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The in vitro micronucleus assay using imaging flow cytometry
and deep learning
Matthew A. Rodrigues1✉, Christine E. Probst1, Artiom Zayats1, Bryan Davidson1, Michael Riedel1, Yang Li1 and Vidya Venkatachalam1

The in vitro micronucleus (MN) assay is a well-established assay for quantification of DNA damage, and is required by regulatory
bodies worldwide to screen chemicals for genetic toxicity. The MN assay is performed in two variations: scoring MN in cytokinesis-
blocked binucleated cells or directly in unblocked mononucleated cells. Several methods have been developed to score the MN
assay, including manual and automated microscopy, and conventional flow cytometry, each with advantages and limitations.
Previously, we applied imaging flow cytometry (IFC) using the ImageStream® to develop a rapid and automated MN assay based on
high throughput image capture and feature-based image analysis in the IDEAS® software. However, the analysis strategy required
rigorous optimization across chemicals and cell lines. To overcome the complexity and rigidity of feature-based image analysis, in
this study we used the Amnis® AI software to develop a deep-learning method based on convolutional neural networks to score IFC
data in both the cytokinesis-blocked and unblocked versions of the MN assay. We show that the use of the Amnis AI software to
score imagery acquired using the ImageStream® compares well to manual microscopy and outperforms IDEAS® feature-based
analysis, facilitating full automation of the MN assay.
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INTRODUCTION
The in vitro micronucleus (MN) assay is used worldwide to assess
the ability of various chemicals or other agents to induce DNA
damage in the fields of population biomonitoring and radiation
biodosimetry1–3. The assay is also fundamental in genetic
toxicology to test the development of chemicals, pharmaceuticals,
and cosmetics for human use4,5. MN originate from whole
chromosomes or chromosome fragments that fail to be incorpo-
rated into the main nucleus following nuclear division5 and
consequently, MN frequency can be used as an endpoint to
quantify DNA damage.
Scoring of MN is typically performed in once-divided binu-

cleated (BN) cells by blocking division with Cytochalasin-B (Cyt-B).
As the post-cellular division fate of MN is generally not well
understood, the use of Cyt-B ensures that MN can be associated to
a single cell division, circumventing confounding factors such
altered division kinetics or cell cycle delays5–8. The Cyt-B approach
also allows the scoring of mononucleated (MONO) and poly-
nucleated (POLY) cells permitting the evaluation of cytotoxicity9.
The assay can also be performed in the absence of Cyt-B, making
it faster and easier to score, however it has been demonstrated
that chemicals that weakly induce MN by strongly impacting
cytostasis may produce false negatives10,11. The non-Cyt-B version
of the assay is also limited by the formation of BN cells at low
frequency, which may lead to erroneous results if unscored7.
Despite these cautions, a number of publications have demon-
strated that the non-Cyt-B version of the assay can detect
significant increases in MN frequency in several cell lines using a
variety of test chemicals12–14.
The MN assay has historically been scored using manual slide

microscopy, which benefits from high-resolution imaging of
nuclear and cytoplasmic cellular components, but is prone to
scorer fatigue and variability15. In addition, prolonged use of a
microscope can lead to repetitive stress injuries, including back,
neck, and vision problems16–18. To address these difficulties,

automated methods have been developed, including slide-
scanning microscopy and flow cytometry. However, commercial
automated slide-microscopy systems require high-quality slides
with optimal cell density, which can be challenging to create at
low cell concentrations, and lack cytoplasmic visualization,
decreasing scoring robustness for MONO and POLY cells19–23.
Conventional flow cytometry methods offer dramatically higher
throughput compared to manual and automated microscopy
methods. However, flow cytometric assays require a cell lysing
step making it impossible to perform the Cyt-B version of the
assay, and false positives may occur due to the formation of
apoptotic bodies and other DNA positive debris24,25. Moreover, as
a non-imaging method, flow cytometry may not be used to
visually validate the legitimacy of purported MN populations.
In light of these limitations, we and others have reported on the

use of imaging flow cytometry (IFC) to automate the MN assay for
genetic toxicology26–29 and biodosimetry applications30–35,
demonstrating that MN can be accurately scored at increased
sample throughput without the requirement to prepare high-
quality slides. The ImageStream®X Mark II (Amnis® Flow Cytometry,
Luminex, Seattle, WA, USA) combines the speed and statistical
robustness of conventional flow cytometry with high-resolution
imagery capabilities of microscopy in a single system36. IFC
technology has been used to quantify autophagy37 and extra-
cellular vesicles38, to demonstrate diagnostic potential in acute
leukemia39, for assessment of phagocytosis and NETosis40 and to
quantify DNA damage via the chromosomal aberration assay41.
The ImageStream®X Mark II is accompanied by a powerful image
analysis software package (IDEAS®) which permits robust analysis
strategies to be created. However, the feature-driven nature of
IDEAS® requires expert knowledge and rigorous optimization to
create an analysis strategy that correctly identifies subtle
morphologies in some imagery (e.g. MN). Therefore, a more
robust and readily accessible image-driven solution is desirable.
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In this study, we developed a classification model using
convolutional neural networks (CNNs) to score the MN assay,
overcoming the limitations of feature-based image analysis. The
use of deep learning for image analysis has grown significantly in
recent years as it mimics the ability of the human brain to discern
patterns42. In particular, CNNs which are multi-layered neural
networks that use kernel-based processing, are particularly
effective at extracting information at multiple levels to compre-
hensively characterize image data, thereby facilitating enhanced
discrimination of populations or identification of image subtle-
ties43. As such, CNNs have been used in a number of fields to
enhance accuracy and improve workflow including pathology43,
cell biology44, and pharmaceuticals45. One disadvantage of CNNs
has been the requirement for computer scientists to perform
optimization and validation, making them relatively inaccessible
to researchers lacking expertise in those areas. To address this
limitation, Amnis® AI (AAI) software has been developed to allow
researchers to directly develop, train, and validate CNN models for
IFC data through the use of a convenient graphical user interface.
A second disadvantage of CNNs is their requirement for large
training datasets in order to achieve high accuracy. Consequently,
IFC data are particularly well suited for classification by CNNs as
large numbers of images can be automatically acquired at rapid
collection speeds. The development of CNN-based classifiers using
AAI is further supported by unique clustering and prediction
functionalities which permit rapid ground truth model class
assignment of morphologically similar images, greatly streamlin-
ing the construction of large training datasets. In a recent
publication, we demonstrated that a model created and trained
with the AAI software using only Brightfield imagery was able to
robustly identify and differentiate silicone oil droplets and protein
aggregates, a distinction of particular importance in the develop-
ment of therapeutic protein formulations45.
With respect to the MN assay, image classification by CNNs

present several advantages in comparison to traditional feature-
based scoring methods, including the elimination of complex
image analysis strategies, translatability across multiple cell lines
and test chemicals, and higher resistance to experimental
perturbations. In this study, the AAI software was used to develop
a single classification model to score both the cytokinesis blocked
and unblocked versions of the MN assay using TK6 lymphoblas-
toid cells and three widely used test chemicals; Mitomycin C
(MMC), Etoposide, and Mannitol. Scoring was performed using
manual microscopy, IDEAS® and AAI to identify all key events15 to
assess genotoxicity and cytotoxicity. Our results show that AAI
outperforms the feature-based IDEAS® analysis and compares well
to manual slide microscopy.

RESULTS
Deep-learning model development using Amnis® AI
To quantify genotoxicity and cytotoxicity by microscopy methods,
individual cellular images must first be categorized by number of
nuclei and MN4. In the Cyt-B version of the assay, the critical
events that must be scored are MONO cells, BN cells with and
without MN, and POLY cells9. In the non-Cyt-B version of the MN
assay, the critical events that must be scored are MONO cells with
and without MN9, but it has also been demonstrated that scoring
BN cells with MN can yield valuable information7,8. Example
images selected from IFC data show that cytoplasm and DNA
content (e.g. nuclei and MN) can be visualized within all key
events (Fig. 1). Additionally, as with microscopy, some imagery
captured using IFC will possess irregular morphology as defined
by the published scoring criteria15 and must be excluded from
scoring, including images with irregularly shaped and/or over-
lapping nuclei, nuclei within the same cell that differ from one
another in size and/or staining intensity and imagery where

individual nuclei are not clearly identifiable. In IDEAS®, all nuclei
and MN can be automatically identified using masks that identify
and highlight pixels within a defined region of interest in an
image (Fig. 1). Image-based features can then be used to create a
gating strategy that permits critical events that meet the
published scoring criteria to be quantified while concurrently
removing all other events. The details of the IDEAS analysis
strategy used in this work can be found in previous
publications26,27.
The AAI software was used to train a model that sorted images

into six classes using both the BrightField (BF) and nuclear images:
MONO cell, MONO cell with MN, BN cell, BN cell with MN, POLY
cells, and cells with irregular morphology. The workflow used to
build and train a model in the AAI software is shown in Fig. 2.
MMC data consisting of a total of 300,144 images from both Cyt-B
(15 data files) and non-Cyt-B (10 data files) experiments across the
dose range were loaded into the AAI software. Each data file
contained initial ground truth populations consisting of 50 images
(where possible) per model class that had been hand-tagged in
IDEAS®. Once the data and initial ground truth populations were
loaded into the AAI software, the segment option was used to
create a segment of 1500 randomly selected objects. Segments of
1500 objects are used in the AAI software to improve the speed
with which the Cluster and Predict algorithms run, both of which
can be executed once a segment has been created (Fig. 2).
Objects can then be assigned to the ground truth model classes
using either the Cluster or Predict algorithms.
The Cluster algorithm attempts to group morphologically

similar objects within a segment. First, each image passes through
a pre-trained CNN. The features computed at the final layer of the
CNN just prior to classification are used as inputs to a
dimensionality reduction algorithm to aid in visualization. Ground
truth is not required, but if labels are provided they will be
leveraged to improve the results of the dimensionality reduction.
Five times more clusters than classes are assigned to ensure that
the clusters contain substantially similar images. The result
presents the user with a list of clusters that can be selected to
view the objects within a particular cluster in the image gallery.
Additionally, an interactive object map is displayed, where clusters
can also be selected to view the associated imagery (Fig. 2).
Individual objects, groups of objects within a cluster, or entire
clusters can then be assigned to the appropriate ground truth
model class. Initially, since the model has not been trained, images
with MN will be clustered together with images that do not have
MN as the morphological difference between the two is very
subtle. Figure 2a shows that while the cluster algorithm can
differentiate between MONO (purple cluster), BN (yellow cluster),
POLY (green cluster) and irregular (cyan cluster) classes, differ-
entiating between images with and without MN at this stage is
difficult. Figure 3 demonstrates how the cluster algorithm groups
similar objects using only the MONO, BN, POLY and irregular
classes as an example. Figure 3a shows the initial clustering step
with 1500 unassigned objects being grouped into clusters of
objects with similar morphology, where MONO and POLY cells are
clustered toward opposite sides of the object map as their
morphologies are very different. BN cells are clustered towards the
middle of the object map, while objects with irregular morphology
are dispersed throughout the central portion of the object map as
these objects are more morphologically heterogeneous when
compared to all other model classes. As more objects are assigned
to ground truth model classes (Fig. 3b-d), clusters become
increasingly separated on the object map, indicating the AAI
model is learning which particular images belong to the classes of
interest. In Fig. 3d, four distinct islands are clearly visible, with each
island representing a single class. Once all classes have been
populated with at least 25 ground truth objects, the Predict
algorithm (Fig. 2b) can be used to assign unclassified objects to
the class of best fit. The predict algorithm trains a simple linear
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model using the features extracted from the pre-trained CNN. The
predicted classes created match the classes in the ground truth
data and objects that do not fit well into any class are labeled as
unknown. In this work, Fig. 2b demonstrates that the predict
algorithm creates six model classes and plots them on the object
map: MONO (red), MONO with MN (yellow), BN (blue), BN with MN
(purple), POLY (green) and irregular (cyan). The morphological
differences between the MONO and POLY class are readily
identified, hence their positioning at opposite ends of the object

map permitting rapid addition into the ground truth data.
Conversely, for example, the morphological differences between
BN cells with and without MN are very subtle and as such, the two
populations are essentially mixed on the object map. However,
the user can view all imagery in the predicted classes for both
populations which makes rapid population of the ground truth
datasets achievable because objects are pre-sorted into the
highest probability class. This functionality is especially useful for
identifying rare objects which are laborious to identify in a non-

Fig. 1 Representative IFC imagery of all key events that must be scored in the in vitro micronucleus (MN) assay. Key events include
mononucleated cells (with and without MN), binucleated cells (with and without MN), and polynucleated cells. Cytoplasmic material is visible
in the Brightfield imagery and DNA content (e.g. main nuclei and MN) is visualized in the Hoechst (yellow) channel. Masks (cyan) overlaid onto
the images identify either the main nuclei or the MN. Representative imagery of events with irregular nuclear morphology that do not fit the
published scoring criteria are also shown.
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sorted data set, such as low-frequency MONO and BN cells with
MN.
Iterating between the Cluster and Predict algorithms, 190 seg-

ments containing 285,000 objects were examined. Objects were
assigned to the appropriate ground truth model classes until all
classes contained between 1500 and 10,000 images. A total of
31,500 objects, 10.5% of the total number of objects loaded, were
used to train the model. Model training was completed within the
AAI software when the accuracy on the training and validation
datasets converged and reached a maximum which required 70

epochs. Accuracy statistics including precision, recall and F1 score
are available metrics in the AAI software for evaluating the efficacy
of a trained model. These are common metrics used in machine
learning, where precision is the percentage of events that were
correctly classified, recall is the percentage of truth events that
were correctly classified and the F1 score conveys the balance
between precision and recall. In all cases, the higher the value is,
the more accurate the model is. For each model class, the values
for these statistics ranged from 86.0% to 99.4% with an overall
weighted average model accuracies of 96.0%, 96.3%, and 95.6%

Fig. 2 Diagrammatic view of the Amnis® AI (AAI) software workflow. The user loads IFC data files into the software using a step-by-step
wizard. The Segment option is then used to randomly select 1500 objects, at which point either the Cluster or Predict algorithm can be
selected. The Cluster algorithm (a) is used to group like objects within a segment together based on the imagery of both the unclassified and
the ground truth objects. However, at this stage, the untrained model has difficulty differentiating between images with subtle morphological
differences such as BN cells with and without MN (yellow cluster), hence these images will be placed into the same cluster. The Predict
algorithm (b) requires a minimum of 25 images in each of the ground truth model classes and attempts to predict the correct model classes
for all unclassified objects within a segment. The predictions made by the Predict algorithm on the unclassified objects are based on the
morphology of the objects that have been assigned to the specific ground truth model classes. The predict algorithm is better able to identify
subtle morphological differences between images, such as BN cells without MN (blue) versus BN cells with MN (purple). Objects such as these
will appear in close proximity on the object map, but the user can examine the images in each predicted class separately. Using the results of
both the Cluster and Predict algorithms, the user can then manually assign objects (individually or in large groups) to their appropriate
ground truth model classes. Ground truth model classes were populated with objects for all critical events in the MN assay (i.e. MONO cell,
MONO cell with MN, BN cell, BN cell with MN, POLY cells and cells with irregular morphology). The model was then constructed by splitting
the ground truth imagery into training, validation, and test sets using an 80/10/10 ratio. Following training and testing, additional datasets
were classified using the model.
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for the training, validation, and testing datasets, respectively
(Table 1).

Microscopy, IDEAS®, and AAI dose-response for Cyt-B version
of the assay
Dose-response data following exposure to MMC, Etoposide, and
Mannitol for the Cyt-B version of the assay are shown in Fig. 4 and
Table S1. Across all experiments and scoring methods, the mean
background MN frequencies for all solvent controls ranged from
0.43 to 1.69% which compares well to recently published data
demonstrating that MN frequencies from negative control using
TK6 cells ranged from 0.32 to 1.38% when scored by either
microscopy or flow cytometry46. For both MMC and Etoposide,
statistically significant increases (p < 0.001) in the number of MNed
BN cells were observed in all doses tested when compared with
solvent controls. For MMC and Etoposide, the MN frequencies in
the dosed samples ranged from 2.09 to 9.50% and 2.99 to 7.98%,
respectively across all scoring methods and AAI scoring compared
well to microscopy. For Mannitol no statistically significant
increases in MN frequency were observed at any dose, as
expected, and the MN frequencies across all samples ranged
from 0.43 to 1.45%. For IDEAS® and AAI scoring, cytotoxicity values

were higher overall in all MMC and Etoposide dosed samples
when compared to microscope scoring but showed similar trends
across the dose range (Fig. 4). Only the top MMC dose exceeded
55 ± 5% cytotoxicity as recommended by the OECD Test Guideline
4874. For Mannitol, cytotoxicity values were similar for all scoring
methods, ranging from −3.5 to 2.2% across the dose range.
On average, the MMC samples required 1–2min to collect

15,000 images in each data file, and the Etoposide and Mannitol
samples required 5–6min to collect 30,000 images per data file.
The AAI software data processing time was less than one minute
per file and an overall average of 6493 MONO cells, 7733 BN cells
and 2649 POLY cells were scored by the AAI model. In all cultures
but one (one replicate of 0.5 µg/mL MMC), over 2000 BN cells were
scored in all data files, double the requirement specified in the
OECD guideline4.

Microscopy, IDEAS®, and AAI dose-response for non-Cyt-B
version of the assay
TK6 dose response to MMC, Etoposide and Mannitol for the non-
Cyt-B version of the assay are shown in Fig. 5 for MNed MONO
cells, Fig. 6 for MNed BN cells and Table S2. Across all experiments
and scoring methods, the mean background MN frequencies in

Fig. 3 Examples of how the cluster algorithm attempts to group similar objects within a segment. Beginning with 1500 unassigned
objects (a), the Cluster algorithm groups objects of similar morphologies into clusters of similar objects located close to one another on the
object map. By assigning 250 (b), 750 (c), and 1250 (d) objects to the appropriate ground truth model classes, the accuracy with which the
unassigned objects are grouped by the algorithm increases. In panels (c) and (d), distinct islands have become more visible and it can be seen
that MONO, BN and POLY cells are well-separated from one another, while objects with irregular morphology have also been placed into their
own discrete island.
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MONO cells for all solvent controls ranged from 0.38 to 1.0%
which compares well to historical results46. For both MMC and
Etoposide, statistically significant increases (p < 0.001) in the
number of MNed MONO cells were observed when compared
with solvent controls for all methods and doses except the
0.125 µg/mL MMC dose point using microscopy. For MMC and
Etoposide, the MN frequencies in the dosed samples ranged from
2.55 to 7.89% and 2.37 to 5.13%, respectively across all scoring
methods and again, AAI scoring compared well to microscopy. For
Mannitol no statistically significant increases in MN frequency
were observed at any dose, as expected, and the MN frequencies
across all samples ranged from 0.36 to 0.63%. Similar to the Cyt-B
experiments, only the top MMC dose exceeded 55 ± 5% cytotoxi-
city4 (Fig. 5). For Mannitol, cytotoxicity values were also similar to
the Cyt-B experiments and ranged from 0.2 to 2.2% across the
dose range. On average, the MMC samples required 30 s to collect
10,000 images in each data file, and the Etoposide and Mannitol
samples required 2min to collect 30,000 images per data file. The
AAI software data file processing time was less than one minute
per file. For the MMC samples processed using AAI, an overall
average of 8121 MONO cells were scored and for the Etoposide
and Mannitol samples, an overall average of 27,866 MONO cells
were scored. This data demonstrates that many more cells can be
acquired and scored per culture in just a few minutes by IFC when
compared to microscopy, in which 1,000 MONO cells per culture
are typically scored4.
Previous studies have demonstrated that genotoxins can cause

cell cycle delays, resulting in an increase in BN cells of which a
substantial proportion contain MNl; ranges of 9.4–40.4% have
been reported7. It has been suggested that not scoring these cells
and only scoring MNed MONO cells may lead to false negative
results when using weak genotoxins7,8. However, due to the rarity
of spontaneous BN cells combined with the low throughput of
slide-based microscope scoring, this is a tedious task. Fortunately,
this becomes straightforward using IFC and AAI given the large
number of images that can be acquired and automatically scored.
Figure 6a-c and Table S2 show that overall, the rate of BN cells
increased with increasing dose due to reduction in cell prolifera-
tion following exposure to both MMC and Etoposide. For MMC,
Etoposide and Mannitol the rate of BN cells identified by AAI
reached a maximum of 3.80%, 3.06%, and 0.602% respectively.
Within these BN cells, the average MN frequencies scored by AAI
for MMC, Etoposide and Mannitol were 29.4%, 34.0%, and 5.5%,
respectively (Fig. 6d–f).

DISCUSSION
This paper presents the use of a deep learning software package
to automate analysis of the MN assay. Recent publications have
demonstrated that easy-to-use, interactive tools permit research-
ers to use pre-defined deep learning models47, or train new
models48 to analyze their image data without the requirement for
computational expertise. The AAI software utilized in this paper is
entirely user interface-based and has been architected to work
with large datasets. To address the requirement for large training
datasets using CNN-based classifiers, AAI is equipped with unique
Cluster and Predict functionalities that allow rapid assignment of
images to ground truth model classes (Figs. 2 and 3). Previously,
we demonstrated that the IFC-based MN assay offers simple
sample preparation and staining procedures along with straight-
forward data acquisition. Additionally, we have shown that the
IDEAS®-based data analysis strategy quantifies all key events in the
MN assay, though the image analysis is complex and in some
cases required optimization when translating across cell lines and
chemicals26,27. The results presented in this paper demonstrate
how a deep learning model trained in AAI software is able to
robustly identify cell morphologies of interest yielding results
comparable to visual microscopy, while eliminating theTa
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requirement for image analysis expertise and optimization
required by the IDEAS®-based approach.
In this study, MMC, Etoposide and Mannitol were evaluated for

genotoxicity and cytotoxicity using microscopy, IDEAS® scoring
and AAI scoring. In both Cyt-B and non-Cyt-B versions of the assay,
increases in cytotoxicity were observed with increasing dose when
compared to solvent controls using all scoring methods for both
MMC and Etoposide as expected with a 3 h exposure + 24 h
recovery schedule8,12,13. While MMC cytotoxicity increased with
dose, with Etoposide in the Cyt-B version of the assay, all doses
produced similar levels of cytotoxicity, which was also observed
by Elhajouji using a similar exposure/recovery schedule12. With

Mannitol, no significant increases in cytotoxicity were observed
using any scoring method in either version of the assay, which is
consistent with results from previous work by our group and by
others26,49. When comparing cytotoxicity values obtained by the
three scoring methods, AAI gave slightly higher values, which may
be attributed to differences in manual scoring with microscopy
and lower scoring of polynucleated cells by IDEAS (Fig. 4).
When evaluating genotoxicity through MN quantification, clear

positive responses (p < 0.001) when compared with solvent
controls were observed for MMC and Etoposide at all doses for
IDEAS® and AAI scoring in both the Cyt-B and non-Cyt-B versions
of the assay (Figs. 4, 5). With microscope scoring, statistically
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significant MN increases were not observed for the lowest doses
of MMC and Etoposide in the Cyt-B version of the assay and for
the lowest dose of MMC in the non-Cyt-B version of the assay. No
statistically significant increases in MN frequency were observed
using Mannitol for any scoring method. Overall, MN frequencies
compared well across all three scoring methods for both versions
of the assay but in general, AAI scoring compared better to
microscopy than did IDEAS® scoring, which may be attributed to
several factors. In previous work26 it was demonstrated that an
analysis strategy in IDEAS® could be used to automate scoring of
the assay. However, due to the rigidity of the masking parameters
in IDEAS®, some smaller MN may be missed when using
compounds that are weak inducers of MN or when MN arise
from chromosome fragments breaks and are small. This work
demonstrates that AAI can more robustly identify more subtle
morphologies, such as smaller MN, MN that reside very close to
the nuclei and MN that are slightly out of focus in the IFC imagery.
Moreover, by combining IFC data with AAI scoring, several
thousand MNed BN and MONO cells can be scored, providing a
more robust quantification of genotoxicity compared to slide-
based microscopy.
In recent publications, it has been suggested that certain

genotoxins can cause cell cycle delays which result in MNed BN
cells accumulating in culture. Sobol et al. reported on the
implications of cell cycle delays impacting MN frequencies
following exposure of TK6 cells to three well-known genotoxins,
including MMC and Etoposide, and suggested an extended
recovery time may be necessary to accurately quantify MN

frequencies8. Additionally, Doherty et al. quantified MNed BN cells
in the non-Cyt-B version of the assay using TK6 cells after showing
that not scoring these cells could lead false negative results7.
Following a 24 hr exposure, mean BN cell and MN BN cell rates in
dosed samples reached as high as 40.4%; however, the number of
MNed BN cells scored was less than 50 from most samples7. In this
work, we have shown that MNed BN cells can be scored
automatically in the non-Cyt-B version of the assay. While the
average rate of BN cells scored by AAI was lower in dosed samples
when compared to the results shown by Doherty et al. due using
only a 3 h exposure, an average of 194 MNed BN cells were scored
across all dosed samples. These results confirm findings in
previous publications but also demonstrate the potential to
shorten protocol schedules since many more cells can be scored
using IFC, which may provide faster time-to-result. Additionally,
this solution is more elegant as it can replace tedious microscope
scoring and the complexities of feature-based image analysis since
a single AI model permits scoring of all key events in both versions
of the assay.
In a previous publication, we demonstrated that when using the

IDEAS® analysis strategy on IFC data captured at 60× magnifica-
tion, the overall average MN frequency was below the historical
range26,46. In this work, the mean MNed BN cell and MNed MONO
cells compare well to historical data and can likely be explained by
the extended depth of focus at lower magnifications and the use
of the AAI software. The 40× magnification used in this work
provides a 4 µm depth of focus compared to a 2.5 µm depth of
focus available at 60× magnification used previously26. Therefore,
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some legitimate MN that reside at a slightly different depth of
focus than the main nuclei will appear brighter at 40× and can be
scored more robustly. Use of the 40× magnification objective,
combined with the use of AAI permits correct identification of
some legitimate but dimmer MN that may be missed with the 60×
objective and IDEAS® scoring.
With the introduction of the AAI software to replace feature-

based image analysis to score the IFC-based in vitro MN assay, the
advantages over microscopy and conventional flow cytometry are
further realized. In previous work, we discussed the superior
throughput and automation of IFC in comparison to other
techniques used to perform the MN assay. With IFC, several
thousand images can be collected and analyzed in just a few
minutes, and the use of the 96-well plate autosampler permits
unattended acquisition of image data. We have observed a 5-fold
reduction in the batch processing time required when using AAI
to process data in comparison to IDEAS® due to the fact that once
CNN models have been trained, they can rapidly be applied to
classify new data. One of the most significant advances that this
work demonstrates is the use of a single deep learning model to
classify new data in both the Cyt-B and non-Cyt-B versions of the
MN assay. This offers a significant advancement over microscopy,
especially with the Cyt-B version of the assay that requires two
scans (one for genotoxicity and a second for cytotoxicity
assessment) and over IDEAS® scoring where separate analysis
templates are required for each version of the assay.
In a number of recent publications, several methods of image-

based cell sorting have been described. The ability to sort and
further analyze individual cells often overcomes the loss of
information that occurs when attempting to extract subtle cell-to-
cell variations from bulk populations50. With the advancements in
computing power over the last decade, the ability to capture
imagery and apply deep learning networks in near-real time to
physically sort cells of interest based on morphological features is
now possible. Several such systems have been described,
employing various methods of image capture including
frequency-division-multiplexed microscopy51, photomultiplier
tubes52, interdigital transducers53, Raman scattering54, and
virtual-freezing fluorescence imaging55,56. While each of these
methods demonstrates significant advances to sort cells based on
fluorescence and morphological differences, applying these
systems to sort all key events in the MN assay may be challenging
due to the very subtle morphology of the MN and the high
resolution, focused imagery required for precise detection.
However, as computing power improves and deep learning
models become more advanced it may be possible to identify MN
and other markers through a combination of morphology and
fluorescence. For example, a multiplexed MN assay could be
developed in which fluorescence is used to identify early and late
apoptotic and necrotic cells that could be automatically quantified
and sorted. Additionally, since MN form their own nuclear
envelope, a marker that attaches to the nuclear lamina could be
incorporated into sample preparation protocols and a CNN-based
model could be trained to identify this characteristic during image
acquisition. Furthermore, the addition of pan-centromeric probes
or anti-kinetochore antibodies may allow for the differentiation of
MN that contain centromere positive chromosomes from those
that are composed of only acentric chromosome fragments57. This
may allow for the development of an AI-assisted imaging flow
cytometry workflow to sort cells containing MN that have been
generated from aneugenic versus clastogenic compounds. These
cells could then be further analyzed to fully investigate additional
markers that may require higher resolution imagery (e.g. 100X) to
visualize such as telomere markers58, a process that would be
made more efficient if microscope slides contained only
micronucleated cells.
This paper demonstrates the use of a deep learning model

constructed within the AAI software package to perform the

in vitro MN assay, generating results that compare well to gold
standard microscopy for well-established positive (MMC and
Etoposide) and negative (Mannitol) controls. The AAI software is
based on a CNN that is designed to directly classify IFC imagery
and does not rely on traditional feature-based image analysis
methods which are rigid and require substantial optimization.
Future inter-laboratory studies, using a comprehensive list of well-
known chemicals across multiple cell lines, are required to
develop fully validated models for genotoxicity and cytotoxicity
scoring. Overall, this work establishes the feasibility of combining
IFC and deep learning towards the development of a rapid and
fully automated in vitro MN assay that may serve as a replacement
for manual slide microscopy scoring, improving accuracy,
reproducibility, and time-to-result for toxicity and biodosimetry
applications.

METHODS
Test chemicals
Test chemicals were purchased from MilliporeSigma (Billerica, MA, USA)
and were selected since there is significant published literature that
demonstrates their potential to induce MN across a wide range of
doses12,13,59–61. MMC (CAS no. 50-07-7) is an alkylating agent that inhibits
DNA synthesis by cross-linking the complementary strands of the DNA
double helix. Etoposide (CAS no. 33419-42-0) inhibits DNA synthesis
through the formation of a complex with topoisomerase II and DNA, which
induces breaks and prevents repair by topoisomerase II binding. Mannitol
sugar (CAS no. 69-65-8) is an osmotic diuretic that is metabolically inert in
humans and was used as a negative control in this work as it has
previously been shown to be MN negative. Mannitol and MMC were
dissolved in sterile water while Etoposide was dissolved in DMSO.

Cell line and culture conditions
Human lymphoblastoid TK6 cells were purchased from MilliporeSigma (cat.
95111735) and grown in HyClone RPMI-1640 media (SH30027.01; GE
Healthcare Life Sciences, Utah, USA) supplemented with 10% fetal bovine
serum (SH30071.03GE; Healthcare Life Sciences), 1% non-essential amino
acid (13-114E; Lonza, NJ, USA), 1% sodium pyruvate (SH30239.01; GE
Healthcare Life Sciences) and 1% penicillin-streptomycin (15070063; Gibco,
Thermo Fisher Scientific, MA, USA). Cells were grown at 37 °C in a
humidified atmosphere of 5% CO2 in air and were routinely passaged to
ensure they remained in the exponential growth phase. Cells never
exceeded passage 30 and their average doubling time was 14–15 h.

Exposure and recovery schedules
Test chemicals were introduced into T25 culture flasks containing 10mL of
TK6 cells at a concentration of approximately 1–3 × 105 cells/mL (non-Cyt-B
assay) or 7–8 × 105 cells/mL (Cyt-B assay). Mannitol and MMC were added
at 10% (v/v) and Etoposide was added at 1% (v/v). Following a 3 h
exposure time, cells were centrifuged to remove the test chemical and
cultured in 10mL of fresh media to recover for 24 h. For Cyt-B experiments,
Cyt-B at a concentration of 3 μg/mL was added at the beginning of the
recovery period. Solvent controls (sterile water or DMSO) were used as
negative controls in each experiment. For MMC, all experiments were
performed in duplicate and for Etoposide and Mannitol, all experiments
were performed in triplicate.

Culture harvesting, sample preparation, and staining
All culture harvesting, sample preparation, and cellular staining techniques
used in this work have been described in detail in previous publica-
tions26,27. Briefly, for non-Cyt-B experiments, post-exposure cell counts to
determine cytotoxicity were obtained using a TC-10 automated cell
counter (Bio-Rad, Hercules, CA, USA). All samples were centrifuged and
pellets were soft fixed in 75mM KCl and 4% Formalin. Samples were then
centrifuged, hard fixed in 4% Formalin and washed with wash buffer (1×
PBS with 2% FBS). For microscope scoring, 5 µL from each sample was
transferred to 30 µL of wash buffer and stained with Hoechst 33342
(H3570; Thermo Fisher Scientific, MA, USA). For IFC data acquisition, RNase
(9001-99-4; MilliporeSigma) was added, samples were stained with
Hoechst 33342 and incubated for 30min at 37 °C. Following incubation,
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samples were centrifuged and the supernatant was pipetted off leaving
approximately 30 μL.

Microscope scoring
Slides were scored at ×100 magnification on a Nikon Eclipse E600 (Nikon,
NY, USA) fluorescent microscope. For non-Cyt-B experiments, 1000
mononucleated (MONO) cells per culture were scored for the presence
of MN. For Cyt-B experiments, 1000 binucleated (BN) cells were scored for
the presence of MN to assess genotoxicity and an additional 500 cells per
culture were scored and classified as either MONO, BN, or polynucleated
(POLY) cells to assess cytotoxicity4. The POLY cells observed in this work
had either three or four nuclei; cells with five or more nuclei were rarely
observed. All cells were scored according to published scoring criteria by
Fenech et al.62.

IFC configuration and acquisition
All samples were run on an ImageStream®X Mark II dual CCD camera
system (Luminex Corporation, Seattle, WA, USA) at 40× magnification with
the 405 nm laser set to 15mW. Channels 1 and 9 were used to capture
cytoplasmic images from the BF LED and Hoechst images (nuclei and MN)
were captured in channel 7. For all samples, a data acquisition template26

was used to eliminate small and large debris, unfocused imagery and dimly
stained events. All MMC samples were loaded manually and three data
files of 15,000 events for the Cyt-B experiments per sample (45,000 events
per culture) and three data files of 10,000 events for the non-Cyt-B
experiments per sample (30,000 events per dose point) were collected. All
Etoposide and Mannitol samples were acquired using the 96-well plate
autosampler add-on which permits unattended data acquisition and
eliminates the need for samples to be manually loaded. A total of 30,000
events were collected from each sample.

IDEAS® scoring
All IFC data was scored automatically for genotoxicity (MNed MONO in
non-Cyt-B experiments and MNed BN cells in Cyt-B experiments) and
cytotoxicity in Cyt-B experiments (MONO, BN and POLY cells) using data
analysis templates in IDEAS® that have been described in-depth in previous
work26. Briefly, for the IDEAS® scoring, a series of masks were created to
highlight the main nuclei in MONO, BN and POLY cells and to highlight MN
within MONO and BN cells. Features such as area, aspect ratio and
circularity were applied to these masks to create a gating strategy that
permitted images adhering to the published scoring criteria for the MN
assay to be retained and scored62.

Amnis® AI (AAI) software description
The AAI software (v1.0) uses the Keras Application Programming Interface
version 2.1.563 with TensorFlow version 1.7.0 library64 to train deep
learning models based on ground truth input data and to apply models to
classify new data. The convolutional neural network (CNN) architecture
used for training and classification is pre-configured based on the VGG16
network65 to work optimally on image data acquired on Amnis® IFCs across
a wide range of applications. Classification performance, usability and
robustness were major considerations influencing the choice of the
selected architecture. The user imports data to be used to build and train a
model into the AAI software and all pixel values in each image are
normalized to the range [0 1]. The ground truth populations for all critical
event types are then populated by the user using the AI-assisted tagging
tools (e.g. cluster and predict, Fig. 2) through a convenient user interface
which eliminates the need for substantial computational expertise. Once
the ground truth data has been populated, the AAI software splits the data
into training, validation, and test sets using an 80/10/10 ratio–the
validation and test datasets are never seen by the CNN during training.
Class balancing and data augmentation are also performed to control
classification bias and enhance the robustness of trained models. Once a
model has been trained, it can then be easily applied to classify additional
data. All computations were performed on an Intel® Xeon® E-2176M CPU @
2.70 GHz machine with an NVIDIA® Quadro® P2000 GPU running Windows
10 Enterprise.

Evaluation of genotoxicity and cytotoxicity
To evaluate genotoxicity and cytotoxicity, formulae in the OECD Test
Guideline 487 for the in vitro MN assay were used4. For genotoxicity, the

frequency of MN in BN cells and in MONO cells was quantified in Cyt-B and
non-Cyt-B experiments, respectively. Also, in the IFC data, the frequency of
MN in BN cells was quantified in non-Cyt-B experiments. For cytotoxicity, in
non-Cyt-B experiments post-recovery cell counts were used and in Cyt-B
experiments, the number of MONO, BN and POLY cells scored were used.

Statistical analyses
The Fisher’s Exact Test (one-sided) was used to determine statistically
significant increases in mean MN frequencies between solvent controls
and dosed samples using the open source R software (version 4.0.2;
https://www.r-project.org/) and the significance level was chosen to be
0.1% (α= 0.001). Error bars on microscopy data represent the standard
deviation (SD) of the mean of the MN frequency from one slide per culture
from triplicate cultures for Etoposide and Mannitol. For MMC, error bars on
IDEAS® and AAI data represent the SD of the mean of the MN frequency
from six data file replicates (three data files per culture from duplicate
cultures). For Etoposide and Mannitol, error bars on IDEAS® and AAI data
represent the SD deviation of the mean of the MN frequency from one
data file per culture from triplicate cultures.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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