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Evaluation of three-dimensional biofilms on antibacterial
bonding agents containing novel quaternary ammonium
methacrylates

Han Zhou1,2, Michael D Weir1, Joseph M Antonucci3, Gary E Schumacher4, Xue-Dong Zhou2 and Hockin H K Xu1,5,6

Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and

incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional

biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18

were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form

biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage

vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length,

reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain

length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top

section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong

antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume

decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface;

however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with

chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries.
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INTRODUCTION

Dental resin composites are the principal materials for tooth cavity

restorations due to their excellent esthetics and direct-filling capabi-

lities.1–4 Composite restorations are bonded to tooth structures via bon-

ding agents.5–7 Studies have shown that secondary caries is one of the

primary reasons for restoration failure.3,5,8–9 and replacing the failed

restorations accounts for 50%–70% of all restorations performed.10–11

The cause of caries is biofilm acid production;12 therefore, efforts were

made to develop antibacterial resins.13–14 Quaternary ammonium metha-

crylates (QAMs) were synthesized and copolymerized in dental resins to

obtain antibacterial functions.15–23 Because residual bacteria often exist in

the prepared tooth cavity and microleakage could allow new bacteria to

invade the tooth-restoration interface, it would be especially useful for the

bonding agent to possess antibacterial functions.13–16,24–25

Quaternary ammonium salts (QAS) can cause bacteria lysis by

binding to bacterial membranes.17,26 When the negatively charged

bacterial cell contacts the positively charged sites of the quaternary

ammonium, the electric balance of the cell membrane could be dis-

turbed, and the bacterium could be damaged or killed.17,26 The long

polymeric chains with positive charges appeared to contribute to the

efficacy of bactericide.27 Increasing the alkyl chain length (CL)

increased the hydrophobicity, which could enhance the propensity

to penetrate the hydrophobic bacterial membrane.28 Therefore, ca-

tionic polymers with longer CL could be more effective in penetrating

bacterial cells to disrupt membranes.28–29 However, to date, there has

been no report on the effect of CL of QAMs in dental bonding agents,

except a recent study.30 That study synthesized a series of new QAMs

with CL from 3 to 18, incorporated them into dental adhesive and

achieved strong antibacterial efficacy, without compromising the den-

tin bond strength.30 However, the three-dimensional (3D) biofilm

structure and live/dead bacteria viability distribution along biofilm

thickness vs. CL were not investigated.

Previous studies on dental biofilms were performed using light,

scanning and transmission electron microscopy which provided
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two-dimensional (2D) view of the top surface of the biofilm or the

structure of a single cell.31–32 Besides these established techniques, the

application of confocal laser scanning microscopy (CLSM) was also

introduced in dental research for assessment of oral biofilms.33–37

CLSM allows horizontal and vertical optical sectioning of the 3D

biofilm. The 3D biofilm structure can be reconstructed from 2D

images of thin sections throughout the biofilm. Image-processing

techniques are used for quantitative analysis of biofilms to obtain a

detailed visualization of thick biofilm samples,38 which cannot be

obtained via conventional phase contrast or fluorescence microscopy.

Previous studies used CLSM techniques to analyze the 3D viability

distribution in dental biofilms.36–37,39–40 However, there has been no

report on the effect of CL on 3D viability distribution of biofilms

adherent on dental bonding agents. It would be interesting to know:

(i) how CL would affect biofilm thickness and live/dead biofilm

volumes on adhesive resins; and (ii) if there would be more dead

bacteria near the antibacterial bonding agent surface, and less dead

bacteria in the biofilm further away from bonding agent surface.

Therefore, the objectives of this study were to incorporate QAMs

into dental bonding agent, and investigate the effects of CL on the 3D

biofilm structure, live biofilm volume and viability distribution along

biofilm thickness adherent on dental bonding agents for the first time.

It was hypothesized that: (i) the viability of 3D biofilms growing on

dental adhesive containing QAM will decrease with increasing CL; (ii)

CL of QAM in adhesive resin will have a significant effect on biofilm

thickness and live and dead biofilm volumes; (iii) there will be less live

bacteria in the biofilm near antibacterial bonding agent surface, and

the percentage of live bacteria in the biofilm will increase with increas-

ing distance away from bonding agent surface.

MATERIALS AND METHODS

Synthesis of antibacterial QAMs with different chain length CL

New QAMs were synthesized using a modified Menschutkin reaction

via the addition reaction of a tertiary amine with an organohalide.20–23

A benefit of this reaction is that the reaction products are generated at

virtually quantitative amounts and require minimal purification.20

The 2-(dimethylamino) ethyl methacrylate (DMAEMA; Sigma Aldrich,

St Louis, MO, USA) was the methacrylate-containing tertiary amine.

For example, to synthesize dimethylaminododecyl methacrylate

(DMADDM) with CL512, 10 mmol of DMAEMA, 10 mmol of 1-

bromododecane (TCI America, Portland, OR, USA) and 3 g of eth-

anol were added to a vial, which was capped and stirred at 70 6C for

24 h.41 After the reaction was completed, the ethanol was removed via

evaporation. This yielded DMADDM as a clear liquid, which was

verified via Fourier transform infrared spectroscopy in a recent

study.41 Using this method, six QAMs with CL of 3, 6, 9, 12, 16 and

18 were synthesized,30 namely:

(i) DMAEMA was reacted with 1-bromopropane to form

dimethylaminopropyl methacrylate (DMAPM, CL53).

(ii) DMAEMA was reacted with 1-bromohexane to form dimethy-

laminohexyl methacrylate (DMAHM, CL56).

(iii) DMAEMA was reacted with 1-bromononane to form

dimethylaminononyl methacrylate (DMANM, CL59).

(iv) DMAEMA was reacted with 1-bromododecane to form

DMADDM (CL512).

(v) DMAEMA was reacted with 1-bromohexadecane to form

dimethylaminohexadecyl methacrylate (DMAHDM, CL516).

(vi) DMAEMA was reacted with 1-bromooctadecane to form

dimethylaminooctadecyl methacrylate (DMAODM, CL518).

Processing of antibacterial bonding agents

To formulate antibacterial bonding agents, Scotchbond multi-pur-

pose bonding agent (SBMP; 3M, St Paul, MN, USA) was used as

the parent system. According to the manufacturer, SBMP adhesive

contained 60%–70% of bisphenol A diglycidyl methacrylate and

30%–40% of 2-hydroxyethyl methacrylate, tertiary amines and

photo-initiator. SBMP primer contained 35%–45% of 2-hydroxyethyl

methacrylate, 10%–20% of a copolymer of acrylic and itaconic acids

and 40%–50% water. Each QAM was mixed SBMP primer at a QAM/

(SBMP primer1QAM) mass fraction of 10%, following previous

studies.22–23,30 SBMP adhesive was also incorporated with 10%

QAM.22–23,30 This yielded six antibacterial bonding agents, corres-

ponding to the six QAMs. They are designated, respectively, as:

(i) SBMP1DMAPM (CL3);

(ii) SBMP1DMAHM (CL6);

(iii) SBMP1DMANM (CL9);

(iv) SBMP1DMADDM (CL12);

(v) SBMP1DMAHDM (CL16);

(vi) SBMP1DMAODM (CL18).

Fabrication of resin specimens for biofilm culture

Resin disks for biofilm experiments were fabricated using the cover of

a sterile 96-well plate as molds.16 Following previous studies,16,30

10 mL primer was brushed onto the bottom of each dent of approxi-

mately 8 mm in diameter. The primer was dried with a stream of air

and then 20 mL of adhesive was applied. A Mylar strip was used to

covered on the adhesive which was then light-cured for 20 s (Optilux

VCL 401; Demetron Kerr, Danbury, CT, USA). This yielded a cured

resin disk of approximately 8 mm in diameter and 0.5 mm in thick-

ness.30 The disks were removed from the cover of the 96-well plate,

immersed in 200 mL of distilled water and stirred via a magnetic

stirrer (Bellco Glass, Vineland, NJ, USA) at a speed of 100 r?min21

for 1 h to remove any uncured monomers, following previous stud-

ies.15 The disks were then dried, sterilized in an ethylene oxide ster-

ilizer (Anprolene AN 74i; Andersen, Haw River, NC, USA) and then

de-gassed for 7 days following manufacturer’s instructions.

The use of Streptococcus mutans (S. mutans) bacteria (ATCC700610;

American Type, Manassas, VA, USA) was approved by the Insti-

tutional Review Board of the University of Maryland.21 A 15 mL of

S. mutans stock bacteria was added to 15 mL of brain heart infusion

broth (Becton, Sparks, MD, USA) and incubated at 37 6C with 5% CO2

for 16 h; 150 mL of this S. mutans suspension was then diluted by 10-

fold in a growth medium which consisted of brain heart infusion

supplemented with 0.2% sucrose to form S. mutans inoculation me-

dium of 1.5 mL.

CLSM analysis of biofilms

Seven bonding agent groups were tested: the six bonding agents con-

taining QAM with different CLs and the unmodified SBMP as control.

Six disks (n56) were used for each bonding agent, requiring a total of

42 disks. Each disk was placed in a well of a 24-well plate and inoculated

with 1.5 mL of the S. mutans inoculation medium. The samples were

incubated at 5% CO2 and 37 6C. The medium consisted of brain heart

infusion supplemented with 0.2% sucrose. After incubation for 8 h, the

disks were transferred to new 24-well plates with fresh medium.21–23

After 16 h, the disks were transferred to new 24-well plates and incu-

bated for 24 h. This totaled 2 days which were shown previously to

form biofilms on resin specimens.21–23 The biofilms on the disks were

washed three times with phosphate-buffered saline to remove loose
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bacteria, and then stained using a BacLight live/dead kit (Molecular

Probes, Eugene, OR, USA). Live bacteria were stained with Syto 9 to

produce a green fluorescence. Bacteria with compromised membranes

were stained with propidium iodide to produce a red fluorescence.21–23

The biofilms were investigated using a 3D model as previously

described.42 The fluorescence was examined visualized using a

CLSM (LSM510; Carl Zeiss, Thornwood, NY, USA). Green fluor-

escence was provided with an argon laser (488-nm laser excitation)

and red fluorescence was given with a helium-neon laser (543 nm laser

excitation). Images were taken from the bottom of the biofilm that was

in contact with the resin disk surface, section by section to the top

surface of the biofilm. For the purpose of illustration, an example of a

biofilm on the SBMP control disk is shown in Figure 1. The biofilm

section parallel to the resin surface was referred to as the x–y plane, and

the direction perpendicular to the resin surface is called the z axis. For

each biofilm, 10 planes at equal distances (indicated by the 10 white

lines at the upper left corner in Figure 1) along the z axis were imaged

to obtain an overall view of the biofilm volume. These 2D sections

were stacked and reconstructed into a 3D image of the biofilm using

the IMARIS software (Bitplane, Saint Paul, MN, USA). The biofilm

images were analyzed using a software (bioImageL; Faculty of

Odontology, Malmö University, Malmö, Sweden).38 The bioImageL

software is based on color segmentation algorithms written in

MATLAB (MathWorks, Natick, MA, USA) and is able to produce

information of the structure and spatial differences in the biofilm.

The biofilm is characterized by parameters including biofilm thick-

ness, green-stained live bacteria volume, red-stained dead bacteria

volume, as well as the live and dead bacteria coverage on each two-

dimensional x–y section in the biofilm.

Statistical analysis

Statistical analyses were performed using SPSS 17.0 software (SPSS,

Chicago, IL, USA). One way analyses of variance were used to detect

the significant effects of the variables using a P value of 0.05.

RESULTS

A typical CLSM image of a 3D biofilm on SBMP control is shown in

Figure 1 as described in the section on ‘CLSM analysis of biofilms’.

Figure 2 shows representative images of biofilms on the six bonding

agents containing QAM with various CL. Live bacteria were stained

green, and dead bacteria were stained red. SBMP control and that with

CL3 had primarily live bacteria. The amount of dead bacteria gra-

dually increased when CL was increased to 6, 9 and 12. When CL

was increased to 16, the biofilms were primarily dead with red staining.

When CL was further increased to 18, there was an increase in green

staining of live bacteria. Furthermore, the 3D images highlighted the

differences in biofilm thickness, with biofilms on SBMP control being

the thickest and that of CL16 being the thinnest.

The biofilm thickness results are quantified in Figure 3 (mean6s.d.;

n56). Biofilm thickness steadily decreased from SBMP control to

those containing QAM with increasing CL, reaching a minimum at

CL16. When CL was further increased to 18, the biofilm thickness

increased. Values indicated by dissimilar letters are significantly dif-

ferent from each other (P,0.05).
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The biofilm volume results are plotted in Figure 4: live biofilm

volume (Figure 4a) and dead biofilm volume (mean6s.d.; n56)

(Figure 4b). SBMP control had the greatest live biofilm volume. The

live biofilm volume gradually decreased with increasing CL, reaching a

minimum at CL16, and then increased at CL18. The dead biofilm

volume first increased with increasing CL and then reached a plateau.

CL16 had the least live biofilm volume which was two orders of mag-

nitude lower than that of SBMP control.
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Typical live/dead staining images of 2D x–y sections are shown in

Figure 5 for the top surface, the middle section and the bottom section

(near the resin surface) of the biofilm. Three materials are shown in

Figure 5 as examples: SBMP control (Figure 5a), SBMP1DMANM

(CL9) (Figure 5b) and SBMP1DMAHDM (CL16) (Figure 5c). The

top surface of SBMP control biofilm had the most live bacteria, while its

bottom surface had a slight increase in dead bacteria amount. For SBMP1

DMANM (CL9), the bottom of biofilm had noticeably more dead bacteria

and the top section of the biofilm had more live bacteria. For SBMP1

DMAHDM (CL16), there appeared to be predominantly compromised

bacteria throughout the biofilm thickness, although there appeared to

be a small amount of live bacteria in the top section of the biofilm.

The biofilm vitality distribution in the different layers of the biofilm

vs. biofilm height is shown in Figure 6 (mean6s.d.; n56). The vertical

axis shows the percentage of live bacteria measured from 2D sections

such as those in Figure 5. The horizontal axis indicates the biofilm

thickness at which the 2D image was taken. SBMP control group and

the group with CL3 had similar results; hence, the CL3 group was not

included in Figure 6 to save space. SBMP control had a percentage of

live bacteria of 63% at the biofilm bottom; it gradually increased and

approached 100% near the top of the biofilm. At CL of 6 and 9, the

percentage of live bacteria at the biofilm bottom decreased to 60% and

37%, respectively. However, the percentage of live bacteria was still

nearly 100% at the top of the biofilm. At CL of 12, not only did the

a b cSBMP control
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percentage of live bacteria decrease to 19% at the biofilm bottom,

but the top only had 63%. At CL16, the percentage of live bacteria

was close to 0% throughout the biofilm thickness. When CL was

further increased to 18, biofilm percentage of live bacteria increased.

These results show that: (i) most of the tested antibacterial

bonding agents could only inhibit bacteria close to the resin surface

and the antibacterial efficacy decreased in biofilm away from

resin surface; and (ii) the bonding agent containing DMAHDM
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Figure 6 Viability distribution in biofilm (mean6s.d.; n56). The percentage of live bacteria was measured from 2D images (Figure 5). Percentage of live

bacteria5live bacteria area/(live bacteria area1dead bacteria area). Percentage of live bacteria is plotted vs. location of 2D image in biofilm at distance from resin

surface. (a) SBMP control; (b) SBMP1DMAHM (CL6); (c) SBMP1DMANM (CL9); (d) SBMP1DMADDM (CL12); (e) SBMP1DMAHDM (CL16); (f)

SBMP1DMAODM (CL18). The curve for SBMP1DMAPM (CL3) is similar to SBMP control and is not included. CL, chain length; 2D, two-dimensional;

DMADDM, dimethylaminododecyl methacrylate; DMAHDM, dimethylaminohexadecyl methacrylate; DMAHM, dimethylaminohexyl methacrylate; DMANM, dimethy-

laminononyl methacrylate; DMAODM, dimethylaminooctadecyl methacrylate; DMAPM, dimethylaminopropyl methacrylate; SBMP, Scotchbond multi-purpose

bonding agent; s.d., standard deviation.
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with CL16 maintained a low viability of nearly 0% throughout the

biofilm.

DISCUSSION

The present study investigated the 3D biofilm live/dead volume and

viability variation in biofilm thickness on dental bonding agents as a

function of alkyl chain length for the first time. S. mutans biofilms were

examined using a 3D digital reconstruction technique combined with

quantitative image analysis. QAMs with CL varying from 3 to 18 were

incorporated into bonding agent which exerted a significant anti-bio-

film activity. Increasing the CL of bonding agent achieved a stronger

effect in reducing the biofilm viability, evidenced by changes in biofilm

structure with decreases in biofilm thickness, live biofilm volume and

percentage of live bacteria. Oral bacteria in vivo colonize on the tooth–

restoration surfaces to form biofilms and cariogenic bacteria such as S.

mutans in the biofilm can metabolize carbohydrates to produce

organic acids. This plays an important role in the development of

tooth decay and secondary caries at the tooth–restoration margins.

Furthermore, within the biofilm, S. mutans display properties that are

dramatically distinct from their planktonic counterparts, including

much higher resistance to antibacterial agents, which makes the bio-

film much more difficult to kill than planktonic bacteria. Therefore,

the antibacterial bonding agent containing the new QAMs, especially

that using CL16 with effective killing of the biofilm, could be beneficial

in caries-inhibiting dental applications.

This study showed a strong CL dependence of anti-biofilm pro-

perties of bonding agent. The mechanism of QAS to kill bacteria is

believed to involve the alteration of membrane permeability or surface

electrostatic balance of bacteria, thus causing cytoplasmic leak-

age.17,26–29 It has also been noticed that the alkyl chain length has a

significant effect on biocidal activity since long cationic polymers may

interact more effectively with the cytoplasmic membranes.28–29 The

present study revealed that the 3D structural changes in biofilms were

associated with the CL of QAM in bonding agent. With CL increasing

from 3 to 16, the biofilm thickness, live bacteria volume and the

percentage of live bacteria all decreased. However, after reaching the

maximum antimicrobial ability with CL16, no further strengthening of

bacteria-inhibition effect was detected with increasing the CL to 18. A

similar phenomenon was observed in previous studies which were not

on dental bonding agents.18,43–44 This was explained as a cutoff effect.45

Among the various assumptions proposed to explain the origin of the

cutoff effect, the concept of free volume could be applied to QAS.44

Free volume is the unoccupied space between molecules. In solution or

culture medium, the polar ammonium heads will interact with those of

phospholipids of the bacteria and their hydrocarbon chains will orient

parallel to the hydrocarbon chains of phospholipids.44 The hydrocar-

bon chains are parallel to those of phopholipids of the cell. In this case,

the density of the bilayer hydrophobic region is necessarily altered and

a free volume is formed. When the hydrocarbon chain of the QAS is

shorter than that of phospholipids, the total free volume generated

in the bilayer is small. When the hydrocarbon chain length of QAS

becomes comparable to that of phospholipids, the free volume

drops off and tends toward zero. Molecules containing chains

between these two extremes lead to the most essential free volume

inside the bilayer.44 The larger the free volume, the more the mem-

brane of bacteria is expected to be disrupted and the bactericidal

activity is enhanced. Hence, the present study indicates that CL16

with the maximum antibacterial activity may possess the largest free

volume in the bilayer.

Furthermore, CLSM examination of the present study showed that

for SBMP control, the bottom layer of the biofilm adjacent to resin

contained a higher proportion of nonviable bacteria than the upper

layer of biofilm in contact with culture medium. This was likely

because the deeper layer of the biofilm had less access to oxygen, a

lower availability of primary nutrients and more secondary metabo-

lites accumulation than the outer layer of the biofilm. For bonding

agents containing QAMs, the compromised bacteria were more con-

centrated in the lower layer of the biofilm, and the viability percentage

increased with the biofilm height away from the resin surface. This was

likely related to the contact-killing mechanism of QAM resin in which

the QAM was copolymerized with and immobilized in the resin.

Hence, due to contact-killing effect, the bactericidal efficacy is

decreased away from the surface due to a lack of contact. For example,

for CL 9 in Figure 6, the percentage of live bacteria was only 37% near

the antibacterial resin surface, but close to 100% away from the resin

surface near the biofilm top.

For the bonding agent containing DMAHDM with CL16, the bio-

film consisted mainly of dead microorganisms throughout the biofilm

thickness. This may suggest another possible antibacterial mechanism.

Previous studies suggested that a stress condition or challenge in bac-

teria could trigger a built-in suicide program in the biofilm,46–47 which

was also called programmed cell death.46 Being challenged by bacteri-

cidal agents may serve as a trigger for programmed cell death in the

surrounding bacteria.46–47 Indeed, the present study showed that the

bonding agent at CL16 killed the entire biofilm. This is consistent with

a previous in vivo study showing that the biofilm on a QAM composite

intraorally in human participants was dead not only on the resin

surface, but also in the outer, more remote parts of the biofilm.48

This was explained as due to an intracellularly mediated death pro-

gram, in which the bacterial lysis by QAM on the resin surface may

function as a stressful condition triggering programmed cell death to

the bacteria further away in the biofilm.48 Further study is needed to

investigate if there is significant leachout of QAM from the resin which

might contribute to killing bacteria at a distance away from the resin

surface. In the present study, the resin disks were agitated in 200 mL of

water via magnetic stirring for 1 h to remove possible uncured mono-

mers, following a previous study.15 Further study should water-age the

disks for long periods of time such as 6 months,49 and then inoculate

bacteria to determine if the antibacterial activity is durable and if the

bonding agent with CL16 can still kill the entire 3D biofilm.

Nonetheless, the results of the present study such as Figure 6 clearly

show the effect of CL in bonding agent on 3D biofilm properties, as all

the disks were prepared and treated in the same manner.

Regarding potential applications of the bonding agent containing

DMAHDM with CL16, recurrent caries at the tooth–restoration mar-

gins is a primary reason for restoration failure. Hence, the antibacterial

bonding agent in the uncured state could flow into dentinal tubules

and kill residual bacteria in the tooth cavity.14–15,24,50 The antibacterial

bonding agent in the cured state could inhibit bacteria invasion along

the margins, which could be especially useful to inhibit bacteria when

marginal microgaps occur during service.14–15,24,50 Furthermore,

there has been an increased interest in the less removal of tooth struc-

ture and minimal intervention dentistry.51 While the treatment could

preserve tooth structure, it could also leave behind more carious tis-

sues with active bacteria. Atraumatic restorative treatment does not

remove the carious tissues completely, leaving remnants of lesions and

bacteria.52 Therefore, these applications could potentially benefit from

the bonding agent containing DMAHDM. In addition, DMAHDM

could also be promising for incorporation into composites for
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antibacterial restorations.53–54 The materials need to be biocompatible

for clinical applications. A recent study showed that the fibroblast via-

bility and odontoblast viability of DMAHDM were better than bisphenol-

glycerolate dimethacrylate.30 The eluents from the cured resin containing

DMAHDM caused fibroblast viability and odontoblast viability that were

not significantly different from the resin control without DMAHDM.30

Further studies are needed to investigate the potential dental applications

DMAHDM-containing resins and composites.

CONCLUSIONS

This study investigated the effect of CL on 3D biofilm structure and

live/dead viability variation vs. biofilm thickness on dental bonding

agent for the first time. The results showed that: (i) strong antibacterial

function was achieved by adding QAM into bonding agent; (ii) biofilm

thickness and live volume decreased with increasing CL from 3 to 16,

but then increased at CL of 18; (iii) except for CL16, antibacterial

bonding agents with all tested CL values could only inhibit bacteria

close to resin surface and the antibacterial efficacy decreased in the

biofilm away from resin surface; (iv) the bonding agent containing

DMAHDM with CL 16 yielded a percentage of live bacteria of close

to 0% throughout the biofilm thickness. The 3D biofilm analysis via

CLSM and digital reconstruction method is useful for understanding

biofilm–resin interactions and antibacterial resin effects on biofilm

structure and 3D viability distribution. Based on the specific resin for-

mulations tested in this study, antibacterial bonding agents with CL16

are useful for a wide range of dental applications to combat bacteria

and biofilms at tooth–restoration margins to inhibit secondary caries.
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