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Abstract

Cocaine methiodide (CM), a charged cocaine analog, cannot pass the blood brain barrier. It has been assumed the effects of
systemic CM represent cocaine actions in peripheral tissues. However, the IC50 values of CM have not been clearly
determined for the major cocaine targets: dopamine, norepinephrine, and serotonin transporters, and sodium channels.
Using cells transfected with individual transporters from mice and synaptosomes from mouse striatum tissues, we observed
that the inhibition IC50 values for monoamine uptake by CM were 31-fold to 184-fold higher compared to cocaine at each of
the transporters. In dorsal root ganglion neurons, cocaine inhibited sodium channels with an apparent IC50 of 75 mM, while
CM showed no observable effect at concentrations up to 3 mM. These results indicate that an equal dose of CM will not
produce an equivalent peripheral effect of cocaine.
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Introduction

Cocaine produces complex behavioral and physiological effects

including: addiction and locomotor stimulation, cardiac arrhyth-

mias, and hormonal changes [1,2]. The high affinity targets of

cocaine include the dopamine (DA) transporters (DAT), norepi-

nephrine (NE) transporters (NET), and serotonin transporters

(SERT) [3]. Cocaine inhibits these transporters with similar

potencies at micromolar or submicromolar levels [4].

Cocaine produces effects in the central nervous system (CNS)

primarily by inhibiting three monoamine transporters, DAT, NET

and SERT [3]. These transporters clear neurotransmitters from

neural synapses and surrounding areas through monoamine

reuptake [1]. Cocaine inhibition of these reuptake processes

results in prolonged monoamine elevation in brain regions that

promote reward and addiction [1]. Cocaine also blocks sodium

channels but with lower potencies (50 mM or higher) [5]. These

cocaine targets are expressed in both the CNS and the peripheral

systems [6,7].

Many chemical analogs of cocaine have previously been

synthesized [8,9]. Cocaine methiodide (CM) is a chemical analog

of cocaine with a stable positive charge at physiological pH. The

positive charge of CM prevents a systemic administered dose from

crossing the blood brain barrier [10]. Therefore, CM should only

inhibit the functions of cocaine target proteins in peripheral

tissues.

It has been observed that the toxic effects of systemic CM,

measured in vivo by median lethal doses (LD50), are similar to that

of cocaine [11,12], leading to the presumption that the potencies

of CM and cocaine for peripheral targets might be similar.

Accordingly, several investigations examined the effects of systemic

CM with the presumption that the results represented cocaine

interactions with peripheral cocaine targets at similar doses

[10,13].

However, some studies have shown that CM and cocaine may

have different potencies at cocaine targets. CM was shown to be

less potent than cocaine at inhibiting NE uptake in aortic tissues

dissected from guinea pigs and rats [14]. CM was found to be less

potent than cocaine at inhibiting the binding of mazindol [15] to

rat striatal tissue preparations. In addition, in vivo data showed

that CM via intracranial delivery did not produce comparable

results to cocaine in rat self-administration tests [16].

While these prior CM studies are relevant to compare the effects

of CM to cocaine, they were performed in tissue preparations that

contain multiple cocaine targets with varying expression levels.

Accordingly, the concentration-responses for these two drugs have

not been clearly determined for each major target of cocaine

(DAT, NET, SERT or sodium channel subtypes). Therefore, we

aimed to determine the potency of CM and cocaine at inhibiting

major cocaine target proteins and thus testing the hypothesis that

CM is similarly potent as cocaine and would produce similar

effects in peripheral tissues.

Results

Previous pharmacological studies of CM on CNS proteins

utilized dissected tissues or tissue homogenates. Depending on the

source, these homogenized tissue samples have variable expres-

sions of multiple cocaine target proteins. In addition, monoamine

transporters share substrates and high affinity inhibitor com-
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pounds (such as mazindol) commonly used to study drug binding

to the transporters. To study the effect of CM on individual

transporter cocaine targets, we used cells transiently transfected

with individual transporter cDNAs. Because mouse models were

used in recent publications on the study of CM [7,17,18] we chose

the three mouse monoamine transporter cDNAs for transfection.

Figures 1A–C show the concentration-response curves for CM and

cocaine inhibition of monoamine uptake by each of the three

transporters. Each experiment was run in triplicate and the

experiments were repeated 3 times with similar results. The

average IC50 values for cocaine and CM respectively were: for

mDAT, 0.4560.11 mM and 83.262.1 mM, a 184 fold increase;

for mNET, 0.6760.09 mM and 20.963.1 mM, a 31 fold

difference; and for mSERT, 0.6860.39 mM and 84.364.8 mM,

a 123 fold difference. Student’s paired t-tests showed that the IC50

values of CM and cocaine were significantly different for each of

the 3 transporters (p,0.001 for all three comparisons). These

results are summarized in Table 1.

In addition to the experiments with cultured cells expressing the

transporters, we also examined CM and cocaine inhibition of

Figure 1. Concentration-response curves for cocaine and cocaine methiodide. Dopamine uptake by mouse DAT (A), norepinephrine
uptake by mouse NET (B), and serotonin uptake by mouse SERT (C) into transfected cells were measured in the presence of increasing concentrations
of cocaine or cocaine methiodide. The Na+ channel currents in isolated mouse DRG neurons were recorded by whole-cell patch clamping (D). The
data are presented as the percent of the pre-drug activity. Dopamine uptake by striatal synaptosomes were measured in the presence of increasing
concentrations of cocaine or cocaine methiodide (E). For A, B, C, and E, each data point represents the average of triplicate measurements 6 standard
error of means and the experiments were repeated three times with similar results. For D, each data point was obtained from four cells.
doi:10.1371/journal.pone.0007578.g001
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dopamine uptake in mouse brain tissues. Synaptosomes were

prepared from the striatum of healthy adult C57B6 mice. Standard

uptake assays were performed to measure CM and cocaine

inhibition. The results are shown in Figure 1E (n = 3, p,0.001).

The average IC50 values for cocaine and CM were 0.3560.11 mM

and 11.765.1 mM respectively, a difference of 33 fold.

Cocaine is well known to block the function of sodium channels

[19]. However, the effect of CM on sodium channels has not been

reported. Since CM is primarily used to identify cocaine effects in

the periphery, where sodium channels are potential targets, we

sought to determine whether CM and cocaine had similar

potencies on sodium channels in peripheral nerves. DRG neurons

express several different fast and slow responding sodium channel

subtypes, including NaV1.1, NaV1.6, NaV1.7, NaV1.8, and NaV1.9

[20]. DRG neurons provide convenient samples to examine the

inhibitory effect of cocaine and CM on multiple sodium channels.

Whole-cell recordings were performed using mouse DRG

neurons. Sodium currents were elicited by depolarization to

desired test potentials from the holding of 270 mV in the absence

and presence of cocaine or CM as described in Materials and

Methods. Figure 2 shows representative inward current traces

recorded from DRG neurons, before and during cocaine

application, as well as after cocaine washout. As shown in

Figure 2A–2D, cocaine dose dependently inhibited the rising

phase of the inward current. Peak currents obtained from 10

voltage pulses were averaged for each drug concentration and

normalized to the control value before the drug application. The

concentration-response curve is shown in Figure 1D for compar-

ison with the monoamine transporters. IC50 values were

determined for cocaine inhibition of the sodium channels in

mouse DRG neurons with an average value of 84.865.9 mM

(n = 4) (Table 1). This data is consistent with previous work that

the potency of cocaine in inhibiting sodium channels is roughly

100 fold lower than those for the monoamine transporters [5].

However, when CM was applied to isolated DRG neurons, little

effect was observed on the sodium channel currents. Even at

3 mM of CM, the highest concentration tested, very little

inhibition was observed in peak inward current (Figure 2E, n = 4

Table 1. Cocaine and cocaine methiodide IC50 values for the
inhibition of monoamine transporters and DRG neuron Na+

channels.

IC50 [mM]a Cocaine
Cocaine
Methiodide ratio p valueb

Striatal synaptosomes 0.3560.11 11.565.1 33 ,0.001

mDAT 0.4560.11 83.262.1 184 ,0.001

mNET 0.6760.09 20.963.1 31 ,0.001

mSERT 0.6860.39 84.364.8 123 ,0.001

DRG Na+ Channels 84.865.9 not measured --- ---

aThe IC50 values are mean 6 standard error of means calculated from 3
independent experiments.

bSignificance was determined by Student’s paired t-test.
doi:10.1371/journal.pone.0007578.t001

Figure 2. Effects of cocaine and cocaine methiodide on sodium channels in DRG neurons. Isolated mouse DRG neurons were voltage-
clamped in the whole-cell mode, held at 270 mV and sodium channels were activated by 10 consecutive pulse stimulations (10 Hz, 50 ms duration,
depolarized from 270 mV to 225 mV). Representative currents recorded before drug addition (before drug), during the drug (during drug) and after
drug washout (after drug) are overlaid for 30 (A), 100 (B), 300 (C) and 1,000 mM (D) cocaine as well as 3 mM cocaine methiodide (E).
doi:10.1371/journal.pone.0007578.g002

Potency of Cocaine Methiodide

PLoS ONE | www.plosone.org 3 October 2009 | Volume 4 | Issue 10 | e7578



cells, p.0.05) and the data did not allow the calculation of IC50

value. While concentrations higher than 3 mM may inhibit

sodium channels, doses equivalent to such concentrations would

be much higher than the LD50 and thus not likely to be used in

animals. Therefore, we limited our experiments to 3 mM.

Figure 1D shows the effect of CM on sodium channel currents

from 3 mM to 3 mM. To rule out that the ECS used in the DRG

experiments may interfere with CM actions, we performed

transport assays with HeLa cells using the ECS as for the DRG

experiments. The results were not different from the experiments

using the PBS/Ca/Mg buffer (data not shown).

Discussion

Since CM cannot pass across the blood brain barrier, it had

been used in studies attempting to separate the CNS effects from

the peripheral effects of cocaine. The effective concentrations for

CM and cocaine used in these studies were similar based on the

assumption that the IC50 values for CM and cocaine are similar

for major target proteins. The data presented in this paper shows

very substantial differences between potencies of cocaine and CM

in inhibition of major cocaine target proteins.

We found that the individual IC50 values for CM are 184-fold,

31-fold, and 123-fold higher than those for cocaine at DAT, NET,

and SERT respectively. We also found that cocaine inhibits the

sodium channels in DRG neurons with an apparent IC50 of

85 mM, about 100-fold higher than those for the monoamine

transporters. The sodium channel inhibition data shown in

Figure 1D fit well with a single IC50 value, suggesting that the

individual CM IC50 values for each sodium channel subtypes are

similar. In contrast, doses of CM up to 3 mM have little

observable effect on sodium channels expressed in DRG neurons.

It remains to be determined whether the sodium channel subtypes

that are not expressed in DRG neurons can be inhibited by CM

and whether those channels have similar sensitivities to CM and

cocaine.

Cocaine has been referred as a ‘‘dirty drug’’ due to its multiple

sites of action within the CNS and peripheral tissues [21].

Separating the cocaine actions in the CNS from peripheral tissue

contributions can be beneficial in understanding complex cocaine

effects. Our data show that CM and cocaine have very different

potencies on the major cocaine targets, and therefore, equimolar

systemic doses of CM do not produce equivalent inhibition of

major cocaine targets.

Our data with DRG neurons raises interesting questions about

how systemic CM produces its effects which was hypothesized to

result primarily from CM inhibition of peripheral Na+ channels

[7]. Our CM electrophysiology data excludes the five sodium

channel subtypes commonly expressed in DRG neurons from

mediating this peripheral effect. The effects of CM at other sodium

channel subtypes, not expressed in DRG neurons, remain

unknown. Indeed, recent reports show that the peripheral

glutamate system is involved in rapid CNS effects observed with

intravenous administration of cocaine and CM [18]. However, it is

clear from our data that equivalent doses of CM should not be

used to examine the effects of cocaine interaction with its

peripheral targets.

The use of CM to measure the effects of peripheral cocaine

stems from previous reports of similar LD50 values for cocaine and

CM [11,12], which suggests the two drugs have similar potencies

at the targets that mediate the lethal effects. In stark contrast, we

observed remarkable differences between the potencies of CM and

cocaine. Our results suggest that the lethal toxic effects of cocaine

and CM are not likely through the inhibition of the monoamine

transporters or subtypes of sodium channels expressed in DRG

neurons. Other target proteins might be involved. One study

shows that cocaine is a low affinity antagonist at a7-nicotinic

acetylcholine receptor (nAChR) while CM is a high affinity agonist

of the receptor [22]. Another study indicates that CM produces

weaker effect than cocaine in a conditioned taste aversion test [23].

It has also been proposed that the toxic effects of cocaine emanate

from an unknown site in the peripheral tissue [6]. Future

experiments are needed to identify other CM target proteins

and to understand why CM and cocaine have similar LD50 in

animals.

The data presented here show that CM is much less potent than

cocaine at inhibiting monoamine transporters and thus similar

doses of CM will not inhibit the transporters to the same extent.

We also observed that a very high dose of CM does not inhibit

sodium channels expressed in DRG neurons. Therefore, systemic

CM effects are not good measurements of cocaine actions through

its peripheral targets.

Materials and Methods

Substrate reuptake into transiently transfected cells
Plasmid DNA containing mDAT, mNET, and mSERT were

cloned into bluescript vector with a T7 promoter as described

[24,25]. HeLa cells (American Type Culture Collection, Rockville,

MD) were grown in 96-well plates, infected with recombinant

vTF-7 vaccinia virus, carrying the T7 polymerase gene, and

transiently transfected with the plasmids bearing cDNAs

using Lipofectin (Invitrogen Corp., Carlsbad, CA) as described

previously [24].

About 20–24 h after transfection, HeLa cells were assayed for

substrate uptake in 96-well plates at room temperature using the

PBS/Ca/Mg buffer (phosphate buffered saline solution containing

1 mM MgCl2, 0.1 mM CaCl2, and 50((M L-ascorbic acid). For

determination of IC50 values, cells were co-incubated in the PBS/

Ca/Mg buffer with added 60 nM [3H]-labeled monoamine

substrates and increasing concentrations of an inhibitor (e.g.,

cocaine or CM). Uptakes were terminated by two successive

washes with PBS/Ca/Mg. Amounts of [3H]-labeled substrates

accumulated in the cells were quantitated by liquid-scintillation

counting. All experiments were performed in triplicates. Cells

transfected with vehicle were used as controls and radioactivity

associated with these cells were considered the background. This

background was subtracted from the total scintillation counts of

the wells.

Dopamine reuptake into synaptosomes
All animal work was conducted in adherence to OSU IACUC

approved protocols and guidelines for animal welfare. C57B6 mice

(aged 6–8 weeks) were decapitated and striatum were dissected

from both sides of the brain and stored on ice. The tissues were

placed in ice-cold Krebs’-Ringer’s solution buffer (KRB) (in mM:

125 NaCl, 1.2 KCl, 1.2 MgSO4, 1.2 CaCl2, 22 NaHCO3, 1

NaH2PO4, and 10 glucose, adjusted to pH 7.4) with an additional

0.32 M sucrose. Tissue samples were homogenized by using a

glass homogenizing tube and with a Teflon-coated pestle. The

samples were centrifuged for 10 min at 1,000xg. Supernatant was

collected and the debris pellet was discarded. Supernatant was

centrifuged for 15 min at 16,000x g. The resulting pellet contained

synaptosomes, and was resuspended in KRB supplemented with

pargyline (50((M) and ascorbic acid (100 mM). Synaptosomes were

assayed for substrate uptake at room temperature using a PBS/

Ca/Mg buffer (phosphate buffered saline solution containing

1 mM MgCl2, 0.1 mM CaCl2, and 50 mM L-ascorbic acid). For

Potency of Cocaine Methiodide
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determination of IC50 values, synaptosomes were co-incubated in

the PBS/Ca/Mg buffer with added 60 nM [3H]-labeled dopa-

mine, 100 mM desipramine (NET-selective inhibitor) and increas-

ing concentrations of an inhibitor (e.g., cocaine or CM). Uptakes

were terminated by two successive washes with PBS/Ca/Mg and

the vesicles containing the transported substrates were collected

through 96-well microfilter plates (Millipore, Irvine, CA). Amounts

of [3H]-labeled dopamine accumulated were quantitated by

liquid-scintillation counting. All experiments were performed in

triplicates. Synaptosomes with the highest dose of inhibitor were

used as background controls and radioactivity associated with

these wells were subtracted from the total scintillation counts of all

wells.

Whole-cell voltage clamp recording of sodium channel
currents in dorsal root ganglion neurons

Dorsal root ganglion (DRG) neurons (T1–T10) from adult male

C57B6 mice (aged 6–8 weeks) were isolated as per Malin et al. [26]

Briefly, ganglia were dissected under stereo microscope and

washed in Ca2+/Mg2+-free Hank’s Buffered Salt Solution (HBSS).

DRGs were digested enzymatically, first with papain and then

collagenase II and dispase II, each for 10 min at 37uC. Digested

DRGs were then triturated in culture media (F-12 supplemented

with 10% FBS and 5 mg/ml penicillin/streptomycin) by a fire-

polished Pasteur pipette until solution becomes cloudy. Isolated

DRG neurons were plated on poly-ornithine coated glass cover

slips and maintained in a 37uC, 5% CO2 incubator. Individual

DRG neurons were recorded after overnight culture.

Plated coverslips were centered in a perfusion chamber filled

with extracellular solution (ECS) containing (in mM): 140 NaCl, 5

KCl, 2 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES, pH 7.4. Cocaine

and CM were dissolved in ECS and delivered via a pressure-

driven perfusion system (SmartSquirt 8, AutoMate Scientific) with

the tip positioned so the DRG neuron being recorded was fully

within the direct stream of perfusate. Recording pipettes were

pulled from micropipette glass (World Precision Instruments,

Sarasota FL) to 2–4 MV when filled with an intracellular solution

containing (in mM): 140 CsCl2, 1 CaCl2, 2 MgCl2, 11 EGTA, 10

HEPES, 2 Mg2ATP, pH 7.2). Whole-cell recordings were made

using an EPC10 amplifier and the PatchMaster 2.2.0 software

(both from HEKA Electronik, Germany). As soon as the whole-

cell configuration was established, fast and slow capacitances were

cancelled and the holding potential (Vh) was set to -70 mV. A step

protocol (16 steps from 270 mV to 10 mV with 5 mV increment

for each step) was applied to determine the testing voltage (Vt) that

generated the maximal inward current in the following experi-

ment. Sodium channels were activated by a 10 consecutive pulse

stimulation (10 Hz, 50 ms duration, depolarized from Vh to Vt).

Data were filtered at 3 kHz and digitized at 20 kHz. All recordings

were made at room temperature (22–24uC). Only one cell per

cover slip was recorded to avoid possible drug contamination of

other cells. Representative current traces were redrawn in Origin

8.0 SR1 (Northampton, MA).

A range of drug concentrations, starting from low to high, were

tested for each DRG neuron. The sodium channel currents were

recorded 30 s before the drug application, during the 30 s drug

application, and 30–60 s after drug washout by perfusion with

ECS. For each set of tests, current amplitude was measured by

subtracting the baseline value from the peak current. The current

amplitude during the drug was normalized to that before the drug

application, and the normalized values were used to plot the dose-

response curve. The currents measured after the drug washout

were used to confirm the complete recovery before testing the next

drug concentration.

Data analysis
The IC50 values were determined by nonlinear regression

analyses of experimental data using GraphPad Prism 3.0 (San

Diego, CA). IC50 values presented are averages 6 standard error

of means (SEM) calculated from 3 independent uptake experi-

ments or recordings of 4 different DRG neurons. Statistical

analyses for the difference between the IC50 values of the two

drugs were performed by Student’s paired t-test using SPSS 17.0

(Chicago, IL).
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