 0.034, 0.013, 0.001, 0.353 (MAGIC), 0.61 (CarDEC), and 0.724 (scTCA), respectively.

including detection of both arm-level and focal CNAs as well as
identification of tumor clones.

Key Points

• We develop a novel method scTCA based on a framework
with Transformer-CNN hybrid architectures, to impute
and denoise single-cell read counts.

• A two-stage attention module, including a stepwise self-
attention layer and a window Transformer, is proposed
to extract non-local features from the read counts.

• scTCA outperforms the state-of-the-arts on both syn-
thetic and real datasets, assisting in downstream anal-
ysis of both arm-level and focal CNAs.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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