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PURPOSE. Previous studies that identify putative genes associated with diabetic retinopa-
thy are only focusing on specific clinical stages, thus resulting genes are not necessarily
reflective of disease progression.

This study identified genes associated with the severity level of diabetic retinopathy using
the likelihood-ratio test (LRT) and ordinal logistic regression (OLR) model, as well as to
profile immune and retinal cell landscape in progressive diabetic retinopathy using a
machine learning deconvolution approach.

METHODS. This study used a published transcriptomic dataset (GSE160306) from macular
regions of donors with different degrees of diabetic retinopathy (10 healthy controls,
10 cases of diabetes, 9 cases of nonproliferative diabetic retinopathy, and 10 cases of
proliferative diabetic retinopathy or combined with diabetic macular edema). LRT and
OLR models were applied to identify severity-associated genes. In addition, CIBERSORTx
was used to estimate proportional changes of immune and retinal cells in progressive
diabetic retinopathy.

RESULTS. By controlling for gender and age using LRT and OLR, 50 genes were identi-
fied to be significantly increased in expression with the severity of diabetic retinopathy.
Functional enrichment analyses suggested these severity-associated genes are related to
inflammation and immune responses. CCND1 and FCGR2B are further identified as key
regulators to interact with many other severity-associated genes and are crucial to inflam-
mation. Deconvolution analyses demonstrated that the proportions of memory B cells,
M2 macrophages, and Müller glia were significantly increased with the progression of
diabetic retinopathy.

CONCLUSIONS. These findings demonstrate that deep analyses of transcriptomic data can
advance our understanding of progressive ocular diseases, such as diabetic retinopathy,
by applying LRT and OLR models as well as bulk gene expression deconvolution.
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Diabetic retinopathy (DR) is a progressive retinal compli-
cation of diabetes, causing significant visual impair-

ment on a global scale.1 Microvascular lesions of the retina
have been used to evaluate and classify the severity level of
DR. There are two broad categories, including the early stage
of nonproliferative diabetic retinopathy (NPDR) and the
advanced stage of proliferative diabetic retinopathy (PDR).1

NPDR is manifested by increased vascular permeability and
capillary occlusion, whereas PDR is characterized by retinal
neovascularization in addition to NPDR features.2 An impor-
tant additional category of DR is diabetic macular edema
(DME), the most common cause of vision loss in patients
with DR.2 Genetic studies, including candidate gene studies,
linkage studies, powerful genomewide association studies
(GWAS), and meta-analysis, have identified putative candi-
date gene or single nucleotide polymorphisms associated
with DR.3,4 Although these studies provide critical infor-
mation that helps to interpret the mechanisms of DR, they

mostly study one specific type of DR, thus the resulting puta-
tive genes are not likely to be associated with DR progres-
sion.

In this study, we assess the macular transcriptomic data
from donors with different severity levels of DR and define
the genes changed with DR progression. The landscape of
immune cells and retinal cells in relation to DR progres-
sion has also been established by using a machine learning
deconvolution algorithm, CIBERSORTx.

MATERIALS AND METHODS

Data Accession

RNA-Seq raw counts were obtained from Gene Expression
Omnibus (GSE160306, accessed on March 28, 2022). Raw
counts were converted to transcripts per million (TPM)
in R (version 4.1.0) for downstream analyses. Samples
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from the human macular region were selected from the
raw dataset using the subset function from the R pack-
age Seurat (version 4.0.5).5 Detailed clinical information,
including patient gender, age, and disease stages, were
accessed from GSE160310. Single-cell transcriptomes of the
human neural retina were directly downloaded from Human
Cell Atlas (HCA; https://www.humancellatlas.org/, E-MTAB-
7316, accessed on January 15, 2022).6

Identification of Severity-Associated Genes in the
Macular Region From Donors With DR at a
Different Stage

To identify genes related to the progressive severity of DR,
the selected RNA-Seq raw count was analyzed by DESeq2
(version 1.32.0),7 using the likelihood-ratio test (LRT), as we
previously described.8 Briefly, gene expression was deter-
mined by three variables due to limited access to clini-
cal labeling, consisting of gender, age, and disease status
(severity). To simplify the design in the LRT, the progressive
disease status was indexed using integer scaling: control-
1, diabetic-2, NPDR-3, and NPDR/PDR+DME-4. Gender and
age as covariants were regressed out in the LRT model, leav-
ing disease status as the main factor to affect gene expres-
sion. The batch correction was performed using the remove-
BatchEffect function in limma (version 3.48.3).9 Signifi-
cant severity-associated genes were determined by adjusted
P < 0.05, controlled for gender and age. The resulting
genes were then scaled to z-score and clustered using
the degPatterns function from the R package DEGreport
(version 1.28.0). Gene clusters with consistent and progres-
sive changes were selected for further analyses.

To further screen significant severity-associated genes,
the TPM values of the genes from the selected cluster were
analyzed by R package MASS (version 7.3-54) and ordi-
nal (version 2019.12-10) using the ordinal logistic regres-
sion (OLR) model.10 Using Cumulative Link Model function
in OLR,10 we controlled for gender and age and identified
input genes that were associated with disease severity. These
severity-associated genes were further determined at P <

0.05. The resulting genes were represented in a forest plot
and ranked according to their beta coefficient. A heatmap
of severity-associated genes was generated by the heatmap
function from the R package NMF (version 0.24.0).11

To assess the gene-gene correlation of severity-associated
genes, the raw counts were processed by the Variance
Stabilizing Transformation function in DESeq2.7 followed by
statistical adjustment for gender and age using the Remove
Batch Effect function in limma (version 3.48.3).9 The correla-
tion heatmap was plotted using R package corrplot (version
0.92).12

Functional Enrichment Analysis and Gene
Expression Visualization

Functional enrichment analyses (Gene Ontology Biolog-
ical Processes) for significant severity-associated genes
were performed with Metascape (https://metascape.org/gp/
index.html#/main/step1),13 which provides more frequently
updated bioinformatics analyses than DAVID.14

To visualize the expression of selected genes, the raw
counts were processed by the Variance Stabilizing Transfor-
mation function in DESeq2.7 followed by statistical adjust-
ment for gender and age using the Remove Batch Effect

function in limma (version 3.48.3).9 Tukey boxplots were
used to compare gene expression from patients with differ-
ent DR statuses, with interquartile range boxes and 1.5 times
interquartile range whiskers. The 2-tailed Mann-Whitney
test was applied to assess pairwise comparisons in the
plots, whereas the Kruskal-Wallis test was used to perform
statistical comparison across all groups of different disease
statuses.

Deconvolution Analyses of the Immune Cells and
Retinal Cells From Donors With DR

The CIBERSORTx, a machine learning deconvolution algo-
rithm that enables inference of cell-type-specific gene
expression profiles,15 was applied to infer the estimated
proportions of infiltrating immune cells or retinal cells of
each bulk retinal transcriptome. We used the LM22 signature
matrix to define 22 infiltrating immune cells.16 Normalized
data (TPM value) of the transcriptome were uploaded to the
CIBERSORTx web portal (https://cibersortx.stanford.edu/),
with the algorithm run using LM22 signature matrix at 100
permutations with B-mode batch correction.

To infer the retinal cellular profile, we used a previously
derived retinal signature matrix using the HCA scRNA-Seq
dataset of the human retina.8 In brief, the retinal signature
matrix contains rod, Müller glia, bipolar, cone, amacrine,
microglia, ganglion, astrocytes, and horizontal cells. The reti-
nal signature matrix was used to impute retinal cellular frac-
tion from the bulk transcriptome at 100 permutations with
S-mode batch correction. Statistical significance of cellular
numbers associated with severity was assessed by an ordinal
logistic regression model using the nonparametric Kruskal-
Wallis test that allows for multifactorial designs. The esti-
mated coefficients and P value were presented as a forest
plot with 95% confidence intervals. The estimated propor-
tions of cell types were adjusted for gender and age to assess
the effects by disease severity by extracting the residuals
from fitting a generalized linear model with variables.

Statistical Analyses

Detailed information of statistical analyses was described in
various places, including results and figure legends, where
the test methods, significance, P values, error bars, and coef-
ficients were included.

RESULTS

Identification of Severity-Associated Genes in the
Macula of Patients With DR at Different Clinical
Stages

We analyzed a publicly available transcriptional dataset of
the macular region from the retina of patients at different
stages of DR and healthy controls. A total of 39 macular
RNA-Seq profiles from healthy controls (n = 10) and cases
from early to late DR stage (n = 29) were analyzed (Fig. 1A).
The patient groups were previously classified according to
the severity of DR progression, including diabetic (n = 10),
NPDR (n = 9), NPDR with DME (n = 7), and PDR with DME
(n = 3).17 Of which, patients with NPDR with DME or PDR
with DMEwere combined as one group of NPDR/PDR+DME
(n = 10), as the previous study described.17

https://www.humancellatlas.org/
https://metascape.org/gp/index.html#/main/step1
https://cibersortx.stanford.edu/
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FIGURE 1. Identification of severity-associated genes in the macula from patients with degrees of DR. (A) Demographics of the human
macular RNA-Seq profiles, detailed by age and different degrees of DR. (B) Tukey boxplots (interquartile range [IQR] boxes with 1.5 × IQR
whiskers) of severity-associated genes found in the macula of patients with DR. The expression level of severity-up genes increases with the
severity of DR (left, n = 63). Severity-up genes were defined with DESeq2 two-sided likelihood-ratio test (adjusted P < 0.05) by controlling
for gender and age. Adjusted gene expressions were shown as z-score. (C) Forest plot of severity-associated genes significantly correlated
with DR severity (P < 0.05, n = 50). Positive coefficients indicate severity-associated genes increase in expression with DR severity. Statistical
analyses of the correlation between the severity-associated genes and the DR progression were assessed by a nonparametric ordinal logistic
regression model that controls for gender and age. Point sizes are scaled by statistical significance. Error bars represent 95% confidence
intervals.
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FIGURE 2. Expression profile and correlation analyses of severity-associated genes. (A) A heatmap of the expression level of 50
severity-associated genes in all samples across different groups, adjusted for gender and age. (B) Heatmap of the correlation matrix across
50 severity-associated genes. Pearson’s correlation was calculated among the severity-associated genes to show the co-expression patterns
of genes in the heatmap. Color key denotes the Pearson’s correlation coefficient between genes. There is one clear cluster (highlighted in
red and black) of severity-associated genes with a strong positive correlation, adjusted by gender and age.

Gene expression levels in the retina were largely affected
by age, gender, and disease stages.18 By controlling for age
and gender, we identified a cluster of genes (n = 63) related
to DR progression from the early to late stage (Fig. 1B) using
an LRT.7 Of note, the expression level of these genes was
increased with the severity of DR.We therefore defined them
as severity-up genes. To further screen genes significantly
changed with the severity of DR, we assessed the correlation
between severity-up genes and the severity of DR by using
the OLR model that controls for gender and age. Our results
identified 50 genes progressively increasing their expression
level with the severity of DR (Fig. 1C, hereafter referred to
as severity-associated genes, P < 0.05). The remaining 13
severity-up genes were not significantly correlated to the
severity of DR, thus excluding from the downstream anal-
yses. A heatmap clearly demonstrated that the expression
levels of 50 severity-associated genes were progressively
increased with the severity of DR from the early (diabetic)
to late stage (NPDR/PDR+DME), after adjustment for gender
and sex (Fig. 2A). Correlation analysis among these genes in
terms of expression level revealed a cluster of genes (n= 25)
having the most interactions and strong correlations (|r| >

0.6) with other genes, suggesting their potentially important
roles in the progression of DR (Fig. 2B).

Functional Enrichment Analyses of the
Severity-Associated Genes and Identification of
Key Genes Involved in the Progression of DR

To determine the functional roles of the severity-associated
genes in the pathogenesis of DR, functional enrichment
analysis (Gene Ontology [GO] biological processes) was
performed with Metascape. The results demonstrated signif-
icant enrichments mostly related to inflammation and
immune response. Of which, negative regulation of cell
differentiation, response to amyloid-beta, and inflammatory
response rank top three among other GO terms (Fig. 3A).
Genes involved in the top three GO terms were combined
to identify key genes that contribute to the progression

of DR development, resulting in seven genes with signif-
icant changes in expression with the severity of DR after
controlling for gender and age (Fig. 3B), including cyclin D1
(CCND1), Fc gamma receptor IIb (FCGR2B), matrix metal-
lopeptidase 9 (MMP9), toll like receptor 4 (TLR4), alpha
tocopherol transfer protein (TTPA), CKLF like MARVEL trans-
membrane domain containing 5 (CMTM5), and NLR family
pyrin domain containing 1 (NLRP1). To further identify key
severity-associated genes involved in the progression of DR,
we overlapped the cluster of severity-associated genes (n
= 25) identified in Figure 2B with 7 genes identified in the
functional enrichment analysis, leading to 3 genes shared by
both clusters of genes (Fig. 3C), including CCND1, FCGR2B,
and NLRP1. We focused on CCND1 and FCGR2B and inves-
tigated their role in immune cells and retinal cells during
DR. Given that the expression pattern of NLRP1 was not
consistently increased with the severity of DR, we therefore
excluded it for further analyses.

The Immune Cellular Landscape Changed in the
Progression of DR

Given that severity-associated genes are strongly corre-
lated to immune response, we next sought to understand
the role of immune cells in the retina of patients with
DR at different clinical stages. By using CIBERSORTx, we
deconvoluted the macular transcriptomic data (Supplemen-
tary Fig. S1) with the signature matrix of immune cells,
LM22.19 We further assessed what immune cell types change
in proportions with the severity of DR using an OLR
model. By controlling for gender and age, we demon-
strated that estimated proportions of memory B cells and
M2 macrophages were significantly increased with the
progression of DR, whereas the estimated proportions of
resting mast cells and naïve B cells were significantly
decreased with the progression of DR (Fig. 4A, Supple-
mentary Fig. S2). Other immune cell types were neither
found in the macular tissue nor their estimated propor-
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FIGURE 3. Functional enrichment analyses of severity-associated genes and identification of key genes involved in the DR progression.
(A) Functional enrichment analysis (gene ontology annotations of biological processes) of 50 severity-associated genes by Metascape. The
top three biological processes highlighted in red were selected for down-stream analysis. Genes with significant changes in these selected
annotations include CCND1, FCGR2B, MMP9, TLR4, TTPA, CMTN5, and NLRP1. (B) Tukey boxplots (interquartile range [IQR] boxes with
1.5 × IQR whiskers) showing the expression of CCND1, FCGR2B, MMP9, TLR4, TTPA, CMTN5, and NLRP1. Gene expression values are
shown as log-transformed, controlled for gender and age. Statistical significance of difference was assessed by a two-sided Kruskal-Wallis
test on the adjusted expression values. (C) Overlapping the clustered genes from Figure 2B (n = 25) and selected genes in Figure 3B (n =
7) resulted in 3 genes, including CCND1, FCGR2B, and NLRP1.

tions were not significantly altered with the progression
of DR.

We further studied the correlation between the expres-
sion level of two key genes identified above, CCND1 and
FCGR2B, and the proportions of the altered immune cell
types, including memory B cells and M2 macrophages,
using a Pearson’s regression analysis. Our results showed
that expression levels of both CCND1 and FCGR2B have a
moderate positive (0.4< r <0.6) correlation with the propor-
tions of memory B cells (Fig. 4B) and M2 macrophages
(Fig. 4C), respectively. These results suggest that CCND1
and FCGR2B may be involved in the regulation of immune
responses during the progression of DR mainly through M2
macrophages.

The Retinal Cellular Landscape Changed in the
Progression of DR

A previous study demonstrated that the retinal structure,
particularly the retinal nerve fiber layer, is changed at the
early onset of DR.20 However, quantitative changes in retinal
cells during the progression of DR have not been reported.
Here, we deconvoluted the macular transcriptomes with
CIBERSORTx to profile the estimated proportions of each
of retinal cell types, using the scRNA-seq data from HCA
as a reference (Supplementary Fig. S3). We applied an OLR
model to control for gender and age and evaluated if the
severity of DR affects the proportions of retinal cell types.
The results revealed that the proportions of Müller glia were
significantly increased with the progression of DR, whereas
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FIGURE 4. The immune cellular landscape of the macula of patients with DR and its relation to severity-associated genes. (A) Forest
plot of estimated proportions of immune cells having a significant correlation with the severity of DR (P < 0.05). Positive or negative
coefficients indicate the proportion of immune cells increases or decreases with the severity of DR. Statistical analyses of the correlation
between the severity of DR and the proportions of immune cells were assessed by a nonparametric ordinal logistic regression model,
adjusted for gender and age. Point sizes are scaled by statistical significance. Error bars represent 95% confidence intervals. (B, C) Analyses
of the correlation between the expression level of CCND1 or FCGR2B and the estimated proportion of memory B cells or M2 macrophages,
respectively, adjusted for gender and age. Pearson’s correlation coefficient was used to test the strength of linear relationships between gene
expression and the estimated proportion of specific cell types. Grey dots denote individual samples (n = 39). Blue lines denote regression
lines.
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FIGURE 5. The cellular landscape of the macula of patients with DR and its relation to severity-associated genes. (A) Forest plot of
estimated proportions of retinal cells having a significant correlation with the severity of DR (P < 0.05). Positive or negative coefficients
indicate the proportion of retinal cells increases or decreases with the severity of DR, respectively. Statistical analyses of the correlation
between the severity of DR and the proportions of retinal cells were assessed by a nonparametric ordinal logistic regression model, adjusted
for gender and age. Point sizes are scaled by statistical significance. Error bars represent 95% confidence intervals. (B) Heatmap showing
the percentage of retina cells expressing severity-associated genes (40 genes were found in the retinal scRNA-Seq dataset from the Human
Cell Atlas), scaled by gene across the different cell types. (C) Analyses of the correlation between the expression level of CCND1 or FCGR2B
and the estimated proportion of Müller glia, adjusted for gender and age. Pearson’s correlation coefficient was used to test the strength of
linear relationships between gene expression and the estimated proportion of Müller glia. Grey dots denote individual samples (n = 39).
Blue lines denote regression lines.

the proportions of other retinal cell types were altered but
without significant difference (Fig. 5A, Supplementary Fig.
S4). To confirm this finding, we further analyzed the expres-
sion profile of the severity-associated genes (40 genes were
found in the scRNA-Seq dataset) in the human neural retina
by using our previous scRNA-Seq data. Of the major reti-
nal cell types, our results showed that most of the severity-
associated genes were expressed in a high percentage of
Müller glial cells and astrocytes (Fig. 5B). Given the esti-
mated proportion of astrocytes is not significantly changed,
we suspect Müller glial cells play an important role in rela-
tion to the severity of DR.

Similarly, we investigated the relationship between the
expression level of two key genes, CCND1 and FCGR2B, and
the proportion of Müller glia in DR. Our results showed that
the expression level of CCND1 and FCGR2B has a moder-
ate positive (0.4< r <0.6) correlation with the proportion
of Müller glia (Fig. 5C), indicating that these genes may be
modulated to promote the increase of Müller glia with the
severity of DR.

DISCUSSION

Genetic studies, including linkage analyses, candidate gene
association studies, and GWAS, have identified many risk
loci or corresponding genes for DR.3,21,22 However, such
studies tended to focus on one specific clinical stage of DR,
particularly the advanced stage, PDR, and DME. Therefore,
the resulting disease-causing genes from the genetic studies
are not necessary to be associated with the progression of

DR. Through the application of LRT on transcriptome from
patients with different degrees of DR along with OLR model-
ing, we identified 50 genes that significantly increased in
expression level from the early to late stage of DR (severity-
associated genes) by controlling for gender and age. Among
which, several severity-associated genes have been previ-
ously identified to be associated with DR in human or animal
models, including TLR4,23 plasmalemma vesicle-associated
protein (PLVAP),24 fibromodulin (Fmod),25 C4A,26 MMP9,27

insulin-like growth factor binding protein 2 (IGFBP2),28 and
NLR Family Pyrin Domain Containing 1 (NLRP1),29 whereas
none is reportedly increased with the progression of DR.
Our results further supported those previous findings, indi-
cating our transcriptome analyses are reliable and compara-
ble to other genetic studies. Many severity-associated genes
have not been reported in association with the progression
of DR, interestingly, however, they are related to diabetes,
such as alpha-2-Macroglobulin Like 1 (A2ML1),30 and C1r,31

suggesting their potential role in the pathogenesis of DR.
Inflammation is a nonspecific response of the immune

system to harmful stimuli or stress that includes many
functional and molecular mediators.32 Increasing evidence
demonstrates that inflammation is crucial to the develop-
ment of DR. Increased levels of a variety of inflammatory
cytokines and chemokines were observed in serum33 and
ocular samples (aqueous and vitreous) from patients with
PDR.34 However, it remains unclear how inflammation takes
part in the progression of DR due to the difficulty of sample
collection. Our functional enrichment analyses revealed that
the severity-associated genes are mainly involved in the
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negative regulation of cell differentiation, inflammation, and
immune responses, suggesting these pathological processes
are progressive during the development of DR.

We further identified CCND1 and FCGR2B as two crucial
genes involved in the inflammation in DR. CCND1 protein
is the critical gatekeeping protein regulating the transition
from G1 phase to S phase via the restriction point of the
cell cycle.35 A higher mRNA expression level of CCND1
was observed in human diabetic islets by microarray and
quantitative real-time PCR (qRT-PCR).36 Heightened hepatic
expression of CCND1 was also found in animal models
of obesity or diabetes due to hyperinsulinemia,37 suggest-
ing a close relationship between CCND1 and diabetes. The
original study with the macular transcriptomic data from
patients with DR that we analyzed in the present study
also found that CCND1 was one of the genes identified
with significant changes in expression levels.17 Our corre-
lation analysis among severity-associated genes confirmed
that CCND1 has a strong interaction with most of other
severity-associated genes, indicating its critical role in medi-
ating or regulating different genes that together contributes
to the progression of DR. FCGR2B protein is a low affin-
ity receptor for the Fc region of immunoglobulin gamma
complexes.38 FCGR2B involves many aspects of inflamma-
tory and immune responses and the complex regulation
of defense against infection.39 However, the regulation of
FCGR2B expression is complicated depending on the cell
types. For example, interferon-gamma, a signature proin-
flammatory cytokine, escalates FCGR2B mRNA and cell
surface expression by lipopolysaccharide-stimulated B cells
while reducing it on monocytes, a process keeping immune
response away from antibody production to pathogen clear-
ance.39 Increased levels of FCGR2B have been observed
in the pancreata of autoantibody-positive at-risk individu-
als with type 1 diabetes versus controls,40 and in the retina
of a rat model with type 1 diabetes induced by strepto-
cotocin.31 Similar to CCND1, FCGR2B is also one of the
severity-associated genes with substantial interaction with
other genes. Altogether, our results are in line with previous
findings and further confirmed both CCND1 and FCGR2B
increase in mRNA expression with the severity of DR,
suggesting their potential role as biomarkers to monitor the
progression of DR.

In the early stages of DR, when blood-retinal barrier
is intact, the immune system is mildly activated, and reti-
nal microglia plays a major role in the para-inflammatory
response, an important process to maintain retinal home-
ostasis.41 Consistent stimulation of damage-associated
molecules induced by diabetes in the eyes cause maladap-
tation of the innate immune systems, ultimately promoting
the development of DR.41 Circulating immune cells pene-
trate into the retina and result in chronic inflammation,
leading to retina vascular and neuronal damage in the late
stage.42 Despite the importance of the immune system in
the pathogenesis of DR, few studies have investigated the
changes in immune cell types over the progression of DR.
Using the deconvolution method with CIBERSORTx, we
systematically analyzed immune cellular profiles contain-
ing 22 immune cells and identified significant changes in
proportions of resting mast cells, memory B cells, naïve
B cells, and M2 macrophages in the macular region from
donors with different degrees of DR. Mast cells are tissue-
resident with heterogeneous phenotypes tuned by inflam-
matory stimuli.43 We suspect that inflammation in DR results
in the phenotype change of mast cells from resting to acti-

vated, for which proportions of resting mast cells are signif-
icantly decreased over the severity of DR. Memory B cells
are the populations of cells that provide long-term humoral
immunity.44 A study revealed that chronic inflammation trig-
gers an increase of activated memory B cells in patients
with erythema nodosum leprosum, an inflammatory compli-
cation of leprosy.45 Given that DR is a progressive disease
featured with chronic inflammation, it is reasonable to see
increased and decreased proportions of memory B cells
and naïve B cells, respectively, with the severity of DR.
Macrophages are heterogeneous and feature various func-
tions once activated.46 Our previous study demonstrated the
significant increase of M2 macrophages in the retina of the
rat model of retinal neovascularization and patients with
PDR by deconvolution analysis.47 Our results are in line with
previous findings that the proportions of M2 macrophages
are increased with the severity of DR. Correlation analyses
showed CCND1 and FCGR2B have a moderate positive corre-
lation with memory B cells and M2 macrophages, suggest-
ing both genes may be crucial in regulating activation of M2
macrophages.

Despite studies that have shown morphological or struc-
tural changes in retina cells from patients with DR, such
as Müller glia and microglia cells,48,49 few assessed changes
in proportions of each retinal cell type from patients with
DR. Using CIBERSORTx, we, for the first time, quantified
the proportions of all retinal cells in the macular region
from patients with different degrees of DR. We revealed
that the proportion of Müller glia is significantly increased
with the severity of DR, whereas changes of the proportions
of other retinal cells were observed but without statistical
significance. Expression levels of CCND1 and FCGR2B are
moderate positive and related to the proportions of Müller
glia, indicating their importance in the activation of Müller
glia. Müller glia is important to maintain retinal function
and health because it spans the entire width of the retina
and contacts every other cell type. It is believed that Müller
glia becomes activated in DR, characterized by the increased
expression of glial fibrillary acidic protein, a marker of
reactive gliosis.49,50 However, some histological studies also
reported Müller cells loss during the DR progress possibly
due to the increased caspase-1 activity and IL-1β production
following exposure to hyperglycemic conditions.50,51 More
studies are required to determine the mechanisms of Müller
glia activation and death to pinpoint whether all Müller glia
are equally affected by hyperglycemia. Decreased number of
astrocytes in the retina has been found in both patients with
DME and rat models of patients with diabetes.52,53 Notably,
our results showed an increased proportion of astrocytes,
although it was not significantly correlated to the severity of
DR. The DR progression is affected by multiple risk factors,
such as age, gender, diabetes duration, fasting blood glucose,
and glycosylated haemoglobin.54,55 In our deconvolution
analyses, we only controlled for age and gender as covari-
ants of gene expression due to limited access to clinical
labeling, leaving other risk factors that potentially confound
the regression analyses. Moreover, a relatively small sample
size could be another factor that affects the deconvolution
outcome. Therefore, future studies with a large sample size
and enriched clinical labeling should be performed to vali-
date our results.

There were several limitations of this study. First, the
sample size in each group of the DR stage is relatively small,
which likely affects the statistical power to identify a high
number of severity-associated genes defined by LRT. In addi-
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tion, the current study is based on in silico analysis of tran-
scriptomic data. Future biological studies that investigate the
functionality of CCND1 and FCGR2B in memory B cells and
M2 macrophages, as well as Müller glia, would be important
to understand their role in progressive DR.

CONCLUSION

The findings reveal a group of genes, particularly CCND1
and FCGR2B, significantly increase in expression with the
severity of DR, by controlling for other factors affecting gene
expression, such as gender and age. Moreover, proportions
of memory B cells, M2 macrophages, and Müller glia are
significantly increased with the severity of DR. Our analyses
provide potential avenues for subsequent research to study
the mechanisms of DR progression.
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