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Abstract: Twenty compounds were isolated from the aerial parts of Salvia willeana (Holmboe) Hedge,
growing wild in Cyprus. These compounds comprise one new and one known acetophenone, one
megastigmane glucoside, five phenolic derivatives, two caffeic acid oligomers, three flavonoids,
two lignans, two triterpene acids, one monoterpene glucoside, and two fatty acids. The structures
of the isolated compounds were established by means of NMR [(Rotating-frame OverhauserEffect
SpectroscopY) (1H-1H-COSY (COrrelation SpectroscopΥ), 1H-13C-HSQC (Heteronuclear Single
Quantum Correlation), HMBC (Heteronuclear Multiple Bond Correlation), NOESY (Nuclear Overhauser
Effect SpectroscopY), ROESY (Rotating-frame Overhauser Effect SpectroscopY)] and MS spectral
analyses. This is the first report of the natural occurrence of 4-hydroxy-acetophenone
4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-D-glucopyranoside. A chemical review on the non-volatile
secondary metabolites has been carried out. Based on the literature data, the analysis revealed that the
chemical profile of S. willeana is close to that of S. officinalis L.

Keywords: Salvia willeana; 4-hydroxy-acetophenone 4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-D

-glucopyranoside; megastigmane glucoside; phenolics; terpenes; 2D NMR; Salvia L: chemical review

1. Introduction

The Lamiaceae family consists of more than 250 genera; Salvia L. is the largest genus within this
family due to the presence of approximately 900 species. Salvia L. spreads in the warm and temperate
regions of both the northern and southern hemispheres, and some species of this genus have been
cultivated worldwide for use in folk medicine, in perfumery and cosmetics industries, as well as for
culinary purposes, like flavoring and aromatic agents [1,2]. Some of its many interesting biological
and pharmacological properties are its antioxidant [3], antimicrobial [3,4], cytotoxic [3,4], anti-HIV [3],
and antiplasmodial effects [4], as well as others [3]. It is noteworthy that the name of the genus, Salvia,
is derived from the Latin word “salvare”, which means “to save”, in reference to the curative properties
of the plant [5]. The genus has attracted such great interest, that it has become the subject of numerous
chemical studies, giving evidence that these plants are a rich source of a wide variety of secondary
metabolites, such as polyphenols and terpenoids [1].

Salvia willeana (syn. S. grandiflora subsp. willeana Holmboe and S. grandiflora subsp. albiflora
Lindb.) is a low-growing, strongly aromatic suffruticose herb, sometimes carpeting the ground [6].
This species is endemic to Cyprus, where it grows on moist, rocky mountainsides of the Troodos
range at 1150–1950 m altitude and it flowers from May to October [7]. Its extracts possess different
pharmacological properties and the plant has been used to halt milk production in nursing mothers,
as well as for its antiseptic activity [8]. As S. willeana is locally used in aqueous preparations,
the purpose of our study was the investigation of secondary metabolites obtained from the polar
extract of its aerial parts. Our previous study of its lipophilic extract, revealed the presence of camphor,
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lupeol, and oleanolic acid, and demonstrated their anti-inflammatory effect [8]. It is of interest to note
that there is only one more report regarding the chemical constituents of a polar extract of S. willeana,
which revealed the presence of the triterpenoids ursolic and oleanolic acids, the diterpenoids carnosic
acid and isorosmanol, and the flavonoid salvigenin [9].

2. Results

The polar extract (MeOH:H2O 5:1) of S. willeana was fractionated by MPLC (medium pressure
liquid chromatography), CC (column chromatography), followed by semi-preparative HPLC,
preparative TLC, and yielded two triterpenoids, namely ursolic acid (1) and maslinic acid
(2), one monoterpene glucoside, (1S,2R,4R)-1,8-epoxy-p-menthan-2-yl-O-β-D-glucopyranoside
(3), one megastigmane glucoside, (6R,9S)-3-oxo-α-ionol β-D-glucopyranoside (4), five phenolic
compounds, i.e., hydroxy-tyrosol (5), p-anisic acid (6), eleutheroside B (syringin) (7),
1-O-p-hydroxybenzoyl-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (8) and eugenylglucoside
(9), two acetophenones, 4-O-β-D-glucopyranosyl acetophenone (picein) (10) and 4-hydroxy-acetophenone
4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-D-glucopyranoside (11), two caffeic acid oligomers,
rosmarinic acid (12) and salvianolic acid K (13), three flavonoids, luteolin-7-O-β-D-glucoside
(cynaroside) (14), 6-hydroxyluteolin 7-O-β-D-glucoside (15) and hesperidin (16), two lignans,
syringaresinol-4-O-β-D-glucopyranoside (17), pinoresinol-4-O-β-D-glucopyranoside (18), and two fatty
acids: linoleic acid (19) and methyl α-linolenate (20) (Figure 1).

Compound 11 was obtained as a white amorphous powder. [a]20
D − 4.71◦ (c 0.25 MeOH);

UV (CH3OH) λmax: 272 nm. The HREIMS of 11 established its molecular formula as C23H26O11

(found 477.1405 [M − H]−, calcd. 478.1449). The 1H-NMR spectrum (Table 1) showed signals at
7.69 (2H, d, J = 9.0 Hz) and 7.05 (2H, d, J = 9.0 Hz), which were indicative of a 1,4-bisubsituted phenyl
group. Thus, these proton signals were recognized belonging to the aromatic ring of the acetophenone
moiety [10]. In the upfield region of the 1H-NMR spectrum, a singlet at δH 2.47 (3H, s) was ascribed
to the methyl group (CH3-8) attached on the carbonyl group of the acetophenone [10]. Moreover,
the presence of a singlet at δH 7.33 with an integration of two aromatic protons, indicative of a pair
of equivalent methine protons, revealed the occurrence of the syringic acid ester structure in the
molecule [11]. In the 1H-NMR spectrum, the presence of a β-D-glucopyranose unit was evident based
on a characteristic doublet signal with a coupling constant of 7.9 Hz at δH 5.04, assignable to the
anomeric proton of the sugar moiety. Moreover, in the 1H-1H-COSY spectrum the correlation peaks
between the vicinal protons of the sugar ring were observed. Furthermore, from the 13C-NMR data
(Table 1) the carbon signals of the glucose moiety were assigned at δC 101.7 (C-1′), 77.5 (C-3′), 75.5 (C-5′),
74.5 (C-2′), 71.3 (C-4′), and 64.8 (C-6′), matching the reported data of 1,6-disubstituted-β-D-glucose [12].
The structural assignment was further confirmed by HSQC experiments, due to the carbon signals at δC

130.1 (C-2/C-6), 116.2 (C-3/C-5), and 26.5 (C-8), indicative of a 4-hydroxy-acetophenone moiety [9,13],
while the syringic acid ester was confirmed by the presence of the carbon signals at δC 108.3 (C-2”/C-6”),
56.0 (3”, 5”-OCH3) [11]. The existence of the acetophenone moiety was corroborated by the HMBC
experiment. This spectrum revealed a long-range cross peak between the carbonyl group at δC

199.1 (C-7) with the equivalent protons H-2/H-6 (δH 7.69), as well as an interaction between the
carbonyl group (δC 199.1) and the methyl group CH3-8 (δH 2.47). In addition, the linkage of the
syringyl moiety with the glucosyl moiety was substantiated by the observation of an HMBC correlation
between the carbonyl group at δC 167.3 and the 6′-methylene protons at δH 4.46 (dd, J = 11.7, 8.0).
Furthermore, the position of the attachment of the carboxyl group to the quaternary carbon C-1”
of the syringic ester was determined by a diagnostic HMBC cross peak between the equivalent
methine protons H-2”/H-6” at δH 7.33 and the carbonyl carbon C-7” at δC 167.3, while a long-range
coupling between the methyl protons of the methoxy groups at δH 3.83 and the benzylic carbons
C-3”/C-5” at δC 149.0 was also observed. Moreover, the position of the attachment of glucose to the
4-hydroxy-acetophenone moiety was revealed by a ROESY experiment, which displayed correlations
between the anomeric proton H-1′ (δH 5.04) and the equivalent protons H-3/H-5 (δH 7.05) of the
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acetophenone (Figure 2). On the basis of the information above and by comparison with the data for
compounds of similar structures [10,11,13] compound 11 was identified as 4-hydroxy-acetophenone
4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-D-glucopyranoside, which is a new natural product, to the
best of our knowledge.

The identification of the known flavonoids luteolin-7-O-β-D-glucoside (14) [14–16],
6-hydroxyluteolin 7-O-β-D-glucoside (15) [17], and hesperidin (16) [18–24] was based on UV–VIS and
NMR spectroscopic analyses, as well as by comparing their spectroscopic data with those reported in
the literature. The structure of the two fatty acids, linoleic acid (19) [25,26] and methyl α-linolenate
(20) [26,27], has been deduced by the interpretation of NMR and GC-MS data. The 1H-NMR chemical
shifts for compounds 1 [28–30], 2 [31–33], 3 [34,35], 4 [35–37], 7 [38–42], 9 [35,43], 10 [10,35,44],
12 [35,45–48], 17 [49,50], and 18 [51–54] presented in our study are in agreement with the data
previously reported in the literature.

However, the NMR data of compounds 5, 6, 8, and 13 are not fully recorded in the literature,
therefore, they are presented here below.
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Figure 1. Structures of isolated compounds from Salvia willeana. 
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Figure 1. Structures of isolated compounds from Salvia willeana.

Table 1. 1H-NMR and 13C-NMR spectrum of 11.

δC C δH H J (Hz)

1 131.5 C - - -
2 130.1 CH 7.69 1 d (J = 9.0)
3 116.2 CH 7.05 1 d (J = 9.0)
4 162.5 C - - -
5 116.2 CH 7.05 1 d (J = 9.0)
6 130.1 CH 7.69 1 d (J = 9.0)
7 199.1 C - - -
8 26.5 CH3 2.47 3 s
1′ 101.7 CH 5.04 1 d (J = 7.8)
2′ 74.5 CH

3.53 2 m
3′ 77.5 CH
4′ 71.3 CH 3.43 1 m
5′ 75.5 CH 3.89 1 dd (J = 8.0, 2.3)

6a′
64.8 CH2

4.71
2

dd (J = 11.7, 2.3)
6b′ 4.46 dd (J = 11.7, 8.0)
1” - C - - -
2” 108.3 CH 7.33 1 s
3” 149.0 C - - -
4” 142.3 C - - -
5” 149.0 C - - -
6” 108.3 CH 7.33 1 s
7” 167.3 C - - -
3”,

5”-OCH3
56.0 CH3 3.83 6 s
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3. Discussion

The genus Salvia L. is characterized by the presence of several different secondary metabolites,
mainly phenolic derivatives and terpenoids [3].

In the present study, overall, 20 compounds were isolated from S. willeana
polar extracts, i.e., two triterpenoids, namely ursolic acid (1) and maslinic acid (2),
one monoterpene glucoside, (1S,2R,4R)-1,8-epoxy-p-menthan-2-yl-O-β-D-glucopyranoside
(3), one megastigmane glucoside, (6R,9S)-3-oxo-α-ionol β-D-glucopyranoside (4), five simple
phenolic compounds, i.e., hydroxy-tyrosol (5), p-anisic acid (6), eleutheroside B (syringin) (7),
1-O-p-hydroxybenzoyl-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (8) and eugenylglucoside (9),
two acetophenones, 4-O-β-D-glucopyranosyl acetophenone (picein) (10) and 4-hydroxy-acetophenone
4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-D-glucopyranoside (11), two caffeic acid oligomers,
rosmarinic acid (12) and salvianolic acid K (13), three flavonoids, luteolin-7-O-β-D-glucoside
(cynaroside) (14), 6-hydroxyluteolin 7-O-β-D-glucoside (15) and hesperidin (16), two lignans,
syringaresinol-4-O-β-D-glucopyranoside (17), pinoresinol-4-O-β-D-glucopyranoside (18) and two fatty
acids: linoleic acid (19) and methyl α-linolenate (20).

It is interesting to point out that compounds 7, 16, 17, and 18 had not been previously detected
in Salvia L. Syringin (7) is reported, here, as a component of the Lamiaceae family for the first time.
Moreover, compounds 3, 5, 6, and 8–10 had been previously mentioned only once in the genus,
as follows: 3, 9, 10 [35], 6 [55], 8 [10] and 14, 15 [3] in S. officinalis L., 5 in S. digitaloides Diels [56],
while compound 4 twice in S. nemorosa and S. officinalis L. [35,37]. As for the two triterpenoids 1 and 2,
these have previously been isolated from the acetone extract of the aerial parts of S. willeana [9]. So far,
only 134 Salvia species of the over 1000 species suggested have been investigated [3]. Based on our
results, concerning the polar secondary metabolites, among these species S. willeana showed many
similarities to S. officinalis L., since most of the isolated simple phenols (5, 6, 8–10), as well as the
flavonoids 14 and 15, are found only in these two species (Supplementary Materials Table S1 and the
references herein).

4. Materials and Methods

4.1. Plant Material

Aerial parts of Salvia willeana (Holmboe) Hedge were collected on Troodos Mountain in Cyprus
in April 2004 [8]. A voucher specimen has been deposited in the Agricultural Research Institute
Herbarium of Nicosia [no. ARI 3213].
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4.2. Equipment and Reagents

1H, 13C, and 2D-NMR spectra were recorded in CDCl3 and CD3OD on Bruker DRX 400 (399.95 MHz
for 1H-NMR) and Bruker AC 200 (200.13 MHz for 1H-NMR and 50.3 MHz for 13C-NMR) instruments
at 295 K (Bruker BioSpin GmbH, Silberstetten, Germany). Chemical shifts are given in ppm (δ)
and were referenced to the solvent signals at 7.24/3.31 and 77.0/49.5 ppm for 1H and 13C-NMR,
respectively. COSY, HSQC, HMBC, NOESY, and ROESY (mixing time 950 ms) were performed using
standard Bruker microprograms. High-resolution mass spectra were measured on a Q-TOF 6540
UHD (Aligent Technologies, Santa Clara, California, USA). The solvents used were of spectroscopic
grade (Merck KGaA, Darmstadt, Germany). UV spectra were recorded on a Shimadzu UV-160A
spectrophotometer (Shimadzu; Kyoto, Japan), according to Mabry et al. [57]. Optical rotations
were determined using a Perkin-Elmer Polarimeter 341 (Perkin-Elmer, GmbH, Überlingen, Germany).
GC-MS (Gas Chromatography-Mass Spectrometry) analyses were performed on a Hewlett-Packard
5973–6890 system (Palo Alto, California) operating in EI mode (70 eV) equipped with a split/splitless
injector (220 ◦C), a split ratio 1/10, using a fused silica HP-5 MS capillary column (30 m × 0.25 mm
(i.d.), film thickness: 0.25 µm) with a temperature program for HP-5 MS column from 60 ◦C (5 min)
to 280 ◦C, at a rate of 4 ◦C/min and helium as a carrier gas at a flow rate of 1.0 mL/min. Preparative
HPLC (High-Performance Liquid Chromatography) was performed using a C18 25 cm× 10 mm Kromasil
column on a HPLC system (Jasco PU-2080; JASCO, Tokyo, Japan) equipped with an RI detector Shimadzu
10A (Shimadzu, Kyoto, Japan); flow rate: 1.0 mL/min; concentration of the samples: 3.5–7.0 mg/mL.
All solvents used were of HPLC grade (Merck). MPLC (Medium Pressure Liquid Chromatography)
was performed using Büchi C-615 and Büchi 688 chromatographic pump; columns: Büchi Borosilikat
3.3, (41.0 cm × 4.0 cm), flow rate: 10 mL/min; (15.0 cm × 1.5 cm) flow rate: 3 mL/min; vacuum liquid
chromatography (VLC): silica gel 60H (Merck, Art. 7736) [58]. Column chromatography (CC): silica gel
(Merck, Art. 9385), silica gel 60 (230–400 mesh ASTM, SDS 2050044) gradient elution with the solvent
mixtures indicated in each case; Sephadex LH-20 (Pharmacia Fine Chemicals); cellulose (Avicel, Merck, Art.
2330). Preparative TLC (Thin Layer Chromatography) was performed using pre-coated silica gel 60 plates
(Merck, Art. 5721). Fractionation was always monitored by TLC silica gel 60 F-254, (Merck, Art. 5554)
with visualization under UV (254 and 365 nm) and spraying with vanillin-sulfuric acid reagent (vanillin
Merck, Art. No. S26047 841) [59] and Neu’s reagent for phenolics [60]. Analytical solvents were obtained
from Panreac Quimica SA (Barcelone, Spain, Italy), while deuterated solvents were purchased from Merck,
KGaA (Darmstadt, Germany). Di-phosphorus pentoxide was purchased from Chemlab, Belgium.

4.3. Extraction and Chromatography

The air-dried powdered aerial parts of S. willeana (0.43 kg) were successively extracted at
room temperature with cyclohexane, dichloromethane, MeOH, and MeOH:H2O (5:1) (2 L of each
solvent, twice for 48 h) [8]. A portion of the latter extract (9.0 g) was fractionated on a RP18-MPLC
(41.0 × 4.0 cm) using a H2O: MeOH gradient system (100% H2O→ 100% MeOH; steps of 10% MeOH;
50 min each; 50% MeOH: 50% EtOAc 50 min; 100% EtOAc 50 min) to yield twenty three fractions
(A–V) of 500 mL each. Fraction D (598.8 mg; H2O:MeOH 85:15) was similarly purified by RP18-MPLC
(15 cm × 1.5 cm) to obtain three sub-fractions (1–3). The first two sub-fractions were combined
together (sub-fraction DA, 364.5 mg), subjected to a Sephadex LH-20 column and eluted with
100% methanol to afford 61 fractions combined in 13 groups (DAA–DAM). Group DAJ (4.2 mg)
was identified as salvianolic acid K (13). Group DAC (12.9 mg) was subjected to RP18-HPLC
(RID; isocratic elution using MeOH:CH3COOH 5% 30:70; flow-rate: 1.0 mL/min) and afforded
1-O-p-hydroxybenzoyl-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (8) (Rt = 14.0 min, 0.5 mg) and
4-O-β-D-glucopyranosyl-acetophenone (picein) (10) (Rt = 17.2 min, 0.7 mg). Group DAD (9.3 mg)
was purified by prep. TLC on silica gel using CHCl3:MeOH:AcOH (7:1.5:1.5) as the eluent and
yielded hydroxytyrosol (6.3 mg) (5). Fraction H (718.3 mg) was fractionated by CC on a Sephadex
LH-20 (25.0 cm × 3.2 cm) using H2O:MeOH (20:80 to 0:100) for gradient elution to afford luteolin
7-O-β-D-glucoside (0.7 mg) (14). Groups HC to HG were combined (HC′; 193.7 mg) and purified by
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CC (12.2 cm × 2.2 cm) over silica gel with cyclohexane: DM:EtOAc:MeOH mixtures of increasing
polarity to yield nine groups (HC′A–HC′I). Group HC′C (14.2 mg; eluted with EtOAc:MeOH 97:3 to
94:6) was purified by RP18-HPLC (RID; MeOH; H2O 40:60; flow rate: 1 mL/min) to obtain syringin
(Rt = 56.4 min, 0.1 mg) (7), (1S,2R,4R)-1,8-epoxy-p-menthan-2-yl-O-β-D-glucopyranoside (Rt = 74.2 min,
0.9 mg) (3), (6R,9S)-3-oxo-α-ionol-β-D-glucopyranoside (Rt = 116.5 min, 0.5 mg) (4), eugenyl-glucoside
(Rt = 130.1 min, 0.3 mg) (9). Combined groups HJ to HL (HJ′; 48.9 mg; eluted with H2O:MeOH 50:50)
were subjected to CC over silica gel using cyclohexane: DM:EtOAc:MeOH mixtures of increasing
polarity (60 fractions). Purification of fraction HJ′E (2.1 mg; eluted with EtOAc:MeOH 90:10)
was carried out by prep. TLC on silica gel, using CHCl3:MeOH:AcOH (9.0:1.0:0.1) and afforded
syringaresinol-4-O-β-D-glucopyranoside (0.9 mg) (17) and pinoresinol-4-O-β-D-glucopyranoside
(1.2 mg) (18). Combined groups HM to HP (HM′; 86.7 mg) were fractionated by RP18-HPLC
(MeOH 58%:H2O 42%; flow rate: 1 mL/min) and yielded rosmarinic acid (Rt = 10.6 min, 2.2 mg)
(12) and p-anisic acid (Rt = 18.9 min, 0.1 mg) (6), and the sub-fraction HM′14b (Rt = 16.7 min,
5.9 mg), which was further purified by prep. TLC on silica gel with EtOAc:AcOH:H2O
(65:15:20) and led to the isolation of hesperidin (3.0 mg) (16) and of 4-hydroxyacetophenone
4-O-(3,5-dimethoxy-4-hydroxybenzoyl)-β-D-glucopyranoside (2.8 mg) (11). Combined groups HT to
HV (HT′; 176.5 mg), subjected to CC on cellulose (11.0 cm × 3.2 cm) using as eluent AcOH:H2O
(30:70) afforded 79 fractions. Fraction HT′H (4.8 mg) was purified by prep. TLC on silica gel
with EtOAc:AcOH:H2O (65:15:20) to obtain 6-hydroxyluteolin 7-O-β-D-glucoside (0.9 mg) (15).
The purification of fraction N (248.5 mg) was performed on silica gel CC (15.2 cm × 2.0 cm) using
mixtures of cyclohexane: DM:EtOAc:MeOH of increasing polarity and afforded methyl α-linolenate
(C18:3) (1.4 mg) (20) and ursolic acid (4.7 mg) (1). Groups NB′ (7.4 mg) and NF (19.6 mg) were subjected
to prep. TLC on silica gel with CHCl3:MeOH:AcOH (9.5:0.5:0.05) and yielded linoleic acid (C18:2)
(0.5 mg) (19) and maslinic acid (18.3 mg) (2), respectively. All obtained extracts, fractions, and isolated
compounds were evaporated to dryness in vacuum under low temperature and then were put in
activated desiccators with P2O5 until their weights had stabilized.

4.4. NMR Data of 5, 8, and 13

Compound 5: Yellow amorphous powder; 1H-NMR (CD3OD, 400 MHz): 2.66 (2H, t, J = 7.3, H-7),
3.66 (2H, t, J = 7.3, H-8), 6.52 (1H, dd, J = 8.0, 2.0, H-6), 6.65 (1H, d, J = 2.0, H-2), 6.67 (1H, d, J = 8.0, H-5).

Compound 6: White amorphous powder; 1H-NMR (CD3OD, 400 MHz): 3.91 (3H, s, OCH3),
6.85 (2H, d, J = 8.5, H-3/H-5), 7.89 (2H, d, J = 8.5, H-2/H-6).

Compound 8: White amorphous powder; 1H-NMR (CD3OD, 400 MHz): δ 3.38 (1H, m, H-5′),
3.47 (2H, m, H-2′, H-3′), 3.56 (2H, s, H-5a,b”), 3.61 (1H, m, H-6b′), 3.73 (1H, d, J = 9.6, H-4b”),
3.90 (1H, d, J = 2.2, H-2”), 3.96 (1H, d, J = 9.6, H-4a”), 3.99 (1H, d, J = 11.5, H-6a′), 4.96 (1H, d, J = 2.2,
H-1”), 5.64 (1H, d, J = 7.9, H-1′), 6.84 (2H, d, J = 8.7, H-3, H-5), 7.96 (2H, d, J = 8.7, H-2, H-6).

Compound 13: Yellow amorphous powder; [a]20
D + 0.36◦ (c 0.350 MeOH); 1H-NMR (CD3OD,

400 MHz): δ 2.90 (1H, dd, J = 14.0, 9.8, H-7′), 3.07 (1H, dd, J = 14.0, 3.8, H-7′), 4.24 (1H, d, J = 6.5,
H-8”), 4.88 (1H, d, J = 6.5, H-7”), 5.02 (1H, dd, J = 9.8, 3.8, H-8′), 6.31 (1H, d, J = 16.0, H-8), 6.38 (1H,
d, J = 8.0, H-5), 6.62 (1H, dd, J = 8.0, 1.6, H-6′), 6.66 (1H, d, J = 8.0, H-5′), 6.74 (1H, d, J = 8.0, H-5”),
6.76 (1H, s, H-2′), 6.82 (1H, dd, J = 8.0, 2.0, H-6), 6.84 (1H, dd, J = 8.0, 2.0, H-6”), 6.98 (1H, d, J = 2.0,
H-2”), 7.01 (1H, d, J = 2.0, H-2), 7.47 (1H, d, J = 16.0, H-7).

Supplementary Materials: The following are available online at www.mdpi.com/2223-7747/7/1/18/s1. Table S1:
Non-volatile secondary metabolites of Salvia L.
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