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INTRODUCTION

Potato (Solanum tuberosum L.) (2n = 4x = 48) is the third most important food crop after rice and
wheat in terms of human consumption. Potato is considered as the staple food in Europe and parts of
Americas. In 2018, the world total potato production was 368.17 million tonnes led by China
(90.26 mt) followed by India (48.53 mt) (FAOSTAT, 2018). The increasing world population from
the now 7.7 to the expected 9.7 billion by 2050 has posed a great challenge of food availability (United
Nations, 2019). Potato suffers from various pathogens, insect pests, and environmental abiotic
stresses. The condition is worsening under the climate change scenario. In India, the mean potato
productivity in major potato-growing states, which together account for about 90% of the national
potato production, is likely to decline by 2.0% in 2050s and 6.4% in 2080s (Rana et al., 2020). To
address these issues, conventional breeding has shown key roles in varietal development programs
combined with the deployment of marker-assisted selectionmainly for late blight, viruses, and potato
cyst nematode–resistant varieties the world over such as Kufri Karan in India (ICAR-CPRI Annual
Report, 2018-19). Later, potato transgenics have also been developed for resistance to diseases (e.g.,
late blight and viruses), abiotic stresses (e.g., heat and drought), insect pest (e.g., potato cyst
nematode and potato tuber moth), processing quality (e.g., reduced cold-induced sweetening), but
none of them are being applied at the field level. Hence, with the advancement of sequencing
technologies and availability of the potato genome sequence (Potato Genome Sequencing
Consortium, 2011), it is possible to modulate the target genes applying genomics tools like
genome editing.

Genome editing is an advanced genomics tool which can be deployed for crop improvement by
gene knock-out and insertion/deletion mutagenesis (Hameed et al., 2018). It allows double-stranded
breaks (DSBs) at specific sites in the genome and repairs via naturally occurring DNA repair
mechanisms, namely, nonhomologous end joining (NHEJ) or homologous recombination (HR). In
the past, this system was earlier facilitated by protein-guided nucleases such as zinc finger nucleases
(ZFNs) and transcription activator-like effector nucleases (TALENs). But now, attention has been
driven on the new RNA-guided nuclease called clustered regularly interspaced short palindromic
repeats (CRISPR)—CRISPR associated (Cas) (Nadakuduti et al., 2018). The TALENs and ZFNs
require particular expertise, longer timelines, and higher costs than those needed for assembling
CRISPR/Cas. Indeed, a tremendous progress has been reported on the utility of CRISPR/Cas in
crops. In potato, CRISPR/Cas has been demonstrated for tuber quality, disease resistance (late blight
and potato virus Y), phenotype, and other traits (Dangol et al., 2019; Hameed et al., 2020; Hofvander
et al., 2021). This article provides the current status of CRISPR/Cas, future perspectives, and
challenges in potato.
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TABLE 1 | Successful examples of application of CRISPR/Cas genome editing technology for biotic and abiotic stress resistance/tolerance, tuber quality, and phenotype
and other traits in potato.

Target gene Trait CRISPR
system

Delivery/
transformation

system

Genotype Key findings Reference

Biotic stress resistance

P3, CI, NIb, or CP (RNA
virus genes)

PVY, PVS, and
PVA resistance

LshCas13a Agrobacterium Desiree Multiple PVY strain–resistant
mutants

Zhan et al. (2019)

StDND1, StCHL1 and
StDMR6-1 (S-genes:
Susceptibility genes)

Late blight
resistance

Cas9 Agrobacterium Desiree Tetra-allelic mutants by
knockout of StDMR6-1 and
StCHL1 genes

Kieu et al. (2021)

Caffeoyl-CoA O-
methyltransferase
(StCCoAOMT)

Late blight
resistance

Cas9 Agrobacterium Russet Burbank Increase in late blight
resistance than control

Hegde et al. (2021)

Abiotic stress tolerance

StMYB44 (MYB
transcription factor)

Phosphate
transport (roots)

Cas9 Agrobacterium Desiree Mutants (84%), StMYB44
negatively regulates Pi
transport by suppressing
StPHO1 gene expression

Zhou et al. (2017)

Tuber quality traits

GBBS Starch quality Cas9 Protoplasts (PEG) Kuras Multiple allele mutants (67%)
and amylopectin-rich and
waxy potato

Andersson et al.
(2017)

GBBS Starch quality Cas9/RNP Protoplasts Kuras Regenerants without
transgenes (9%)

Andersson et al.
(2018)

GBBS Starch quality Cas9 Protoplasts Desiree and Wotan Mutants (35%) Johansen et al.
(2019)

GBSS I Starch quality Cas9 Agrobacterium Sayaka Mutants with all four alleles
(25%), low amylose starch

Kusano et al. (2018)

GBBS I Starch quality Cas9 Agrobacterium Desiree Tetra-allelic mutants by
knockout of amylose-
producing StGBSSI gene

Veillet et al. (2019a)

Starch synthase gene
(StSS6)

Starch
biosynthesis

Cas9 Agrobacterium Desiree Specific gRNA design and
successful knock-out SS6

Sevestre et al.
(2020)

Starch-branching
enzymes (SBEs) genes
SBE1, SBE2

Starch quality Cas9 Agrobacterium and
protoplasts (PEG)

Desiree Mutants with valuable starch
properties

Tuncel et al. (2019)

SBE1, SBE2 Starch quality Cas9/RNP Protoplasts Desiree Three to four allele mutants
(72%) with amylase starch with
no branching

Zhao et al. (2021)

PHYTOENE
desaturase (PDS)

Carotenoid
biosynthesis

Cas9 Agrobacterium Desiree Mutants (2–10%) Bánfalvi et al. (2020)

StPDS Carotenoid
biosynthesis

Cas9 Agrobacterium
rhizogenes

Diploid, self-
compatible F1
hybrid DMF1 (DM1-
3 × M6)

Transgenic hairy rootsmutants
(64–98%)

Butler et al. (2020)

PDS and coilin Carotenoid
biosynthesis

Cas9 In vitro study without
delivery

Chicago Stimulated activity in vitro Khromov et al.
(2018)

St16DOX Glycoalkaloids Cas9 A. rhizogenes
(electroporation)

May Queen Full knockout of steroidal
glycoalkaloids

Nakayasu et al.
(2018)

Sterol side chain
reductase 2 (StSSR2)

Steroidal
glycoalkaloids
(SGAs)

Cas9 Agrobacterium Atlantic Mutants (64%) with
significantly reduced SGAs

Zheng et al. (2021)

Polyphenol oxidases
(PPOs) gene (StPPO2)

Enzymatic
browning

Cas9/RNP Protoplasts Desiree Mutants (69% in four alleles)
with 73% reduction in PPO
activity than the control

González et al.
(2020)

Other traits

StDMR6-1 and
StGBSSI

Phenotype Cas9 Agrobacterium Desiree SpCas9-NG application in
genome editing

Veillet et al. (2020a)

StIAA2 Phenotype Cas9 Agrobacterium Mono- and bi-allelic
homozygous mutants (83%)

Wang et al. (2015)

(Continued on following page)
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CRISPR/CAS GENOME EDITING AND ITS
NEED IN POTATO

CRISPR/Cas is the most powerful biological tool to create
targeted modification in the genome, which allows easy
designing and construction of gene-specific single guide RNA
(sgRNA). The sgRNA vectors are easily reprogrammable to direct
Streptococcus pyogenes Cas9 (SpCas9) to generate DSBs and are
then repaired endogenously by the error-prone NHEJ or HR
pathways. CRISPR/Cas is divided into two distinct classes based
on the sequence, structure, and functions of the Cas proteins.
Class 1 consists of types I, III, and IV andutilizes a multi-protein
effector complex, whereas class 2 includes types II, V, and VI and
uses a single effector protein; of which, type II and V target DNA,
whereas type VI targets RNA. CRISPR/Cas9 (class 2, type-II) is
the most commonly exploited machinery for DNA target.
Remarkable innovations in CRISPR/Cas9 variant FnCas9
(Francisella novicida) (Price et al., 2015) and CRISPR/Cas13a
(type VI, LshCas13a from Leptotrichia shahii) (Aman et al., 2018)
have opened new avenues for RNA targets also. The SpCas9 and
RNase III ribonucleases generate the Cas9/guide RNA complex
that recognizes and cleaves DNA sequences adjacent to the 5′-
NGG protospacer adjacent motif (PAM) and induces site-specific
DSBs (Khatodia et al., 2016; Cao et al., 2020). Currently,
CRISPAR/Cas9 has revolutionized plant research due to its
simplicity, multiplexing, cost-effectiveness, high efficiency, and
minimum off targets. Unlike genetically modified organisms,
CRISPR/Cas creates alterations in the existing genome without

the introduction of foreign genes, particularly site-directed
nucleases (SDN1 and SDN2). Hence, CRISPR/Cas is expected
to be transgene free, and biosafety regulations are under
consideration in various countries (Schmidt et al., 2020).

Several complex traits of agronomic importance are
considered in potato while breeding a new variety. The
multigenic-controlled biotic/abiotic stresses are difficult to
improve through conventional breeding in less time, which
could be possible by using CRISPR/Cas9. The gene knockout
mechanism has been applied in potato for late blight resistance
using susceptibility (S) genes (StDND1, StCHL1, and StDMR6-1)
(Kieu et al., 2021). A few successful examples are discussed later
for biotic/abiotic stress resistance/tolerance, tuber quality, and
phenotype traits improvement in potato (Table 1, and
Supplementary Figures 1 and 2).

APPLICATION OF CRISPR/CAS IN POTATO

Biotic and Abiotic Stress Resistance/
Tolerance Traits
CRISPR/Cas has emerged as an alternative and efficient
technology to accelerate potato breeding (Table 1). It has been
demonstrated for potato virus Y (PVY) and late blight
(Phytophthora infestans) resistance in potato. Cas13a protein
was deployed to confer resistance to three PVY strains (RNA
virus) by targeting P3, CI, Nib, and CP viral genes (Zhan et al.,
2019). Host genes like the eukaryotic translation initiation factor

TABLE 1 | (Continued) Successful examples of application of CRISPR/Cas genome editing technology for biotic and abiotic stress resistance/tolerance, tuber quality, and
phenotype and other traits in potato.

Target gene Trait CRISPR
system

Delivery/
transformation

system

Genotype Key findings Reference

S. tuberosum Gp
Phureja double
monoploid

Acetolactate synthase1
(StALS1)

Herbicide
tolerance

Cas9 Agrobacterium and
Geminivirus
replicon (GVR)

Desiree, diploid
(MSX914-10)

Targeted mutants (87–100%) Butler et al. (2015)

StALS Herbicide
tolerance

Cas9 Agrobacterium
and GVR

Desiree, diploid
(MSX914-10)

Improved homozygous
recombinants but no change
in nonhomologous end joining

Butler et al. (2016)

StALS1 and StALS2 Herbicide
tolerance

Cas9/CBE
(cytidine base
editing)

Agrobacterium Desiree Transgene-free mutants (10%) Veillet et al. (2019b)

StALS1 and StALS2 Herbicide
tolerance

Cas9/prime
editing

Agrobacterium Desiree Successful prime editing in
potato with nucleotide
transition/transversion

Veillet et al. (2020b)

Stylar ribonuclease
gene (S-RNase)

Self-
incompatibility

Cas9 Agrobacterium DRH-195 and DRH-
310 F1

Stable self-compatible
mutants through S-RNase
gene knockout

Enciso-Rodriguez
et al. (2019)

S-RNase Self-
incompatibility

Cas9 Agrobacterium S. tuberosum Knock out of S-RNase gene
resulted in self-compatibility

Ye et al. (2018)
Gp Phureja
S15-65

NbFT, NbPDS3, and
NbXT2B

Virus-induced
genome editing
(VIGE)

Cas9 Agrobacterium Solanaceous plants Heritable mutants expressing
multiple sgRNAs in Nicotiana
benthamiana/potato

Uranga et al., 2021

GBBS, Granule-bound starch synthase gene; PEG, polyethylene glycol; RNP, Ribonucleo protein.
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eIF4E and coilin have also been found very effective for PVY
resistance (Makhotenko et al., 2019). Recently, late blight resistance
was demonstrated in potato by the knockout of susceptibility genes
StDMR6-1 and StCHL1 (Kieu et al., 2021) and Caffeoyl-CoA
O-methyltransferase (StCCoAOMT) (Hegde et al., 2021).

Abiotic stresses such as heat, drought, salinity, and cold are
very important in potato, but with meagre work that is
available in potato so far. Zhou et al. (2017) developed
mutants (84%) by manipulating potato MYB transcription
factor gene StMYB44, which negatively regulates phosphate
transport in potato by suppressing StPHO1 gene expression
(Table 1). Considerable research work on abiotic stress has
been reported in cereals and other crops, but not in potato.
Recently, we have proposed the use of CRISPR/Cas to
manipulate N metabolism genes for improving nitrogen use
efficiency in potato (Tiwari et al., 2020).

Tuber Quality, Phenotype, and Other Traits
CRISPR/Cas studies have been reported in potato for traits like
improved tuber starch quality (Andersson et al., 2017, 2018; Kusano
et al., 2018; Johansen et al., 2019; Tuncel et al., 2019; Veillet et al.,
2019a; Sevestre et al., 2020; Zhao et al., 2021), carotenoid
biosynthesis (Khromov et al., 2018; Bánfalvi et al., 2020; Butler
et al., 2020), glycoalkaloids (Nakayasu et al., 2018; Zheng et al., 2021),
and enzymatic browning (González et al., 2020) (Table 1).
Functional mutants were developed for variations in phenotype
(Wang et al., 2015; Veillet et al., 2020a) and herbicide tolerance
(Butler et al., 2015, 2016). Self-compatible regenerants were also
produced using Cas9 via Agrobacterium (Ye et al., 2018; Enciso-
Rodriguez et al., 2019) or virus-induced genome editing (VIGE)
(Uranga et al., 2021a; 2021b). Researchers have demonstrated the
utility of Cas9 base editing and prime editing tools for herbicide
tolerance in potato (Veillet et al., 2019b; 2020a; 2020b; 2020c).

CRISPR/CAS DELIVERY AND
TRANSFORMATION SYSTEM AND
CHALLENGES IN TETRAPLOID POTATO
Because potato is a highly amenable crop to tissue culture,
transformation methods such as Agrobacterium, particle
bombardment or biolistic, floral-dip, and protoplasts have been
applied to it (Sandhya et al., 2020). The most common
Agrobacterium-mediated transformation and protoplasts that have
been successfully deployed in CRISPR/Cas in potato are sgRNA
dicot-origin promoters like Arabidopsis (AtUp)/potato (StU6p)/U3p
and plant promoters like CaMV 35S (Belhaj et al., 2013). However,
the Agrobacterium-mediated method cannot be used to deliver
ribonucleoprotein (RNP) complexes, and elimination of the Cas9
assembly from the plant genome via selfing or backcrossing is more
complicated in genetically complex and vegetatively propagated
tetraploid potato (Koltun et al., 2018). In potato, each botanical
seed called True Potato Seed (TPS), which is a product of themeiosis
process, is genetically different from another seed, hence the
maintenance of the clonal identity is very crucial.

To address the above issues, the DNA-free delivery system is an
ideal approach using somatic cells, i.e. protoplast. Polyethylene

glycol (PEG)–mediated protoplast transformation has been found
to be an excellent alternative for the efficient delivery of Cas9/
gRNA-RNPs in potato (Andersson et al., 2017). DNA-free
preassembled Cas9/gRNA-RNPs were directly delivered into the
plant cells to induce mutations (Park and Choe, 2019) and were
also demonstrated in lipofection-mediated DNA-free delivery (Liu
et al., 2020). But with the establishment of suspension culture,
protoplast isolation and regeneration into whole plants are the
associated problems of the protoplast system (Sandhya et al., 2020).

VIGE is an emerging approach for CRISPR/Cas9 delivery. VIGE
involving plant virus–derived vector such as geminivirus replicon
has been demonstrated for fast and efficient delivery of sgRNAs in
potato (Butler et al., 2015, 2016). This VIGE system bypasses the
requirement of transformation and regeneration of plants which is a
time-consuming and tedious process. But the large size of a Cas9
assembly challenges the use of the virus vector, as the length of a
foreign insert negatively correlates with the stability of the vector.

Recently, base editing and prime editing are the upgraded and
more efficient approaches of Cas9. The programmable base editing
technology, like the adenine base editor that coverts A.T to G.C
without DNA cleavage, has emerged as a boon for crop
improvement (Gaudelli et al., 2017). Catalytically inactive Cas9
variant dCas9 or Cas9-nickase is fused with cytosine or adenosine
deaminase domain to introduce the desired point mutations (C to
T or A to G) in the target region (Mishra et al., 2020). Veillet et al.
(2020c) deployed Staphylococcus aureus–cytosine base editor
(CRISPR-SaCas9 CBE) to edit StDMR6-1 in potato. Similarly,
herbicide tolerance genes Acetolactate synthase1 and
Acetolactate synthase2 (StALS2) were targeted through Cas9
cytidine base editing and Cas9 prime editing technologies,
respectively (Veillet et al., 2019b; 2020b). Ariga et al. (2020)
used the potato virus X vector to express a base editor
consisting of modified Cas9 fused with cytidine deaminase to
introduce the targeted nucleotide substitution in Nicotiana
benthamiana. However, the size of the base editor is larger than
Cas9 and this hindered the delivery into cells by the viral vectors.

Overall, high heterozygosity, tetrasomic inheritance, severe
inbreeding depression, and vegetative propagation caused
difficulties in the successful application of CRISPR/Cas in
tetraploid potato. Furthermore, the selection of suitable sgRNA,
robust CRISPR/Cas, and efficient transformation protocols and
phenotypes without off targets are the main decisive factors in
potato. Currently, gene knockout is a preferred mechanism in
plants and even all four alleles were mutated through Cas9 in
potato StGBSS gene (Andersson et al., 2017). PAM limitation
(NGG) is one of the drawbacks of SpCas9, and therefore more
diversity in CRISPR/Cas toolbox is necessary (Veillet et al., 2020a).

CONCLUSIONS

Desirable plant phenotypes, biotic/abiotic stress resistance/tolerance,
and improved tuber quality traits play key roles in potato. The
availability of robust CRISPR/Cas arrays, target genes selection,
efficient plant transformation protocols, and minimum off-target
mutants are the major issues in tetraploid potato. It is a fact that
improvement of multigenic traits is difficult than that of the
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monogenic traits, particularly in potato, due to polyploidy and clonal
propagation. Despite this, considerable success has been achieved in
potato for some traits and mostly through the gene knockout or
insertion/deletion process. Studies have suggested that the use of
multiplexing SpCas9 that can handle single or multiple sgRNA/
RNPs via targeting conserved sequences combined with protoplast-
mediated transformation is an ideal option in potato. Apart from this,
awareness among people and policy makers/regulators would be
necessary for the success of genome editing research. Collectively,
CRISPR-Cas provides an effective next-generation toolbox for fast
potato breeding to achieve sustainable crop yield.
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