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Abstract
Purpose of Review Reduction of serum low-density lipoprotein cholesterol (LDL-C) levels by statins, ezetimibe and proprotein
convertase subtilisin/kexin type 9 (PCSK9) inhibitors has been shown to significantly reduce cardiovascular events risk.
However, fasting and postprandial hypertriglyceridemia as well as reduced high-density lipoprotein cholesterol (HDL-C) remain
as residual risk factors of atherosclerotic cardiovascular diseases (ASCVD). To treat patients with hypertriglyceridemia and/or
low HDL-C, drugs such as fibrates, nicotinic acids, and n-3 polyunsaturated fatty acids have been used. However, fibrates were
demonstrated to cause side effects such as liver dysfunction and increase in creatinine levels, and thus large-scale clinical trials of
fibrates have shown negative results for prevention of ASCVD. The failure could be attributed to their low selectivity and
potency for binding to peroxisome proliferator-activated receptor (PPAR) α. To resolve these issues, the concept of selective
PPARα modulator (SPPARMα) with a superior balance of efficacy and safety has been proposed and pemafibrate (K-877) has
been developed.
Recent Findings Pemafibrate, one of SPPARMsα, was synthesized by Kowa Company, Ltd. for better efficiency and safety.
Clinical trials in Japan have established the superiority of pemafibrate on effects on serum triglycerides (TG) reduction and HDL-
C elevation as well safety. Although available fibrates showed worsening of liver and kidney function test values, pemafibrate
indicated improved liver function test values and was less likely to increase serum creatinine or decrease estimated glomerular
filtration rate (eGFR). Very few drug-drug interactions were observed even when used concomitantly with statins. Furthermore,
pemafibrate is metabolized in the liver and excreted into the bile, while many of available fibrates are mainly excreted from the
kidney. Therefore, pemafibrate can be used safely even in patients with impaired renal function since there is no significant
increase in its blood concentration. A large-scale trial of pemafibrate, PROMINENT, for dyslipidemic patients with type 2
diabetes is ongoing.
Summary Pemafibrate is one of novel SPPARMsα and has superior benefit-risk balance compared to conventional
fibrates and can be applicable for patients for whom the usage of existing fibrates is difficult such as those who are
taking statins or patients with renal dysfunction. In the current review, all the recent data on pemafibrate will be
summarized.
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Introduction

Fibrates were developed in the 1950s based upon the discov-
ery of phenylethyl acetate from agricultural chemical ingredi-
ents which were found to reduce serum lipids [1]. Clofibrate
was the first fibrate which was classified as a lipid-lowering
agent. Later, several fibrates were developed and shown to
enhance the proliferation of peroxisome in mice, but the
mechanism of action of fibrates remained unknown for many
years. Currently available fibrates were developed without
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definitive knowledge of their specific mechanism of action.
However, fibrates were later demonstrated to act on PPARα
and elicit their biological effects such as reduction of serum
triglycerides (TG) levels and increase in serum HDL-C levels
[2, 3]. Although the activation of PPARα by fibrates markedly
improved serum lipid levels, a variety of off-target effects such
as abnormal test values suggesting liver and kidney dysfunc-
tions was observed, which were difficult to be overcome.

Large-scale clinical trials of fibrates for prevention of car-
diovascular (CV) events were subsequently conducted. In the
Helsinki Heart Study (HHS) [4] and the Veterans Affairs
High-Density Lipoprotein Cholesterol Intervention Trial
(VA-HIT) [5], administration of gemfibrozil significantly re-
duced CV event rate, the primary endpoints of the trials.
However, significant drug-drug interactions between gemfi-
brozil and cerivastatin resulted in a very high incidence of
rhabdomyolysis in patients [6]. Furthermore, in subsequent
trials, including Benzafibrate Infarction Prevention (BIP)
study (using bezafibrate alone) [7], Fenofibrate Intervention
and Event Lowering in Diabetes (FIELD) study (using
fenofibrate alone) [8], and the Action to Control
Cardiovascular Risk in Diabetes (ACCORD)-lipid study
(using fenofibrate on top of simvastatin) [9], primary end-
points were statistically negative and the clinical efficacy of
fibrates on CVevents was questioned.

The meta-analysis of fibrates [10, 11] demonstrated signif-
icant reductions of CVevent rate, and the significant reduction
of CV event risk was shown for each test, particularly in the
post-hoc analysis of the subclasses of patients with or without
statin who had atherogenic dyslipidemia (high serum TG and
low HDL-C levels) [12]. The ACCORDION study, a passive-
ly extended follow-up observation of the ACCORD study,
indicated a long-term continuous benefit of fenofibrate [13].
Similarly, in the BIP study, a persistent benefit in reducing
mortality was demonstrated especially in patients with base-
line hypertriglyceridemia [14]. Other meta-analyses in both
primary and secondary prevention of CVevents showed sup-
portive evidences [15, 16]. The meta-analyses of statins by the
Cholesterol Treatment Trialists’ (CTT) Collaboration [17–19]
showed that the administration of statins significantly reduced
the total mortality rate by ~ 10%. In contrast, a significant
decrease in the total mortality rate upon administration of
fibrates could not be demonstrated [10, 11]. The off-target
effects of fibrates as mentioned above may have offset their
efficacy. The lack of a significant mortality benefit by fibrates
has led many doctors to consider them as a second choice.

In this context, the development of novel therapeutic strat-
egies for atherogenic dyslipidemia in patients associated with
diabetes, metabolic syndrome, obesity, and/or ASCVD was
urgently demanded. Selective peroxisome proliferator-
activated receptor (PPAR) α modulators (SPPARMα) may
provide a promising future for the management of atherogenic

dyslipidemia and atherosclerosis as well as other metabolic
abnormalities [20].

Subtypes of Peroxisome Proliferator-Activated
Receptors (PPARs)

PPARs are one of the nuclear hormone receptors that bind to
DNA as a heterodimer with retinoid X receptor (RXR). This
heterodimer recognizes specific DNA sequences in and
around target genes called PPAR response elements
(PPREs). Many genes carry response elements for PPARs.
After the structure of PPAR was clarified, three PPAR iso-
forms (PPARα, PPARγ, and PPARδ) have been identified,
each of which is encoded by a separate gene [21]. The
PPARα subtype is abundant in highly active metabolic tissues
such as the liver, heart, muscle, kidney, brown adipose tissue,
and vascular wall cells, including endothelial cells, smooth
muscle cells, and macrophages. To the contrary, PPARγ is
expressed mainly in white and brown adipose tissues, large
intestine, and macrophages. PPARδ (also called PPARβ) is
expressed ubiquitously.

Endogenous ligands such as free fatty acids, prostaglan-
dins, leukotrienes, or synthetic PPAR agonists such as fibrates
for PPARα and glitazones for PPARγ, respectively, bind to
the ligand-binding domain forming heterodimer with ligand-
activated RXR [22–25]. This binding causes the conforma-
tional change which influences cofactor affinity and thus re-
sults in transactivation or trans-repression of target genes.
While PPAR is transactivated, the activated PPAR binds to
PPRE in the upstream of target genes and the PPAR complex
becomes transcriptionally active with involvement of cofac-
tors [20, 26–29].

Pleiotropic Functions of PPARα

PPARα is crucially involved in metabolic homeostasis [30].
PPARα regulates lipid and lipoprotein metabolism since it is
associated with the transcription of genes that are involved in
the reduction of serum TG and increase in HDL-C [2].
Activation of PPARα increases the production of lipoprotein
lipase (LPL) and apolipoprotein (apo) A-V, while it decreases
the plasma levels of apo C-III that inhibits LPL activity, there-
by enhancing the catabolism of TG-rich lipoproteins and re-
ducing serum TG levels [31–34]. PPARα activation also
upregulates the expression of genes involved in the β-
oxidation pathways. Fatty acids levels in the liver are de-
creased through enhanced β-oxidation and increased expres-
sion of hepatic acyl-CoA synthase (ACS) [35]. Thus, hepatic
production of very-low-density lipoprotein (VLDL) particles
is attenuated [29].

In addition to the effects on TG-rich lipoproteins, the acti-
vation of PPARα reduces the number of atherogenic small
dense low-density lipoprotein (LDL) particles [36]. VLDL

5 Page 2 of 17 Curr Atheroscler Rep (2020) 22: 5



enriched with apo C-III interact better with cholesteryl ester
transfer protein (CETP), increasing the exchange of TG from
VLDL to LDL, and these TG-rich LDL particles become
small dense LDL after lipolysis of TG by hepatic lipase
(HL) [37]. Thus, the activation of PPARα reduces small dense
LDL particles by (1) producing apo C-III-poor VLDL parti-
cles that interacts less well CETP and (2) increasing the for-
mation of large buoyant LDL that has a high affinity to and are
easily taken up by LDL receptor.

The activation of PPARα also enhances HDL synthesis by
increasing the expression of apo A-I and A-II, both of which
are major components of HDL [38]. Increased LPL activity
enhances the lipolysis of TG-rich lipoproteins thereby increas-
ing the sources of phospholipids on HDL particles [39]. The
activation of PPARα also accelerates reverse cholesterol
transport (RCT) via increased expression of ABCA1 and
ABCG1 transporters involved in cholesterol efflux from mac-
rophages [29, 40]. PPARα activation also increases the ex-
pression of scavenger receptor class B type I (SR-BI) in the
liver which is involved in the selective uptake of cholesteryl
ester by the liver and enhance RCT [41].

Furthermore, PPARα activation may also be involved in
glucose homeostasis regulation, inhibition of inflammation
and thrombogenesis, and improved vascular function [26,
28, 29, 42]. However, the underlying mechanisms for these
effects in humans have not been clarified yet. PPARɑ activa-
tion improves abnormal lipid and/or glucose metabolism, pos-
sibly leading to vascular protection against atherothrombosis
by down-regulation of proinflammatory genes in monocytes/
macrophages [26, 27]. Thus, pharmacological targeting of
PPARα activation may be one of the important strategies for
patients with diabetes, metabolic syndrome, obesity, and ath-
erosclerotic CV diseases.

Novel Concept and Rationale for SPPARMα

Based upon these backgrounds, a novel concept of selective
PPARα modulator (SPPARMα) was originally proposed by
Fruchart [43, 44••]. The principle of SPPARMα action was
illustrated in these reviews [43, 44••]. The concept of
SPPARMα has an analogy to selective estrogen receptor mod-
ulators (SERMs) [45]. This concept of SERMs was based
upon the paradigm of tamoxifen. This drug is the first estrogen
receptor modulator and has anti-estrogenic activity in the mam-
mary gland and a partial pro-estrogenic activity in the uterus
and bone. However, long-term usage of tamoxifen increased
the incidence of uterine cancer. Thus, a second-generation
SERM, raloxifene, with tissue-specific activity was developed.
Following the concept of SERM, SPPARMα with tissue-
specific and targeted gene-selective activities has been
developed.

PPARs are known to have a large lipid-binding pocket
which can encompass endogenous ligands. When some

ligands bind to PPARs, a conformational change occurs which
leads to recruitment of co-activators, resulting in tissue-
specific and gene-selective effects. Importantly, PPAR ligands
share cofactors leading to a shared biological response; how-
ever, there exist some differences in cofactor selectivity, lead-
ing to differing responses. Ligand-specific cofactors and the
unique receptor–cofactor binding profile of the ligand may be
a crucial determinant of the specificity and potency of receptor
binding, resulting in modulation of gene- and tissue-
selective effects. Modulation of the receptor–cofactor
binding profile of the PPAR ligand may improve desir-
able biological effects by transactivation of desirable
target genes and reduce known adverse effects of the
PPAR ligand by trans-repression of undesirable genes. This
is the rationale for the development of SPPARMs. The candi-
date materials should be screened and identified from those
which can differentially induce a unique receptor–cofactor
binding profile, provide improved efficacy, and avoid unwant-
ed side effects [43].

Development of a Novel SPPARMα, Pemafibrate

Ligands with various structures such as free fatty acids and
fibrates can bind to PPARα. The binding of each ligand to
PPARα induces downstream ligand-specific structural chang-
es and subsequent responses based upon association with
ligand-specific cofactors. SPPARMα comes from the concept
of drugs that can selectively regulate the transcription of
PPARα target genes involved in beneficial actions, but not
unbeneficial ones. Therefore, SPPARMα may have a better
benefit-risk balance compared to the PPARα agonists such as
available fibrates.

Kowa Company, Ltd., in Japan screened more than 1500
compounds and identified several candidates, including
pemafibrate, as agonists which possess a very potent PPARα
activity and very high PPARα selectivity. Three candidate
compounds (R-24, R-35, and R-36) were identified. From
these, Kowa Company finally selected R-36 for development
and R-36 was finally named pemafibrate (K-877, Parmodia®

tablet). Pemafibrate has an acidic region in its structure as
demonstrated in other PPARα agonists. However, the addition
of unique benzoxazole and phenoxyalkyl side-chains has con-
tributed to the greatly enhanced PPARα activity and selectiv-
i ty [46] (Fig. 1). To construct pemafibrate, a 2-
aminobenzoxazole ring was inserted into the existing fibric
acid skeleton, the length of carbon chain was modified and a
phenoxyalkyl group was also introduced to enable synthesis
of this drug as a highly active and selective PPARα agonist
[46]. The PPARα activation by pemafibrate was > 2500 times
stronger than fenofibric acid, the active form of fenofibrate.
Pemafibrate is an extremely selective PPARα agonist (sub-
type selectivity > 5000-fold for PPARγ and > 11,000-fold
for PPARδ, respectively) [49, 50].

Curr Atheroscler Rep (2020) 22: 5 Page 3 of 17 5



Pemafibrate was demonstrated to have an equivalent or
stronger TG-lowering activity compared to fenofibric acid in
rats without increasing liver weight [46]. Transcriptome analy-
sis of pemafibrate-regulated genes in primary human hepato-
cytes and the mouse liver has indicated that the induced and
suppressed gene groups clearly differed between pemafibrate
and fenofibrate [51]. Different from conventional fibrates,
pemafibrate has a Y-shaped structure (Fig. 1). The ligand-
binding domain in PPARα is Y-shaped. The Y-shaped
pemafibrate is bound firmly to the whole cavity area like a
locked key, followed by specific conformational changes in
the structure of PPARα because of the strong interaction.
Then, a new region of PPARα is exposed. This new region
binds with PGC-1α, one of the PPARα co-activators, which
results in a strong activation of PPARα. Recent studies have
indicated that in addition to the portion of fibric acid, which is
common to the conventional fibrates, a Y-shaped structure with
suitably arranged aminobenzoxazole and dimethoxybenzene, is
the ideal structure for SPPARMα [47••]. Pemafibrate has been

proven to possess an ideal structure that corresponds to the
concept of SPPARMα.

In June 2018, pemafibrate was launched in Japan prior to
the rest of the world. The Japan Atherosclerosis Society, to-
gether with overseas evaluations, has positioned pemafibrate
as a drug classified into the SPPARMα category, which is
completely different from conventional fibrates [52].
Recently, a consensus statement from the International
Atherosclerosis Society (IAS) and the Residual Risk
Reduction Initiative (R3i) Foundation on the concept of
SPPARMα has been published [53••]. Pemafibrate is thus
expected to have a superior benefit-risk balance compared to
the conventional fibrates.

Pharmacokinetics and Metabolism of Pemafibrate

In vitro studies using hepatocytes from rats, monkeys, and
humans analyzed the metabolic profiles and pharmacokinetics
of pemafibrate [54]. Hepatocytes from rats, monkeys and

SPPARMαα Fenofibrate

Fenofibrate (ligand)
SPPARMα (ligand)

PPARα (receptor)

Clinical effects Clinical effects

co-activator

On-target 
*1 

Off-target
*2

On-target
*1

Off-target
*2

Synthetic ligand binding

Specific conformational 
transitions

Specific recruitment of co-
activator complexes

Selective activation or 
repression of a subset of genes

*1: TG ↓, TG rich lipoproteins ↓, HDL-C ↑
*2: ALT / γ-GT, Homocysteine, Creatinine / Cystatin C 

Interaction between residues in the ligand-binding pocket of PPARα

Fig. 1 Structural differences in
the interaction of pemafibrate and
fenofibrate with PPARα and the
concept of SPPARMα. The
binding affinity of pemafibrate to
PPARα is markedly increased
compared with that of fenofibrate
because pemafibrate has many
interaction sites in regions A, B,
and C of PPARα. The specific
binding of pemafibrate with a
high affinity results in specific
conformational transitions of
PPARα, recruiting specific
co-activator complexes. Thus,
pemafibrate has specific effects
on target genes, but not off-target
genes. In contrast, fenofibrate has
specific effects on target as well as
off-target genes. Reproduced
from ref [47••]. Partially modified
from refs [43] and [48]
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humans could all transform pemafibrate to its demethylated
form (M1). The bioavailability of pemafibrate was 15% in
Sprague–Dawley rats and 87% in cynomolgus monkeys, re-
spectively, after a single oral administration of 1 mg/kg
pemafibrate. Unmetabolized pemafibrate was predominant
in rat plasma, which accounted for 29% of the area under
the curve of total radioactivity. In monkey plasma, the major
circulating metabolites were M2/3 (dearylated/dicarboxylic
acid forms, 15%), M4 (N-dealkylated form, 21%) and M5
(benzylic oxidative form, 9%), but pemafibrate was the minor
form (3%). The metabolite profile of pemafibrate in plasma
was different between rats and monkeys, and the latter could
be a suitable animal model for further pharmacokinetic studies
of pemafibrate in humans. In humans, pemafibrate is predom-
inantly metabolized by the liver and not by kidney.

Preclinical and Animal Studies

In preclinical studies, pemafibrate was demonstrated to have
more robust effects of TG reduction and HDL-C elevation
than fenofibrate. In Sprague–Dawley rats, pemafibrate
inhibited VLDL secretion and enhanced TG clearance by ac-
tivation of LPL [49]. VLDL and its remnants can be taken up
by the liver via LDL receptor and VLDL receptor [55].
Fenofibrate [56] and pemafibrate [51] were reported to en-
hance the expression of VLDL receptor, which may result in
the enhanced catabolism of VLDL and its remnants.

Pemafibrate (1 mg/kg) increased HDL-C levels more
markedly than fenofibrate (100 mg/kg) in transgenic
apo E2 mice and enhanced cholesterol efflux from mac-
rophages. It reduced the atherosclerotic lesions in the
aorta of apo E2KI mice [57], showed a strong anti-
inflammatory effect, and attenuated atherosclerosis after me-
chanical injury [57–59].

Pemafibrate suppressed postprandial hyperlipidemia by
inhibiting the mRNA expression of intestinal cholesterol
transporter NPC1L1 in small intestine mucosa in mice
fed a high-fat diet [60•, 61]. Thus, pemafibrate attenu-
ates postprandial hyperlipidemia by suppression of chy-
lomicron synthesis and secretion via inhibition of cho-
lesterol absorption via NPC1L1 as well as PPARα activation
in the small intestines.

Pemafibrate upregulates the expressions of genes related to
β-oxidation of fatty acids, thereby inhibiting the secretion of
VLDL from the liver [49, 61]. Fibroblast growth factor 21
(FGF21) is involved in β-oxidation of fatty acids, and its
expression is regulated by PPARα [62, 63]. FGF21 also re-
duces VLDL secretion from the liver via regulation of fatty
acids uptake by adipose tissue [64]. Pemafibrate increases the
serum levels and tissue expression of FGF21 [49, 61, 65•].
The reduction of serum TG and VLDL levels by pemafibrate
may partly be attributed to the upregulation of FGF21 via
PPARα.

LPL catalyzes the hydrolysis of TG in chylomicrons secret-
ed from the intestine and VLDL secreted from the liver. LPL is
also involved in the particle uptake of VLDL by the liver as a
ligand. The administration of pemafibrate in animal models
increased LPL activity and thereby accelerated the catabolism
of chylomicrons and VLDL [60•, 61]. The enhanced LPL
activity by pemafibrate is due to the increase in LPL synthesis
via activation of PPARα. Pemafibrate reduces serum levels of
apo C-III and Angptl3, both of which are inhibitors of LPL
[49]. Apo A-Vaccelerates plasma TG hydrolysis by LPL [66],
but pemafibrate may not affect apo A-V levels despite PPARα
activation [61]. Preclinical data indicate that pemafibrate has
beneficial effects on atherogenic dyslipidemia, inflammation,
and atherosclerosis by modulating PPARα-mediated gene
expressions.

Clinical Trials of Pemafibrate

Effect of Pemafibrate on Lipid, Lipoprotein, and Apoprotein
Metabolism

Fasting hypertriglyceridemia is one of the risk factors of CAD
and is based upon an increase in either of TG-rich lipopro-
teins, such as chylomicrons derived from small intestines,
VLDL derived from the liver, and their TG-hydrolyzed rem-
nant lipoproteins such as chylomicron remnants and VLDL
remnants (IDL). Remnant lipoproteins have been demonstrat-
ed to be proatherogenic [67, 68]. Increased TG-rich lipopro-
teins are often associated with the presence of atherogenic
small dense LDL and reduction of HDL-C. Pemafibrate sig-
nificantly reduces remnant lipoprotein cholesterol (RemL-C),
non-HDL-C, apo B, apo B-48, and apo C-III levels.
Regarding the size of lipoprotein subfractions after
pemafibrate treatment analyzed by gel permeation high-
performance liquid chromatography (GP-HPLC), pemafibrate
dose-dependently reduced small LDL particles and increased
small HDL particles [69].

Postprandial hypertriglyceridemia is known as a risk status
for CAD due to increases in atherogenic chylomicron rem-
nants. To assess the effect on postprandial hypertriglyc-
eridemia, pemafibrate (0.4 mg/day) was administered for
4 weeks in dyslipidemic patients and meal tolerance test was
performed before and after treatment. A marked reduction of
both fasting and non-fasting serum levels of TG, RemL-C,
and apo B-48 was demonstrated [70•]. The incremental
AUC for postprandial TG level was significantly reduced after
pemafibrate treatment, suggesting that it improves postpran-
dial hypertriglyceridemia. Similar data were obtained in dia-
betic patients treated with pemafibrate [71••].

The particle number in each lipoprotein subclass can also
be calculated by GP-HPLC [72]. Pemafibrate reduced the
number of atherogenic small LDL particles, while it increased
that of antiatherogenic small HDL particles [73]. Reduced
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cholesterol efflux capacity (CEC) of HDL was shown to cor-
relate with the presence of CAD [74] and the risk of CVevents
[75]. CEC is now recognized as one of the new CAD risk
factors and smaller-sized HDL has greater CEC [76]. The
effect of pemafibrate 0.4 mg/day for 4 weeks on CEC of
HDL was evaluated in patients with dyslipidemia [70•]. The
levels of HDL-C, HDL3-C, preβ1HDL, and apoA-1 were
significantly increased by administration of pemafibrate. The
HDL obtained from patients treated with pemafibrate demon-
strated a significantly increased CEC from macrophages
compared with HDL obtained from patients given pla-
cebo. Pemafibrate also increased the levels of FGF21,
which is known to increase the expression of ATP-
binding cassette transporters A1 and G1 (ABCA1 and
ABCG1) involved in the cholesterol efflux from macro-
phages [49, 51, 57, 61, 70•, 77]. The possible molecular mech-
anisms for the favorable effects of pemafibrate on lipoprotein
metabolism and reverse cholesterol transport are illustrated in
Fig. 2.

Co-Administration of Pemafibrate with Statins

Co-administration of fibrates with statins was reported to in-
crease the incidence of rhabdomyolysis, particularly in pa-
tients with impaired kidney function. Especially, high inci-
dence of rhabdomyolysis occurred in patients administered a
combination of gemfibrozil and cerivastatin, and thus
cerivastatin disappeared from the market. This was a typical
case of drug-drug interaction [6]. The mechanism of

rhabdomyolysis on co-administration of these drugs may be
gemfibrozil-mediated inhibition of cerivastatin metabolism,
resulting in an increase in cerivastatin concentration.

Drug-drug interaction of pemafibrate with high doses of
various statins (pravastatin, simvastatin, fluvastatin, atorva-
statin, pitavastatin, or rosuvastatin) was investigated in
healthy male volunteers [78]. Pemafibrate given to volunteers
in combination with various statins gave no major changes in
Cmax and AUC of pemafibrate or in those of any statins. The
serum concentration of simvastatin and its open acid formwas
slightly decreased, but HMG-CoA reductase inhibitory activ-
ity was maintained. Thus, pemafibrate does not show any drug
interactions with statins. Arai et al. reported a combined treat-
ment of pemafibrate with statins in two clinical studies [79•].
Pemafibrate was administered for 12 weeks in patients with
hypertriglyceridemia taking pitavastatin. It reduced the fasting
TG values by 6.9% in the placebo group, 46.1% in the 0.1 mg/
day pemafibrate group, 53.4% in the 0.2 mg/day group, and
52.0% in the 0.4 mg/day group, respectively. In the long-term
study, 0.2–0.4 mg/day pemafibrate was administered for
24 weeks to patients with hypertriglyceridemia treated with
any statins mentioned above. Pemafibrate showed con-
sistent reduction of TG and no significant increase in
adverse effects in association with pemafibrate was
demonstrated. Even when co-administrated with statins,
pemafibrate improved liver function test values. Serum
levels of creatinine slightly increased and eGFR slightly de-
creased by pemafibrate administration although these changes
were clinically negligible.
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Fig. 2 Molecular mechanisms for the favorable effects of pemafibrate on
lipoprotein metabolism and reverse cholesterol transport. Abbreviations:
ABCA1, ATP-binding cassette transporter A1; Angptl3, angiopoietin-

like protein 3; LPL, lipoprotein lipase; Remnant-R, Remnant receptor;
SR-BI, scavenger receptor class B type I; VLDL-R, VLDL receptor
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Comparisons of Pemafibrate with Fibrates

The first three clinical trials in Japan showed a higher efficacy
of pemafibrate compared with fenofibrate [69, 80•, 81•]. The
TG-lowering effect of 0.4 mg/day pemafibrate was more po-
tent than that of 100 mg/day (80 mg/day with tablet conver-
sion) and 106.6 mg/day fenofibrate, respectively, and was
similar to 200 mg/day fenofibrate (160 mg/day with tablet
conversion). The incidence of adverse events in patients treat-
ed with pemafibrate was almost similar to that treated with
placebo, which was shown much lower than fenofibrate.
Especially, the incidence of adverse events related to kidney
and liver function was extremely rare. Fibrates are known to
worsen kidney function test values, including serum creatinine
and cystatin C levels, and estimated glomerular filtration rate
(eGFR) [82–84]. While fenofibrate administration increased
serum levels of creatinine and cystatin C and decreased eGFR
during the treatment, these changes were much smaller in the
pemafibrate-treated group. Fibrates are known to increase liv-
er function test values, and the mechanism of this action is
attributed to activation of PPARα [85]. Fibrates such as
fenofibrate are known to worsen liver function test values
such as alanine aminotransferase (ALT) and gamma-
glutamyl transferase (γ-GT). However, treatment with
pemafibrate was not associated with an increase, but rather a
decrease of these values. These changes in renal and liver
function test values after treatment are one of the characteristic
features of SPPARMα, pemafibrate.

Recent meta-analysis compared the efficacy and safety of
pemafibrate in patients with dyslipidemia in comparison with
fenofibrate [86••]. The reduction of serum TG and non-HDL-
C levels and increase in HDL-C by pemafibrate were compa-
rable to those by fenofibrate. The homeostasis model assess-
ment for insulin resistance (HOMA-IR) was also improved by
pemafibrate, suggesting that insulin resistance is attenuated by
this drug. Pemafibrate also demonstrated a significant de-
crease in hepatobiliary enzyme activity compared with the
placebo and fenofibrate. Total adverse events were significant-
ly less in the pemafibrate group than in the fenofibrate group.
In contrast, the LDL-C level was significantly higher in the
pemafibrate group than in the placebo and fenofibrate groups.

Pemafibrate for Patients with Chronic Kidney Disease (CKD)

Patients with CKD, especially those under hemodialysis, do
not usually have high levels of LDL-C, but increased TG and
decreased HDL-C levels [87]. Statin trials such as 4D [88] and
AURORA [89] failed to demonstrate the efficacy to reduce
CV events in patients with CKD. In SHARP trial [90], non-
statin drug ezetimibe (intestinal cholesterol transporter inhib-
itor) showed a significant reduction in CVevents. It is crucial
to prevent CV events in patients with CKD, especially those
under hemodialysis. Their typical phenotypes of lipoprotein

abnormality are hypertriglyceridemia, increased remnants,
and low HDL-C.

It has been very difficult to treat CKD patients with dyslip-
idemia since most of conventional fibrates except for
clinofibrate were excreted from kidney. However, a
SPPARMα, pemafibrate, is mainly metabolized in the liver
and almost exclusively excreted from the liver, with only
14.5% excretion in the urine [91]. The main metabolites of
pemafibrate in plasma are benzyl oxidized oxidant and a mix-
ture of glucuronic acid conjugate and N-dealkylated dicarbox-
ylic acid [92]. Excretion rate of unmetabolized pemafibrate
into urine is < 0.5%, and almost all the metabolized com-
pounds excreted in the urine have no PPARα agonist activity.

The exposure of pemafibrate was demonstrated not depen-
dent on severity of renal dysfunction [93]. Administration of
pemafibrate for a longer period was confirmed to be also ef-
fective and safe in patients with dyslipidemia, including pa-
tients with impaired kidney function. No major increase in
blood pemafibrate concentrations was observed even after ad-
ministering repeated dosage [94]. Fenofibrate and bezafibrate
are current fibrates used in common. However, blood concen-
trations of these drugs with renal excretion properties are in-
creased in patients with impaired renal function. Based upon
its metabolic route, pemafibrate can be administered safely
even to patients with CKD. Pemafibrate might have an im-
proved benefit-risk balance and may be beneficial for patients
with a limited ability to use conventional fibrates.

Other Non-lipid-Related Effects of Pemafibrate

Effects on Glucose Metabolism, Insulin Resistance,
and Obesity

Long-term administration for 24 weeks of pemafibrate in
hypertriglyceridemic patients with type 2 diabetes showed
similar effects on lipids and lipoproteins, but fasting blood
glucose and insulin levels were significantly reduced by
pemafibrate in comparison with placebo [71••]. Fifty-two
week data from the PROVIDE study after administration of
pemafibrate in hypertriglyceridemic patients with type 2 dia-
betes were also reported [95••]. The levels of TG and non-
HDL cholesterol were stably decreased, while HDL-C levels
were increased with administration of pemafibrate over 52
weeks. Pemafibrate was well tolerated over 52 weeks and
ameliorated lipid abnormalities in hypertriglyceridemic pa-
tients with type 2 diabetes.

Matsuba et al. explored the effect of pemafibrate on liver or
peripheral insulin resistance, using hyperinsulinemic-
euglycemic clamp [96••]. Pemafibrate significantly enhanced
the rate of hepatic glucose uptake, thereby improving insulin
resistance. In a diet-induced obesity mouse model,
pemafibrate suppressed high-fat diet-induced weight gain, re-
duced plasma glucose and insulin, and increased plasma
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FGF21. It also upregulated the genes related to thermogenesis
and fatty acidβ-oxidation and improved obesity-induced met-
abolic abnormalities [65•]. ABCA1 is involved in efflux of
cholesterol and phospholipids from cells to HDL and its defi-
ciency causes Tangier disease characterized by orange tonsils,
hepatosplenomegaly, and enhanced atherosclerosis [97]. We
reported that patients with Tangier disease showed the pro-
gressively increased plasma glucose concentration after oral
glucose tolerance test, indicating a type 2 diabetic pattern;
however, plasma insulin concentration did not respond well
to glucose increase [98]. Calculated insulinogenic index
was significantly lower in patients with Tangier disease
than in non-diabetic controls. Since ABCA1 is expressed in
pancreatic β cells, glucose-stimulated insulin secretion might
be impaired in Tangier disease patients with ABCA1
mutations. Pancreatic ABCA1 was shown to play a role
in beta cell cholesterol homeostasis, thereby affecting
insulin secretion [99].

Pemafibrate treatment increased the mRNA and protein
levels of ABCA1 and reduced the cellular cholesterol content
in INS-1 cells [100•]. PPARα-specific antagonist GW6471
attenuated pemafibrate-induced ABCA1 expression in INS-1
cells. The promoter activity of ABCA1 was increased with
pemafibrate. Glucose-stimulated insulin secretion was amelio-
rated by pemafibrate in INS-1 cells and isolated mouse islets.
Although the expression of ABCA1was reduced inmice fed a
high-fat diet, both ABCA1 protein and mRNA levels were
increased with pemafibrate treatment. Pemafibrate improved
glucose intolerance induced by a high-fat diet in mice, indi-
cating that pemafibrate may enhance insulin secretion by reg-
ulation of ABCA1 expression in β cells.

Effects of Pemafibrate on Fatty Liver

Recently, non-alcoholic fatty liver disease (NAFLD) and non-
alcoholic steatohepatitis (NASH) have become important dis-
eases in the era of metabolic syndrome and abdominal visceral
obesity. PPARα-null mice exhibit phenotypes such as severe
fatty liver and steatohepatitis [101] and patients with NASH
show a reduced expression of liver PPARα [102]. Therefore,
PPARα agonists can be one of the therapeutic agents for
NAFLD. Although fibrates were effective for improvement
of NAFLD in animals [103–105], their efficacy in clinical
settings is not established. The poor clinical outcome data of
fibrates can be attributed partly to the adverse reactions such
as liver and renal dysfunction, which might have caused re-
duced efficacy of fibrates.

As demonstrated by previous clinical trials, pemafibrate
reduced the levels of serum alanine aminotransferase (ALT),
alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-
GT), and total bilirubin. These effects were markedly ob-
served in patients whose liver function values were higher
than the baseline reference values [106], indicating that

pemafibrate may be applicable for treating patients with
NAFLD/NASH.

In mouse models of NAFLD/NASH, pemafibrate im-
proved liver function and histology. It attenuated fatty liver
and ballooning as well as inflammation and fibrosis [107•,
108•]. The mechanisms by which pemafibrate improves
NAFLD may involve the upregulation of genes for β-
oxidation and lipid transport in and out of the liver and en-
hancing energy metabolism via induction of uncoupling pro-
tein 3 (UCP3) genes. To prove the favorable effects of
pemafibrate on NAFLD, a phase 2 study is ongoing in Japan
(ClinicalTrials.gov Identifier: NCT03350165).

Effects of Pemafibrate on Primary Biliary Cholangitis (PBC)

Fenofibrate [109] and bezafibrate [110] were shown to im-
prove liver function test in patients with PBC. Given the fa-
vorable effects of pemafibrate on liver function test values in
patients with dyslipidemia, it may also improve liver function
in patients with PBC. Before exploring clinical trial, a phar-
macokinetic study of pemafibrate for patients with PBC is in
progress in Japan (JapicCTI-173728). Recent pilot study has
indicated that pemafibrate can improve the liver function tests
in patients with PBC, although the number of studied subjects
is small [111•].

Effect of Pemafibrate on Plasma Fibrinogen Levels

Plasma fibrinogen is known to be linked to thrombosis.
Conventional fibrates were reported to inhibit the expression
of fibrinogen by activation of PPARα. The decrease in fibrin-
ogen levels is a downstream effect of fibrates [112]. In the BIP
Study, a large-scale clinical study on bezafibrate, fibrinogen
was shown to be a predictor of mortality [113], indicating that
the reduction of fibrinogen levels may be one of the mecha-
nisms by which fibrates reduce ASCVD events. Pemafibrate
was also demonstrated to have a stronger fibrinogen-reducing
effect than fenofibrate [69].

Effect of Pemafibrate on Atherosclerosis and Inflammation

One of the main aims of treatment of dyslipidemia is to pre-
vent ASCVD events. The preventive effects of pemafibrate on
atherosclerosis have been reported in animal studies. In hu-
man apo E2 knock-in mice fed a high-fat, high-cholesterol
diet (western diet) [57], plasma total cholesterol, non-HDL-
C, and TG were reduced by administration of pemafibrate,
while plasma HDL-C levels were increased. The mRNA ex-
pressions of small intestine apoB and liver apoC-III were re-
duced by pemafibrate. Pemafibrate (0.1 mg/kg body weight)
was equivalent to or better than fenofibrate (250 mg/kg body
weight). Atherosclerotic lesions area was reduced with
1 mg/kg pemafibrate treatment more markedly than with
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Table 1 Effects of pemafibrate (SPPARMα) and fenofibrate on clinical parameters

Parameters Pemafibrate (SPPARMα) Fenofibrate

0.1 mg/day 0.2 mg/day 0.4 mg/day 100 mg/day 106.6 mg/day 200 mg/day

% Change

TG 1) − 36.4% − 42.6% − 42.7% − 29.7%
2) − 46.2% − 45.9% − 39.7%
3) − 46.3% − 46.7% − 51.8% − 38.3% − 51.5%

HDL-C 1) 16.5% 16.3% 21.0% 14.3%

2) 22.3% 17.4% 17.6%

3) 20.9% 21.4% 19.1% 15.2% 24.7%

Non-HDL-C 1) − 11.8% − 12.2% − 10.5% − 10.1%
2) − 11.1% − 8.1% − 11.4%
3) − 5.1% − 4.0% − 2.7% − 2.9% − 10.7%

LDL-C 1) 8.3% 5.0% 7.4% 5.3%

2) − 6.3% − 3.5% − 6.3%
3) 13.2% 18.6% 19.3% 14.0% 6.6%

CM-C 1) − 55.7% − 67.2% − 63.4% − 47.6%
VLDL-C 1) − 37.3% − 43.8% − 48.4% − 25.8%

3) − 40.4% − 44.1% − 47.1% − 29.5% − 47.8%
RemL-C 1) − 42.8% − 48.3% − 50.1% − 31.8%

3) − 46.8% − 47.6% − 50.3% − 34.5% − 49.3%
Apo A-I 1) 4.6% 6.0% 8.6% 5.6%

2) 18.8% 16.5% 15.0%

3) 7.3% 7.9% 6.7% 4.9% 9.2%

Apo A-II 1) 14.4% 21.0% 30.0% 20.1%

2) 28.6% 31.7% 22.0%

3) 16.5% 21.5% 28.7% 15.8% 30.4%

Apo B 1) − 8.9% − 7.8% − 8.1% − 5.7%
2) − 8.7% − 5.6% − 9.9%
3) 0.3% − 0.4% 3.2% 1.2% − 7.3%

Apo B-48 1) − 43.1% − 55.9% − 51.2% − 37.9%
3) − 46.6% − 51.5% − 59.0% − 40.1% − 51.4%

Apo C-III 1) − 29.0% − 34.6% − 33.4% − 27.2%
3) − 22.9% − 31.9% − 36.3% − 20.0% − 33.5%

TG AUC0 – 8.5 h 4) ~ − 40%
Apo B-48 AUC0 – 8.5 h 4) ~ − 40%
RemL-C AUC0 – 8.5 h 4) ~ − 45%
Cholesterol efflux capacity 4) 7.82%

Change

Glucose (mmol/L) 1) − 0.04 − 0.28 − 0.06 − 0.32
2) − 0.2 − 0.1 − 0.1
3) 0.9 mg/dL − 2.0 mg/dL − 5.7 mg/dL − 1.2 mg/dL − 3.3 mg/dL

Insulin (pmol/L) 1) − 8.58 − 55.50 − 14.52 − 3.45
2) − 4.5 − 7.9 − 1.2
3) − 1.0 μU/mL − 1.8 μU/mL − 4.1 μU/mL − 2.1 μU/mL − 2.2 μU/mL

HOMA-IR 1) − 0.33 − 2.65 − 0.50 − 0.38
2) − 0.2 − 0.3 − 0.0
3) − 0.3 − 0.6 − 1.8 − 0.7 − 0.9

Glucose uptake 5) SGU 19.6%

ALT (U/L) 1) − 6.6 − 7.6 − 8.7 − 4.2
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250 mg/kg fenofibrate. Expressions of F4/80, VCAM1, and
IL6 mRNA at the atherosclerotic lesion were significantly
reduced, suggesting anti-inflammatory effects of pemafibrate.
It was also administered in LDL receptor-null mice and liver
apo C-III levels were also reduced [114, 115]. Neointimal
formation and macrophage infiltration were also attenuated,
suggesting that pemafibrate reduced CD64-positive cells in
monocytes, inhibited M1 polarization in IFNγ-stimulated
macrophages, and increased the expression of NcoR1/2, co-
repressor of proinflammatory cytokines. In another study
[116] using LDL receptor-null mice fed a high-fat, high-
cholesterol diet, pemafibrate significantly reduced the lipid
deposition area within aortic sinus. The MOMA-2-positive
area was reduced by 33% compared to the control, indicating
the inhibition of macrophage infiltration into the plaques.

In hyperlipidemic pigs, pemafibrate (30 mg/day) was
administered for 35 days with coronary stent indwelled on
day 7, and animals were observed for the following
28 days [117]. Neointimal formation was significantly at-
tenuated by 26.3% in the pemafibrate-treated group com-
pared with the control group, and it also inhibited inflam-
matory cells accumulation. In LDL receptor-deficient pig
model [118], balloon failure was induced 2 weeks after

pemafibrate administration, and 8 weeks later, both mac-
rophage ratio in the plaques and the mRNA levels of c-
Jun, NF-κB, and MMP-9 were significantly reduced in
the pemafibrate group compared to the control group, in-
dicating that pemafibrate may have an anti-atherosclerotic
and anti-inflammatory effect.

Characteristic Features of Pemafibrate Distinct
from Fibrates

It is important to discriminate SPPARMα, pemafibrate, from
conventional fibrates. Table 1 summarizes and compares the
effects of pemafibrate and fenofibrate on clinical parameters.
Regarding the effects on serum lipids, lipoproteins, and apo-
lipoproteins, pemafibrate 0.4 mg/day showed changes compa-
rable to fenofibrate 200 mg/day. However, marked differences
are noted between pemafibrate and fenofibrate with regard to
liver function tests, serum creatinine, and FGF21 levels.
Especially, ALT, γ-GT, and ALP levels were reduced by ~
8 U/L, ~ 24 U/L, and ~ 70–80 U/L by pemafibrate,
respectively.

In basic animal and cell biological studies, pemafibrate
enhanced more markedly the expressions of ABCA1 and

Table 1 (continued)

Parameters Pemafibrate (SPPARMα) Fenofibrate

0.1 mg/day 0.2 mg/day 0.4 mg/day 100 mg/day 106.6 mg/day 200 mg/day

2) − 8.3 a − 4.8 a 2.9 a

γ-GT (U/L) 1) − 18.1 − 24.6 − 24.4 0.0

2) − 18.8 a − 22.9 a − 3.0 a

ALP (U/L) 1) − 52.1 − 66.3 − 68.6 − 48.0
2) − 82.1 a − 77.7 a − 46.3 a

Serum creatinine (mg/dL) 1) − 0.014 0.013 0.050 0.086

2) 0.0 a 0.0 a 0.1 a

Cystatin C (mg/L) 2) 0 a 0 a 0.1 a

Homocysteine (nmol/mL) 1) − 0.08 0.14 1.16 2.21

2) 1.3 a 1.0 a 2.2 a

Fibrinogen (mg/dL) 1) − 49.2 − 39.7 − 60.1 − 33.4
2) − 43.3 a − 54.9 a − 40.3 a

FGF21 (log [pg/mL]) 1) 0.66 0.42 0.78 0.16

Abbreviations

SPPARMα selective peroxisome proliferator-activated receptor αmodulator, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-
density lipoprotein cholesterol, CM-C chylomicron cholesterol, VLDL-C very-low-density lipoprotein cholesterol, RemL-C remnant lipoprotein cho-
lesterol, apo apolipoprotein, AUC0–8.5 h area under the curve over 8.5 h,HOMA-IR homeostasis model assessment for insulin resistance, SGU splanchnic
glucose uptake, ALT alanine aminotransferase, γ-GT γ-glutamyl transpeptidase, ALP alkaline phosphatase, FGF21 fibroblast growth factor 21
a Calculated by simply subtracting the value at 0 week from that at 24 weeks in K-877-17 Trial

1) Ref [69] [K-877-04 Trial]

2) Ref [81] [K-877-17 Trial]

3) Ref [80] [K-877-09 Trial]

4) Ref [70•] [K-877-11 Trial]

5) Ref [96••] [K-877-19 Trial]
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ABCG1 in macrophages and attenuated the proinflammatory
genes such as VCAM1, F4/80 (macrophages), and IL6.
Table 2 summarizes and compares the effects of pemafibrate
and fenofibrate on basic parameters. Distinct differences be-
tween pemafibrate and fenofibrate are demonstrated.

Future Perspectives of SPPARMα, Pemafibrate

Pemafibrate for Prevention of CV Events

To explore the effect of pemafibrate on reducing CVevents in
humans, a large-scale clinical study, PROMINENT
(Pemafibrate to Reduce cardiovascular OutcoMes by reducing
triglycerides IN diabetic patiENTs) Study (ClinicalTrials.gov
Identifier: NCT03071692) [119], is currently ongoing in 24
countries worldwide, including Japan, the USA, the UK, and
Russia. It is planned to recruit 10,000 patients with type 2
diabetes who also have high TG and low HDL-C, with LDL-
C controlled by drugs such as statins.

Pemafibrate for Prevention of Diabetic Microangiopathy

Fibrates were indicated to protect against diabetic microangi-
opathy in large-scale clinical studies [120]. In the FIELD
study, the administration of fenofibrate to patients with type
2 diabetes ameliorated diabetic retinopathy and nephropathy.
The number of photocoagulation procedures required for dia-
betic retinopathy and microalbuminuria were decreased [8,
121]. Thus, pemafibrate was expected to attenuate diabetic
microangiopathy. In db/db mice, pemafibrate reduced the ex-
pression of NOX4 in association with inhibition of PKC ac-
tivity, by reducing the diacylglycerol content in the kidneys,

and also attenuated oxidative stress-induced renal damage
[122]. Therefore, pemafibrate may have anti-oxidative and
anti-inflammatory functions, thereby possessing favorable ef-
fects on diabetic microangiopathy. The effect of pemafibrate
on attenuation of progression of diabetic retinopathy should
be evaluated in future studies.

Pemafibrate is a novel class of drug distinct from fibrates;
thus, it may exhibit novel effects on diabetic complications.
Patients with type 2 diabetes often express a reduction of eGFR
due to diabetic nephropathy, but renally metabolized fibrates
such as fenofibrate, bezafibrate, and clofibrate cannot be used
because of an increase in plasma drug concentration. In contrast,
pemafibrate is mainly metabolized by the liver and little is ex-
creted into the urine, so it can be used for diabetic patients with
nephropathy. Therefore, pemafibrate could be an essential drug
for diabetic patients and/or chronic kidney disease (CKD).

Patients with extremely high serum TG levels (> 1000 mg/
dL) are known to have an increased risk of acute pancreatitis after
an intake of fat-rich foods. Pemafibrate was not administered to
patients with such high TG levels in the developmental clinical
studies. Two studies in Europe and the US are currently ongoing
in patients with severe hypertriglyceridemia (ClinicalTrials.gov
Identifier: NCT03011450, NCT03001817). It may be essential to
explore whether pemafibrate may also be effective for such
patients with severe hypertriglyceridemia in Japan, where fat
consumption is much less than in the western countries.

Conclusions

Pemafibrate is the first SPPARMα developed based upon a
completely new concept. It has been shown to have a high

SPPARMα
(pemafibrate)

CHD

Familial Combined 
Hyperlipidemia

Combination 
with Statin

Type 2 DM

NAFLD/
NASH

CKD

Abdominal Obesity/
Metabolic Syndrome

Postprandial 
Hyperlipidemia

PBC

High TG
Low HDL-C

High Remnants

Diabetic Nephropathy
/Retinopathy

Fig. 3 Applications of
SPPARMα, pemafibrate, to a
variety of metabolic diseases
Abbreviation: CKD, chronic
kidney disease; CHD, coronary
heart disease; HDL-C, high-
density lipoprotein cholesterol;
NASH, non-alcoholic
steatohepatitis; PBC, primary
biliary cholangitis; RemL-C,
remnant lipoprotein cholesterol;
TG, triglycerides

5 Page 12 of 17 Curr Atheroscler Rep (2020) 22: 5

http://clinicaltrials.gov
http://clinicaltrials.gov


selectivity for PPARα and possess distinct differences from
the conventional fibrates. Pemafibrate can be applied for pa-
tients with a variety of metabolic diseases as illustrated in
Fig. 3. Pemafibrate is mainly metabolized by the liver and
not excreted from the kidneys; therefore, it can be adminis-
tered to patients with CKD. Pemafibrate has no drug-drug
interactions with statins, and its co-administration with any
statin is safe. Pemafibrate may have a better risk-benefit bal-
ance than the existing fibrates and is considered to be a
safer drug for patients with limited response to available
fibrates, including patients taking statins, and patients
with compromised kidney functions or hepatic steatosis.
The first SPPARMα, pemafibrate, developed in Japan
ahead of the rest of the world, is expected to have a
better efficacy than fibrates as a new therapeutic option
for dyslipidemia as well as diabetic complications and
liver diseases.
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