
Stress Fibers in the Splenic Sinus Endothelium In Situ: Molecular 
Structure, Relationship to the Extracellular Matrix, and Contractility 
Detlev Drenckhahn and Joachim Wagner 
Institute of Anatomy and Cell Biology, University of Marburg, I)-3550 Marburg, West Germany 

Abstract. In the present study, we investigated struc- 
tural and functional aspects of  stress fibers in a cell 
type in situ, i.e., the sinus endothel ium of  the human  
spleen. In this cell type, stress fibers extend under- 
neath the basal plasma membrane  and are arranged 
parallel to the cellular long axis. Ultrastructurally, the 
stress fibers were found to be composed of  thin actin- 
like filaments (5-8 nm) and thick myosin-like fila- 
ments (10-15 nm x 300 nm). Actin filaments dis- 
played changes in polarity (determined by S- l -myos in  
subfragment decoration), which may allow a sliding 
filament mechanism. At their plasmalemmal attach- 
ment  sites, actin filaments exhibited uniform polarity 
with the S-1-arrowhead complexes pointing away 
from the plasma membrane.  Fluorescence microscopy 
showed that the stress fibers have a high affinity for 

phalloidin and antibodies to actin, myosin, t ropomyo- 
sin, and a-actinin. Vinculin was confined to the cyto- 
plasmic aspect of  the plasmalemmal termination sites 
of  stress fibers, while laminin, fibronectin, and colla- 
gens were located at the extracellular aspect of  these 
stress f iber-membrane associations. Western blot 
analysis revealed polypeptide bands that contained ac- 
tin, myosin, and a-actinin to be major components  o f  
isolated cells. Exposure of  permeabilized cells to 
MgATP results in prominent  changes in cellular shape 
caused by stress fiber contraction. It is concluded that 
the stress fibers in situ anchored to cell-to-extracellular 
matrix contacts can create tension that might allow 
the endothel ium to resist the fluid shear forces of  
blood flow. 

S 
TRESS fibers represent the most prominent structural 
component of the actin filament system of most cell 
types in tissue culture. Their molecular structure and 

dynamics in various processes of cell biology are subjects of 
much recent interest (for review, see references 31, 33, and 
50). Previous studies have demonstrated stress fibers to occur 
also in certain cells in situ such as in flattened fibroblasts 
located underneath scales of fish (10) or in endothelial cells 
of the vascular system (14, 28, 65, 67). These observations 
demanded more detailed studies regarding the degree of mo- 
lecular relationship between stress fibers in vitro and in situ, 
including their association with components of the extracel- 
lular matrix. Apart from these more general aspects, a major 
concern of the present study was to obtain more detailed 
insight into structural and functional aspects of vascular en- 
dothelial stress fibers, which obviously play a crucial role in 
maintaining intimal integrity (24, 26-28, 65, 67). 

In search of a source of vascular endothelium suitable for 
these studies, we found that endothelial cells of the sinus 
vessels in the human spleen have many advantages in com- 
parison to endothelial cells of other vascular segments (14, 
15). These advantages are the uniform rod-shaped morphol- 
ogy and parallel alignment of cells, the existence of well- 
defined sites of contacts to the extracellular matrix, and 
importantly, a highly ordered pattern of stress fibers. Previous 
electron microscope studies on the splenic sinus endothelium 
(11, 13, 14, 35) have shown that bundles of microfilaments 

(which are shown here to represent typical stress fibers) are 
oriented parallel to the cellular long axis. Each end of the 
stress fibers appears to be attached to the basal (abluminal) 
plasma membrane at sites where the annular component of 
the basement membrane abuts the endothelial cells (see Fig. 
26). This annular component of the basement membrane is 
identical to the argyrophilic rings, i.e., the ring fibers that 
enclose the sinus wall like hoops around the staves of a cask 
(25). Outside their contact zone with ring fibers, endothelial 
cells lack a basal lamina (1 l, 13, 35). Thus, sinus endothelial 
cells represent an ideal type of endothelium for studying the 
site of contact of actin filaments to the plasma membrane 
and to the extracellular matrix in situ. 

Here we show that sinus endothelial stress fibers can con- 
tract and cause changes in cellular shape. The stress fibers 
contain actin, myosin, a-actinin, and tropomyosin, and are 
composed of myosin-like filaments and actin filaments with 
changing polarities that are arranged in a way that might allow 
a sliding filament mechanism. Like stress fibers in vitro, the 
plasmalemmal attachment sites of the stress fibers in situ 
contain vinculin and, on the extracellular side, laminin, fibro- 
nectin, and collagens. 

Materials and Methods 
Fluorescence Microscopy 
Human spleens removed surgically because of traumatic rupture, gastric cancer. 
or congenital spherocytosis were obtained immediately after exstirpation. Small 
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tissue pieces (~ 1 mm 3) were frozen in isopentane cooled with liquid nitrogen. 
Frozen tissue blocks were either used for eryosectioning or for freeze-drying 
and subsequent embedding in Epon as described elsewhere ( 16, 19-21). Cryostat 
sections 3-5-#m thick and 0.5-l-urn thick plastic sections of the freeze-dried 
and Epon-embedded tissue (from which the resin had been previously removed) 
were incubated with the desired antibodies using the indirect immunofluores- 
cence technique as described (16, 21 ). 

Sequential immunofluorescence was used to display two different antibodies 
in the same section. The first antibody was visualized by indirect immunoflu- 
orescence (26) and photographed. The initial staining was then eliminated by 
removing the immunoglobulin with 0.05% KMnO4 in 0.1% H2SO4 for 10 s 
followed by exposure to 0.5% Na2S205 for 5-10 s (16). After the sections had 
been checked for complete removal of the previous stain (which always was the 
case under these conditions), they were reincubated with another antibody, 
which again was visualized by indirect immunofluorescence. 

Staining with tetramethylrhodamine isothiocyanate (TRITC)~-labeled phal- 
loidin (which is a specific probe for polymerized actin, F-actin; 22) was done 
using cryostat sections fixed with 2% paraformaldehyde in phosphate-buffered 
saline (PBS) for 15 rain. TRITC-phalloidin was used at a concentration of 1.4 
~g/ml. Paired fluorescence with TRITC-phalloidin and antibodies was done 
by mixing TRITC-phalloidin with the fluorescein isothiocyanate-labeled goat 
anti-rabbit IgG (Miles, Frankfurt, FRG), which was used at a dilution of 1:40 
in PBS. 

Isolated endothelial cells were attached to glass slides coated with gelatin. 
The attached cells were fixed with 2% paraformaldehyde in PBS (15 min), 
rinsed with PBS (3x 5 min), made permeable with cold acetone (-20"C, 5 
min), washed with PBS that contained 1% bovine serum albumin (BSA) (15 
min), and then incubated with antibodies or TRITC-phalloidin. Cells that had 
been stored in 50% glycerol in buffer B (vide infra) were stained in suspension 
and finally spread on glass slides (mounted in 70% glycerol in PBS) for 
microscopic examination. 

Controls were done in which the specific antibodies were replaced by (a) the 
preimmune serum in a dilution of 1:10 or (b) the specific antibodies absorbed 
with an excess of their respective antigens. Specificity of staining with TR1TC- 
phaUoidin was controlled by a 1:10 (wt/wt) mixture of TRITC-phalloidin and 
unlabeled phalloidin (Boehringer Mannheim GmbH, Mannheim, FRG). Under 
these control conditions, no staining with antibodies and TRITC-phalloidin 
w a s  s e e n .  

Antibodies, Immunoblotting 

Antibodies to chicken gizzard and pectoral muscle actin and a-actinin (21), 
chicken gizzard vinculin (21) and trnpomyosin (18), human uterine myosin 
(8), human platelet myosin (49) and calf thymus myosin (17), human tissue 
culture (skin) fibroblast vimentin (61), human serum fibronectin (54), human 
placental and mouse sarcoma laminin (purchased from Medac, Hamburg, FRG 
and obtained from Dr. Mollenhauer, Marburg), and human skin types I and 
III collagen (29) were prepared and checked for specificity as described in the 
references indicated. IgG fractions of the antisera were prepared by ammonium 
sulfate precipitation, gel filtration on Sephadex G 150, and ion exchange 
chromatography on DE 52 (Whatman, Maldstone, England). 

Pellets of isolated sinus endothelium were subjected to SDS PAGE (5-15%) 
in the presence of 2% ~-mereaptcethanol. Electrnphoretically separated proteins 
were transferred to nitrocellulose paper (Schleicher & Schiill, Darmstadt, FRG) 
which was then processed for antibody staining using the peroxidase, anti- 
peroxidase method as described (I 9). 

Electron Microscopy, S-1 Decoration 

Small tissue pieces of the spleen were fixed overnight at 4"C with 2% glutaral- 
dehyde in PBS, postfixed with 2% OsO4 in PBS for 2 h, dehydrated in graded 
ethanol series, and embedded in EPOn. Thin sections (50-100 nm) were 
counterstained with uranyl acetate and lead citrate and viewed with a Philips 
300 electron microscope. For analysis of the polarity of actin filaments in the 
sinus endothelium, isolated cells were permeabilized for 5 h in a 1:1 (vol/vol) 
mixture of glycerol and Pipes buffer (0.1 M Pipes, 5 mM MgC12, 0.1 mM 
EDTA at pH 7.0). Cells were then placed in 5% glycerol and 95% Pipes buffer 
and incubated for 2 h with 2 mg/ml S-I myosin snbfragment in Pipes buffer. 
S-I fragment was prepared from chicken pectoral muscle (51). 

Control incubations were done with 2 mg/ml S-I myosin subfragment in 
Pipes buffer that contained 5 mM ATP (pH 7.0). After incubation cells were 

1. Abbreviation used in this paper." TRITC, tetramethylrhodamine isothiocya- 
nate. 

rinsed with Pipes buffer (5 rain). Pellets of the cells were fixed for I h in 2% 
glutaraldehyde and 0.2-2% tannic acid (5), in Pipes buffer, adjusted to pH 7.4 
with NaOH. Pellets were then rinsed for 30 rain in Pipes buffer, postfixed with 
1% OsO4 in cacodylate buffer (pH 6.0) for 1 h, followed by block staining in 
1% aqueous uranyl acetate (1 h), dehydration in alcohol, and embedding in 
Epon. 

Isolation of Endothelial Cells 
All steps were done at 4"C. Splenic tissue was extensively minced and teased 
with tweezers and razor blades and suspended for 30-60 rain in buffer A (96 
mM NaCl, 8 mM KH2PO4, 5.6 mM Na2HPO4, 1.5 mM KCI, 10 mM EDTA 
at pH 6.8). After gentle agitation and continuous passage through a Pasteur 
pipette, detached cells were filtered through a 200-#m mesh nylon cloth and 
collected at 400 g for 10 min. The pellet consisted mainly of red blood cells, 
white blood cells, platelets, and a rather small proportion of sinus endothelial 
cells. Treatment of minced tissue with 0.05% coUagenase or 0.1% trypsin led 
within a few minutes to the formation of a sticky gel-like substance that 
prevented any separation of the cells. 

Sinus endothelial cells were scparated from blood cells by centrifngation on 
Percoll Hypaque (Pharmacia, Uppsala, Sweden). 1 ml of pelleted cells suS- 
pended in 1.073 g/ml Pereoll in PBS were layered underneath the following 
Pereoll solutions in isotonic PBS: 1 ml of density 1.060 g/ml, 1 ml of 1.007 g,/ 
ml, 1 ml of 1.035 g/ml, and 1 ml of 1.022 g/ml. After centrifugation at 100 g 
for 30 min, the fraction collected from the interphase between steps of density 
1.047/ 1.035 g/ml contained isolated sinus endothelial cells at high purity. 

Contraction Studies 

Contraction studies were done at room temperature. Isolated endothelial cells 
were suspended in buffer B that contained 100 mM KC1, 3 mM MgC12, 3 mM 
EGTA, 10 mM imidazole (or 10 mM sodium phosphate) pH 6.9 (7). Samples 
of endothelial cells were permeabilized by (a) 30-min exposure to 0.2% Triton 
X-100 in buffer B (4"C) or (b) by 3 h (4"C) up to several days (-15"C) exposure 
to 50% glycerol in buffer B. The cells were then washed with buffer B and 
exposed to buffer B that contained 0.5-2 mM ATP (contraction solution). In 
some experiments, 3 mM CaC12 (prepared from an ion standard solution; 
Huka, Switzerland) was added to the contraction solution. The free Ca 2÷ 
concentration of this solution has been calculated to be 1 x 10 -S M (7). Control 
experiments were done in which ATP was replaced by I-5 mM pyrophosphate, 
AMP, ADP, or the ATP analogues AMP-PNP and AMP-PCP (Boehringer 
Mannheim GmbH). Cells were incubated in test tubes with contraction solution 
or the various control solutions and were then placed on slides for microscopic 
examination (test tube assay). For direct examination of cellular changes, the 
space between the slide and coverslip was perfused with contraction solution 
or the corresponding control solutions. In some instances, individual cells could 
be examined by incubating first with the various control solutions and finally 
with contraction solution. 

Results 

Morphology of lsolated Endothelial Cells 
The cell fraction collected from the interface between steps of 
density 1.047/1.035 g/ml Percoll Hypaque contained isolated 
sinus endothelial cells at high purity (Fig. 1). Contamination 
with some free nuclei and few stellate-shaped reticular cells 
(parasinusoidal or cordal cells) was negligible. The isolated 
endothelial cells showed the typical features of their in situ 
morphology which clearly distinguished them from all other 
cell types of the spleen: The cells were rod-shaped (up to 80- 
#m long) with a bulging perinuclear area. Almost all ceils 
were characterized by periodically arranged groove-like inci- 
sures. These incisures represent the sites where the belt-like 
formations of the basement membrane, the argyrophilic ring 
fibers, are inserted in the basal cell surface (see Figs. 3 and 
26). The distance between adjacent ring fiber grooves in cells 
in situ is 2-4 ~m (35, and unpublished observations), which 
is exactly the distance found between adjacent incisures in 
isolated ceils. 
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Figures I and 2. (Fig. I) Phase contrast micrograph ofisolat~l sinus 
endothelial cells. Note the rod-shaped morphology and the character- 
istic bulging segments (arrowhead). Bar, 10 ~m. (Fig. 2) Separated 
proteins of isolated sinus endothelial cells (Fig. 1) transferred to 
nitrocellulose paper and labeled with the antibodies indicated. In 
Coomassie Blue-stained lanes (left two lanes), protein bands corre- 
sponding to antibody-labeled bands are indicated by arrows. Actin-, 
myosin-, and a-actinin-containing polypeptide bands are major com- 
ponents of the sinus endothelium. 

Immunoblotting Studies 

Proteins of isolated sinus endothelial cells were separated by 
SDS PAGE and transferred to nitrocellulose paper (Fig. 2). 
lmmunolabeling of the blotted gels revealed distinct polypep- 
tide bands specifically labeled with antibodies to myosin (Mr 
~200,000), vinculin (Mr - 130,000), a-actinin (Mr ~ 100,000), 
vimentin (Mr ~55,000), actin (Mr ~42,000), and tropomyosin 
(Mr- 36,000). No other cross-reactive polypeptide bands were 
detected. 

Ultrastructure o f  Stress Fibers 

The overall fine structural organization of the cytoskeleton in 
the human sinus endothelium was largely consistent with 
previous descriptions dealing with the sinus endothelium in 
the human (11, 35) and rat (13) spleen (see Fig. 26). Arrays 
of parallel-aligned stress fibers were strictly confined to the 
cellular segments interposed between adjacent extracellular 

matrix contacts. The most prominent stress fibers (up to 0.4 
#m in diameter) extended underneath the basolateral plasma 
membrane which borders on the interendothelial slits (not 
shown). In longitudinal and transverse sections of stress fibers 
in glycerol-extracted ceils, two types of filaments were seen 
(Figs. 3 and 4): (a) microfilaments with a diameter of 5-7 
nm, and (b) thicker filaments, -10-15 nm in diameter and 
150-300-nm long (Fig. 4, A and B). The ends of many of 
these myosin-like filaments appeared to splay (Fig. 4B) into 
finer subfilaments. The thin actin-like filaments were fre- 
quently observed in parallel alignment with the myosin-like 
filaments (Fig. 4B). The distance between thin and thick 
filaments was frequently as close as 10-20 nm (Fig. 4B), 
which is about the space observed between actin filaments 
and the surface of myosin filaments in striated muscle (60). 

S-1 Myosin Subfragment Decoration 

Microfilaments of endothelial stress fibers were identified as 
actin-containing filaments by their affinity for myosin 
subfragments S-1. Myosin fragments formed typical arrow- 
head complexes along the actin filaments, which allowed the 
visualization of actin filaments of opposite polarities (Figs. 6 
and 7). At the plasmalemmal attachment site of stress fibers, 
located at both sides of the ring fiber grooves, actin filaments 
terminated in aggregates of electron-dense material. In favor- 
able planes of sections, the attached filaments displayed a 
uniform polarity with the arrowheads pointing away from the 
attachment site (Figs. 5B and 7). 

Immunohistochemistry 

Cytoskeleton. In tissue sections (Figs. 8-12), fluorescent phal- 
loidin and antibodies to actin, myosin, tropomyosin, and a- 
actinin displayed a strong affinity for the arrays of stress fibers 
located in the basal portions of the sinus endothelium (indi- 
vidual stress fibers can be seen in Figs. 9A, 10, 11, 17, and 
18). Antibodies to a-actinin differed from all other antibodies 
in producing an interrupted immunostain of the stress fibers 
which was most clearly seen in semithin (0.5 #m) sections of 
quick-frozen, freeze-dried, and plastic-embedded tissue. As a 
rule, 4-6 fluorescent dots were observed along individual 
stress fibers extending between adjacent extracellular matrix 
contacts. 

At regular intervals of 4-6 ~m, the arrays of stress fibers 
were interrupted by unstained transverse bands 0.5-1-~m 
wide. These intersections exactly corresponded to the sites of 
contact of endothelial cells with the ring fibers as determined 
by simultaneous staining of the same sections with both 
antibodies to contractile proteins and to fibronectin (Figs. 8 
and 9). As seen in Figs. 12 and 19, these sites of stress fiber- 
to-membrane and membrane-to-extracellular matrix associa- 
tion were brightly labeled with antibodies to vinculin (pairs 
of fluorescent dots in cross-section and pairs of stripes in 
tangential sections of ring fibers). 

Isolated sinus endothelial cells (Figs. 17-20) displayed a 
virtually identical distribution of actin, myosin, a-actinin, 
tropomyosin, and vinculin as seen in tissue sections. The 
cytoplasm overlying the ring fiber grooves was unstained and 
appeared as nonfluorescent transverse bands (surface view) or 
gaps (lateral view). Ocassionally individual stress fibers were 
revealed that showed a continuous fluorescence with phalloi- 
din and antibodies to actin. Antibodies to myosin and a- 
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Figures 3 and 4. (Fig. 3) Longitudinal sections of a glycerol-extracted isolated endothelial cell. Rj-P~ denote grooves located at the former rites 
of contact with ring fibers in situ. Arrow points to tangentially sectioned stress fibers. Arrowhead indicates the area shown in the inset at higher 
magnification. Bars, 1 #m. (Fig. 4) Longitudinal (.4 and B) and transverse (C and D) sections of stress fibers of glycerol-extracted cells showing 
thin actin-like filaments (arrowheads) and thicker myosin-like filaments (arrows). Large arrow in B points to splaying head portion of a myosin- 
like filament. Bars: (A-C) 100 nm; (D) 10 nm. 

Figures 5-7. S-I fragment decoration of actin filaments in sinus endothelial stress fibers. Stress fibers are composed of actin filaments with 
changing polarities (indicated by small arrows, Fig. 5B and 7). Thick arrows in Figs. 5 and 7 point to dense material associated with the 
plasmalemmal attachment site of the stress fibers. At these sites actin filaments are uniformly polarized with the arrowheads pointing away 
from the membrane. In Fig. 7 stress fiber densities (D) and myosin-like filaments (arrowheads) are seen. Bars: (5 A) l urn; (5B-7) 0.5 t~m. 
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Figures 8-12. Frozen section (Fig. 8, A and B) and semithin plastic 
sections (Figs. 9-12) of the sinus wall stained with rhodamine phal- 
loidin (Fig. 8A) and antibodies to fibronectin (Figs. 8B and 9B), 
myosin (Fig. 9A), a-actinin (Fig. 10), tropomyosin (Fig. 11), and 
vinculin (Fig. 12). Double-labeling of the same sections with antibod- 
ies to fibronectin (Figs. 8 B and 9 B) and rhodamine-phalloidin (Fig. 
8A) and anti-myosin (Fig. 9B) demonstrate that the stress fibers are 
confined to the cellular segments interposed between the fibronectin- 
containing ring fibers (arrowheads point to individual ring fibers; L 
marks the sinus lumen). Individual stress fibers are well seen in Figs. 
9A, 10, and 11 (arrows). Anti-vinculin (Fig. 12) stains the plasmalem- 
mal attachment site of the stress fibers located at the surface of the 
ring fibers (pairs of strips in tangential and pairs of dots in transverse 
sections of the ring fibers, arrows). Bars, 10 #m. 

actinin, however, often caused an interrupted fluorescence of 
the stress fibers (Fig. 17). Immunostain specific for vinculin 
was confined to the stress fiber termini located at both sides 
of the ring fiber grooves (Fig. 19). Antibodies to the interme- 
diate filament protein vimentin stained the endothelial cells 

along their whole length without any interruptions (Figs. 13 
and 20). This pattern correlates well with the ultrastructural 
distribution of intermediate filaments which were found 
throughout the whole length and cross-sectional profile of the 
cells (reference 11, and unpublished observations). 

Extracellular Matrix. Ring fibers displayed a strong affinity 
for antibodies to laminin, fibronectin, and to type I and type 
III collagen (antibodies to types IV and V collagen were not 
tested). Laminin immunoreactivity (Fig. 14) was confined to 
a delicate zone located at the very periphery of the ring fibers 
(closest to the cell surface). Anti-fibronectin fluorescence 
(Figs. 8 and 9) was also concentrated in the periphery of the 
ring fibers but in a broader zone as compared with anti- 
laminin. Types I and III collagens (Figs. 15 and 16) were 
located throughout the whole cross-sectional profile of ring 
fibers, with still some preference for their periphery. Staining 
intensity seen with anti-type III collagen was considerably 
stronger than that observed with anti-type I collagen. 

Contraction Studies. When suspensions of permeabilized 
ceils were exposed to 0.5 or 1 mM ATP in buffer A (absence 
of Ca2+), virtually all endothelial cells displayed typical mor- 
phological changes (Figs. 21-23) which were characterized by 
(a) formation of bulging segments along the abluminal cellular 
surface (serrated appearance) and (b) different degrees of 
shortening of the cells. This ATP-induced contraction and 
segmental bulging started within a few seconds after addition 
of ATP and was completed within a period of 1-3 min. No 
cellular changes were observed when ATP was replaced by 1- 
5 mM pyrophosphate (Fig. 23B), AMP, ADP, or the ATP 
analogues AMP-PNP and AMP-PCP. Moreover, no changes 
occurred in the absence of Mg 2+ (5 mM EDTA). Quite in 
contrast to endothelial cells, skeletal muscle myofibrils (rou- 
tinely added to the suspension of endothelial ceils as an 
internal biological standard) did not contract in response to 
Mg 2+ ATP and, expectedly, needed addition of micromolar 
concentrations of Ca 2÷ for shortening. To determine whether 
the ATP-induced morphological changes of endothelial cells 
were caused by contraction of stress fibers, cells were labeled 
with fluorescent phalloidin and were then examined by fluo- 
rescence microscopy before and after addition of ATP (phal- 
loidin at 1.4 ug/ml did not inhibit contraction of both stress 
fibers and myofibrils). As shown in Figs. 24 and 25, cellular 
shortening and segmental bulging was clearly correlated with 
shortening of stress fibers. Thus, these changes in cellular 
shape and length have to be considered as motile events 
mediated by contraction of stress fibers. 

Discussion 

Molecular Structure o f  Stress Fibers 

Like stress fibers in cultured cells (5, 55), endothelial stress 
fibers in situ were composed of actin filaments in parallel 
alignment with non-uniform polarity. Often actin filaments 
with opposite polarities were seen in close proximity. In 
addition to actin filaments, the stress fibers contained numer- 
ous thicker (10-15 rim) and shorter (200-300 nm) filaments, 
the dimensions and morphology of which are similar to 
filaments formed from myosin isolated from a variety of 
nonmuscle cells (2, 48, 49, 56, 68). Like myosin filaments in 
vitro, endothelial myosin-like filaments appeared to splay into 
finer subfdaments most probably representing parts of indi- 
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Figures 13-16. (Fig. 13) Immunostaining specific for vimentin extends throughout the whole profile and length of the sinus endothelial cells. 
Bar, 10 um. (Figs. 14-16) Localization of components of the extracellular matrix (for fibronectin see Figs. 8 B and 9 B). Anti-laminin (Fig. 14) 
is confined to the very periphery of ring fibers (arrowheads), while collagens type III (Fig. 15) and type I (Fig. 16) extend more into the cores 
offing fibers (l-urn plastic section). Bars, 10 t~m. 

vidual myosin molecules. In SDS PAGE of isolated endothe- 
lial cells, the protein band that contained the myosin heavy 
chains was the most prominent protein band next to the actin- 
containing band. This finding correlates well with the rather 
high density of thick myosin-like filaments observed in sec- 
tions of both well-fixed spleen tissue (reference 14, and un- 
published observations) and glycerol-extracted, isolated cells. 
The present observation in endothelial stress fibers of longi- 
tudinally arranged myosin-like filaments located within arrays 
of actin filaments with opposing polarity strongly supports 
the general assumption that stress fibers create tension by a 
sliding filament mechanism (32, 39, 55) related to muscle 
contraction (60) (Fig. 26). Myosin-like filaments have previ- 
ously not been demonstrated convincingly in any kind of 
stress fiber. The only indication of the existence of a popula- 
tion of thicker and shorter filaments (17 x 250 nm) in stress 
fibers was obtained in HeLa cells permeabilized with saponin 
in the presence of glutaraldehyde and tannic acid (46). Re- 
cently, bipolar myosin-like filaments have also been shown in 
the circular contractile ring of the intestinal brush border (36). 

In the majority of cells, antibodies against myosin (and 
tropomyosin) did not produce the typical, interrupted sarco- 
mere-like staining pattern known from stress fibers in aortic 

endothelium in situ (65) and most cell types in vitro (31, 33, 
50, 63). This is probably due to two reasons. First, the myosin- 
containing segments might optically overlap in these rather 
thick ribbon-shaped arrays of stress fibers, so that only occa- 
sionally an interrupted staining pattern was seen (Fig. 17). 
Second, in most stress fibers of glycerol-extracted cells, 
myosin-like filaments displayed a more or less even distribu- 
tion throughout the whole length of the fibers without any 
obvious segmental arrangement (Fig. 6). This is also the case 
in the contractile ring that extends along the zonula adherens 
of epithelial cells (36). In contrast to the myosin-like immu- 
nostain, antibodies to a-actinin produced a characteristic 
interrupted staining pattern seen along numerous stress fibers. 
Similar interruptions are well-known from a-actinin in stress 
fibers of cultured ceils (43) and most probably result from a 
selective affinity of a-actinin antibodies for the stress fiber 
densities (40). 

Stress Fiber-Membrane Association 

The well-defined sites of contact of sinus endothelial stress 
fibers to the plasma membrane allowed a detailed analysis of 
the stress fiber-membrane association in situ. At the plas- 
malemmal termination site, virtually all filaments had the 
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Figures 17-25. (Figs. 17-20) Distribution of myosin (Fig. 17), actin (Fig. 18), vinculin (Fig. 19), and vimentin (Fig. 20) in isolated sinus 
endothelial cells. Each fluorescent segment in Figs. 17 and 18 is composed of arrays of stress fibers. The arrow in Fig. 17 points to interruptions 
seen along some of the stress fibers. The unstained transverse bands correspond to the extracellular matrix contacts of the cells (ring fibers). 
Vinculin (Fig. 19) is concentrated at the termination site of stress fibers located at both sides of the ring fiber grooves (dashes). Intermediate 
filaments, visualized by anti-vimentin (Fig. 20), extend throughout the entire length of the cells without any interruptions. Bars, 10 urn. (Figs. 
21-23) Phase contrast micrographs of isolated endothelial cells permeabilized with 50% glycerol in buffer A. Note distinct ATP-induced 
changes in cellular shape (bulging segments) and length (arrows and arrowheads). Pyrophosphate (PP) has no visible effect (for further control 
experiments refer to text). Bars, 10 t~m. (Figs. 24 and 25) Effect of MgATP on stress fibers visualized by pre-labeling of stress fibers with 
rhodamine-phalloidin. MgATP-induced shortening of the cells is accompanied by shortening of stress fibers (arrow). Bars, l0 urn. 

same orientation with the arrowhead complexes of  the bound 
myosin fragments pointing away from the plasma membrane. 
A similar polarity of  actin filaments has been previously 
described for other types of actin filament-membrane asso- 
ciations (5, 42). Like stress fibers in vitro, both vinculin and 
a-actinin were found concentrated at the plasmalemmal ter- 
mination site of sinus endothelial stress fibers, which thus 
appear to be closely related to focal adhesion plaques of  cells 
in tissue culture (30, 45). 

Relation to Components o f  the Extracellular Matrix 

Studies mainly performed on cells in vitro indicate that the 
cytoskeleton and the extracellular matrix are part of  a contin- 
uous supramolecular assemblage (9, 34, 37, 57, 66). A major 

component of  the extracellular matrix is fibronectin, a mul- 
tifunctional glycoprotein that interacts with other structural 
molecules such as collagen, glycosaminoglycans, and with 
components of  the cell surface (for review, see reference 53). 
Controversial results were obtained regarding the occurrence 
of fibronectin at focal contacts (adhesion plaques) of  cultured 
cells (3, 4, 6, 12, 23, 37, 41, 57, 58). As demonstrated in this 
paper, antibodies to fibronectin displayed a selective affinity 
for the focal contact-like termination site of  endothelial stress 
fibers and appeared to be absent from the remaining cell 
surface. Thus, sinus endothelial cells of the spleen represent 
an example of  a cell in situ in which fibronectin is concen- 
trated at the extracellular side of  the stress fiber termini as is 
probably also true of  another cell type in situ, i.e., the myofi- 
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Figure 26. Schematic drawing of the human splenic sinus wall. Stress fibers are most pronounced along either side of the intercellular slits 
which are the sites of erythrocyte (E) passage. End-on, the stress fibers are attached to the plasma membrane at places where the belt-like 
formations of the basement membrane (ring fibers, RF) abut the endothelium. Tonofilaments of the vimentin type extend throughout the 
whole length and profile of the cells. The cell-to-extracellular matrix contacts represent focal-contact-like complexes with vinculin (V) and a- 
actinin (X) at the cytoplasmic face, and laminin (L), fibronectin (F), and collagens (C) at the extraceilular face (for further details refer to text). 

broblast of granulation tissue (59). These findings show that 
it is sometimes difficult to generalize observations made in 
vitro, which in several cases indicated the absence of fibro- 
nectin from focal adhesion plaques (3, 4, 6, 12, 23). In 
addition to fibronectin, the extracellular aspect of the site of 
contact of the sinus endothelium to the extracellular matrix 
(i.e., the ring fibers) was characterized by laminin-like im- 
munostaining, which appeared to be located in a very narrow 
zone close to the cell surface. Since the basal lamina of sinus 
endothelial cells is confined to the ring fibers ("annular com- 
ponent of the basement membrane", 1 I), laminin, a major 
glycoprotein of basal laminae, was to be expected at this site. 
Laminin is thought to promote the binding of the cell mem- 
brane to the basement membrane and to link various mac- 
romolecules in the extracellular matrix (62). Type III collagen 
and fibronectin, both of which have been shown previously 
to be associated with the stroma of lymphatic tissue (29, 53), 
have to be considered as major components of the reticular 
("argyrophilic") fibers in the human spleen. 

Requirements for Contraction 

Stress fiber-containing cellular portions (38) and individual 
stress fibers (39) of cultured fibroblasts have been shown to 
contract in response to Ca 2÷ and ATP. Contraction of stress 

fibers in isolated sinus endothelial cells of the spleen required 
ATP but was independent of Ca 2+. Although we cannot 
exclude the possibility of any kind of in vitro effect responsible 
for this independence of Ca 2+, it is interesting to note in this 
context that capillary and venular permeability (which is 
thought to be regulated by interendothelial gap formation) 
could be induced by ionophore A 23187 independent of Ca 2+ 
entry (47). If interendothelial gap formation is produced by 
an actomyosin-like mechanism (actin and myosin are strate- 
gically located along the junctional plasma membrane of these 
cells; 14), then this kind of actomyosin-mediated cell motility 
might be accomplished independent of Ca 2+, as is the con- 
traction of stress fibers in glycerol-extracted endothelial cells 
of the splenic sinus. 

Functional Implications o f  Endothelial Stress Fibers 

Stress fiber-containing endothelial cells tend to be located at 
sites in the vascular system exposed to high levels of shear 
force of blood flow, i.e., in endothelial cells of arteries and 
chambers of the heart (14, 65, 67), in bulging endothelial cells 
at branchings of capillaries (l, 44, 64), and as shown here, in 
the sinus endothelium of the mammalian spleen. Although 
the splenic sinus endothelium is part of the microcirculatory 
system, it is probably also exposed to particular levels of shear 
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forces: The interendothelial slits located between the rod- 
shaped sinus endothelial cells are the critical sites in the body 
to filter out damaged or abnormal red cells from circulation 
(11). Blood cells and plasma, which enter the extravasal space 
of  the spleen via terminally open blood vessels, are perma- 
nently pushed through the interendothelial slits into the sinus 
lumen. The resulting shear forces probably require particular 
cellular support by stress fibers, which may stabilize the 
margins of  the interendothelial slits and may help to prevent 
cellular detachment. 

In view of  our previous observation that endothelial stress 
fibers can be induced experimentally by exposure o f  endothe- 
lial monolayer cultures to arterial levels o f  fluid shear stress 
(24), it is most likely that contractility of  stress fibers serves 
to apply isometric tension, which allows the cells to withstand 
the shear forces and to remain firmly attached to the substra- 
tum. 
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