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Abstract: Background: Pancreatic beta cells regulate bioenergetics efficiency and secret insulin
in response to glucose and nutrient availability. The mechanistic Target of Rapamycin (mTOR)
network orchestrates pancreatic progenitor cell growth and metabolism by nucleating two complexes,
mTORC1 and mTORC2. Objective: To determine the impact of mTORC1/mTORC2 inhibition on
amino acid metabolism in mouse pancreatic beta cells (Beta-TC-6 cells, ATCC-CRL-11506) using
high-resolution metabolomics (HRM) and live-mitochondrial functions. Methods: Pancreatic beta
TC-6 cells were incubated for 24 h with either: RapaLink-1 (RL); Torin-2 (T); rapamycin (R); metformin
(M); a combination of RapaLink-1 and metformin (RLM); Torin-2 and metformin (TM); compared
to the control. We applied high-resolution mass spectrometry (HRMS) LC-MS/MS untargeted
metabolomics to compare the twenty natural amino acid profiles to the control. In addition, we
quantified the bioenergetics dynamics and cellular metabolism by live-cell imaging and the MitoStress
Test XF24 (Agilent, Seahorse). The real-time, live-cell approach simultaneously measures the oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) to determine cellular respiration
and metabolism. Statistical significance was assessed using ANOVA on Ranks and post-hoc Welch
t-Tests. Results: RapaLink-1, Torin-2, and rapamycin decreased L-aspartate levels compared to
the control (p = 0.006). Metformin alone did not affect L-aspartate levels. However, L-asparagine
levels decreased with all treatment groups compared to the control (p = 0.03). On the contrary,
L-glutamate and glycine levels were reduced only by mTORC1/mTORC2 inhibitors RapaLink-1 and
Torin-2, but not by rapamycin or metformin. The metabolic activity network model predicted that
L-aspartate and AMP interact within the same activity network. Live-cell bioenergetics revealed that
ATP production was significantly reduced in RapaLink-1 (122.23 ± 33.19), Torin-2 (72.37 ± 17.33)
treated cells, compared to rapamycin (250.45 ± 9.41) and the vehicle control (274.23 ± 38.17), p < 0.01.
However, non-mitochondrial oxygen consumption was not statistically different between RapaLink-1
(67.17 ± 3.52), Torin-2 (55.93 ± 8.76), or rapamycin (80.01 ± 4.36, p = 0.006). Conclusions: Dual
mTORC1/mTORC2 inhibition by RapaLink-1 and Torin-2 differentially altered the amino acid profile
and decreased mitochondrial respiration compared to rapamycin treatment which only blocks the
FRB domain on mTOR. Third-generation mTOR inhibitors may alter the mitochondrial dynamics
and reveal a bioenergetics profile that could be targeted to reduce mitochondrial stress.

Keywords: mTORC1; mTORC2; high-resolution mass spectrometry (HRMS); mitochondrial stress;
oxygen consumption rate (OCR); extra cellular acidification rate (ECAR); the internal exposome
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1. Introduction

The mechanistic Target of Rapamycin (mTOR) is a central regulator of nutrient
metabolism and glucose homeostasis. The mTOR protein is a highly conserved ser-
ine/threonine kinase that integrates extracellular and intracellular inputs from nutrients,
insulin, growth factors, and environmental cues. In addition, it transmits signals to down-
stream targets and networks with multiple signaling pathways to control cell growth,
survival, and metabolism [1,2].

mTOR has also been identified as a driver of stem cell growth and pancreatic progen-
itor cell differentiation [3,4]. The mTOR protein nucleates two functionally distinct and
mutually exclusive complexes to regulate cell growth, energy metabolism, and survival,
namely mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2). mTORC1 binds
specifically to Raptor and other protein partners, is a central hub for nutrient signaling,
energy, and growth factors, and coordinates the anabolic cell growth and catabolic au-
tophagy [1]. On the other hand, mTORC2 binds exclusively to Rictor and other proteins,
which drives insulin signaling by activating Akt (Ser473) phosphorylation downstream
of the PI3 kinase/insulin pathway [5]. In this manner, the mTOR network serves as a
nutrient sensor and orchestrates energy metabolism. Moreover, the mTORC1 and mTORC2
complexes are dysregulated in several chronic diseases, including type 2 diabetes, insulin
resistance, obesity, metabolic syndrome, and certain cancers [6]. As such, mTOR complexes
and their downstream targets are actionable proteins and metabolic targets due to their
integral role in energy metabolism and in pancreatic progenitor cell growth.

Specifically, mTOR complexes play a significant role in amino acid metabolism [7,8].
mTORC1 regulates amino acid metabolism via several amino acid sensors [8–11]. In addi-
tion, glutamine signaling is relayed via the Arf-1 rag-independent mechanism and drives
the glutaminolysis pathway [12]. On the other hand, methionine is sensed via SAMTOR
(S-adenosylmethionine sensor upstream of mTORC1). However, aspartate, asparagine, and
glycine amino acid sensors have not been identified. Recently, Xu et al. suggested that
asparagine may stimulate mTORC1 in brown adipose tissue [13]. Therefore, we applied the
non-targeted metabolomics approach as a readout of the internal exposome and measured
the levels of amino acids to gain insight into systems biology and mTORC1/mTORC2
mediated metabolic pathways enrichment.

Given the complex interactions between the mTOR network, amino acids, and nu-
cleotide metabolic pathways, we hypothesized that mTORC1 and mTORC2 complexes
coordinate the amino acid metabolites output and pathway enrichments in pancreatic
islet β-cells. To test this hypothesis, we used pancreatic β-cell culture (Beta TC-6) to test
the effects of a third-generation mTOR inhibitor, RapaLink-1 [14]—which bivalently links
rapamycin with an mTOR kinase inhibitor (MLN0128) [15] and blocks both mTORC1 and
mTORC2 (Figure 1); Torin-2, a second-generation mTOR competitive inhibitor of ATP;
compared to rapamycin (R), the prototype mTOR inhibitor; and metformin, the indirect
mTOR inhibitor (AMPK activator)—on the untargeted metabolomics as a measurement of
the internal exposome, amino acid metabolites, and mitochondrial functions compared to
the control. Furthermore, since rapamycin binds to the FKBP Rapamycin-Binding (FRB) on
mTOR forming a ternary complex with FKBP-12, which inhibits only mTORC1, at least
in the short-term, this approach allowed us to compare the effects of mTORC1 inhibition
versus mTORC1 and mTORC2 and provide mechanistic insight into amino acid regulation
by mTORC1 and mTORC2 (Figure 1).

In this study, we used β-TC-6 cells, which secret insulin in response to glucose [16],
to investigate the differential effects of mTORC1/mTORC2 inhibitors on the untargeted
metabolomics, amino acids levels, and mitochondrial bioenergetics.
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Figure 1. mTOR Signaling and mechanism of actions of mTOR inhibitors. (A) Binding of mTOR 
inhibitors to different domains on the mTOR protein. Rapamycin binds to the FKBP Rapamycin 
Binding (FRB) domain, and FKBP-12 forms a ternary complex that blocks mTORC1 functions; Torin-
2 binds to the kinase domain, RapaLink-1 binds to both the FRB and the kinase domains. (B) Rapa-
Link-1, Torin-2, rapamycin, and the combination of Torin-2 and metformin (TM) and RapaLink-1 
and metformin (RLM) decreased mTOR signaling to downstream target P-S6. 

In this study, we used β-TC-6 cells, which secret insulin in response to glucose [16], 
to investigate the differential effects of mTORC1/mTORC2 inhibitors on the untargeted 
metabolomics, amino acids levels, and mitochondrial bioenergetics. 

2. Methods 
2.1. Reagents 

Reagents were obtained from the following sources: Torin 2 (9-(6-aminopyridine-3-
yl)-1-(3-trifluromethyl)-phenyl) benzos [h] [1,6] naphthyridin-2 (1 H) (cat # 4248) was ob-
tained from Tocris Bioscience (R & D Systems, Minneapolis, MN, USA). RapaLink-1 was 
purchased from MCE MedChem Express, Monmouth Junction, NJ, USA, Cat No.: HY-
111373. Rapamycin was obtained from Cell Signaling (cat #9904). Metformin hydrochlo-
ride (N, N-dimethyllimidodicarbonimidic diamide hydrochloride) (Tocris, cat #2864) and 
other chemicals were obtained either from Sigma (St. Louis, MO, USA) or Thermo Fisher 
Scientific (Waltham, MA, USA). Immobilon-P polyvinylidene difluoride membrane (0.45 
µm) and the reagents for enhanced chemiluminescence (ECL) were obtained from Milli-
pore (Burlington, MA, USA) (Immobilon Western chemiluminescent horseradish peroxi-
dase). High-performance liquid chromatography (HPLC)-grade methanol, acetonitrile, 
ammonium acetate, acetic acid, propylene glycol, and phosphate-buffered saline (PBS) 
(1×) were obtained from Fisher Scientific (Fair Lawn, NJ, USA) as previously described 
[17]. Isoflurane was obtained from Halocarbon Product Corporation (River Edge, NJ, 
USA). 

  

Figure 1. mTOR Signaling and mechanism of actions of mTOR inhibitors. (A) Binding of mTOR
inhibitors to different domains on the mTOR protein. Rapamycin binds to the FKBP Rapamycin
Binding (FRB) domain, and FKBP-12 forms a ternary complex that blocks mTORC1 functions; Torin-2
binds to the kinase domain, RapaLink-1 binds to both the FRB and the kinase domains. (B) RapaLink-
1, Torin-2, rapamycin, and the combination of Torin-2 and metformin (TM) and RapaLink-1 and
metformin (RLM) decreased mTOR signaling to downstream target P-S6.

2. Methods
2.1. Reagents

Reagents were obtained from the following sources: Torin 2 (9-(6-aminopyridine-
3-yl)-1-(3-trifluromethyl)-phenyl) benzos [h] [1,6] naphthyridin-2 (1 H) (cat # 4248) was
obtained from Tocris Bioscience (R & D Systems, Minneapolis, MN, USA). RapaLink-1
was purchased from MCE MedChem Express, Monmouth Junction, NJ, USA, Cat No.: HY-
111373. Rapamycin was obtained from Cell Signaling (cat #9904). Metformin hydrochloride
(N, N-dimethyllimidodicarbonimidic diamide hydrochloride) (Tocris, cat #2864) and other
chemicals were obtained either from Sigma (St. Louis, MO, USA) or Thermo Fisher Scien-
tific (Waltham, MA, USA). Immobilon-P polyvinylidene difluoride membrane (0.45 µm)
and the reagents for enhanced chemiluminescence (ECL) were obtained from Millipore
(Burlington, MA, USA) (Immobilon Western chemiluminescent horseradish peroxidase).
High-performance liquid chromatography (HPLC)-grade methanol, acetonitrile, ammo-
nium acetate, acetic acid, propylene glycol, and phosphate-buffered saline (PBS) (1×)
were obtained from Fisher Scientific (Fair Lawn, NJ, USA) as previously described [17].
Isoflurane was obtained from Halocarbon Product Corporation (River Edge, NJ, USA).

2.2. Antibodies

Antibodies against the following proteins were purchased from Cell Signaling: total
Akt (cat #4691); total mTOR (cat #2983); serine P-2481 mTOR (cat #2976); S6 (cat #2217);
serine 235/236 phospho-S6 ribosomal protein (cat #2211). Sheep anti-rabbit secondary
antibodies were obtained from G. E. Health Care Bioscience Corp. (Piscataway, NJ, USA).
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2.3. Cell Lysis for Western Blotting Analysis

We used insulin-secreting, glucose-responsive, pancreatic beta cells derived from
transgenic mice expressing SV40 (Beta-TC-6 cells, ATCC-CRL-11506). Pancreatic islet β
cells (β-TC-6) were harvested in RIPA buffer, snap-frozen in liquid nitrogen, and stored at
−80◦ degrees until ready for analysis. Cells were washed twice with ice-cold PBS (pH 7.4)
and collected in ice-cold lysis buffer containing KPO4, 1 mM EDTA, 5 mM EGTA, 10 mM
MgCl2, 50 mM β-glycerophosphate, 1 mM sodium orthovanadate (Na3VO4), 5 µg/mL
pepstatin A, 10 µg/mL leupeptin, and 40 µg/mL phenylmethylsulfonyl fluoride (PMSF).
Cells were sonicated for 30 s at 50% power using Branson Digital Sonifier 250 (Branson
Ultrasonic, Danburg, CT) and stored at −20 ◦C until ready for use. Cell lysates were
centrifuged at 13,200 rpm for 15 min at 4 ◦C, and the supernatants were collected. Protein
concentration was measured with a Bradford assay. Immunoblotting was conducted as
we described previously [2,18,19]. Briefly, samples were heated at 95 ◦C for 5 min and
electrophoresed on SDS-PAGE gels to resolve the protein bands according to their molecular
weight. The protein bands were transferred to polyvinylidene difluoride membranes in
Tobin buffer (24 mM Tris, 192 mM glycine, 20% methanol). Western blotting was performed
by blocking the membranes in TBST (40 mM Tris HCL, (pH 7.5), 0.9% NaCl, 0.1% Tween 20)
containing 5% nonfat milk. The membranes were incubated in TBST with 5% nonfat milk
containing the primary antibody and washed 3 times with TBST, followed by the addition
of the secondary horseradish peroxidase-conjugated antibodies. The blots were developed
via enhanced chemiluminescence (ECL, Signal Fire, Cell Signaling, CST) as previously
described [2] and visualized using AI 600 Chemiluminescent imager.

2.4. Metabolites Extraction for the HRMS Untargeted Metabolomics Study

Pancreatic islet β cells (β-TC-6; CRL-11506) were plated in 60 mm dishes (1 × 106 cells
per plate) in complete DMEM media. The media was removed the following day, and
fresh buffer was added equally to all plates. β-TC-6 cells (4 plates per treatment) were
randomly assigned to (1) Control; (2) Torin-2 (100 nM, T); (3) RapaLink-1 (10 nM, RL); (4) M:
metformin (1 mM, M); (5) Rapamycin (10 nM, R) for 24 h. The β-TC-6 cells were gently
rinsed with diH2O and snap frozen in liquid nitrogen to quench the metabolism using a
standard protocol for cell harvest [20]. Cells were extracted in ice-cold 50% ethanol and 50%
diH2O solution, collected in microfuge tubes, and vortexed for 4 min at 13,000 rpm. The su-
pernatant was then extracted in 90% ethanol and 10% water, vortexed, and stored at −20 ◦C
until ready to use. The high-resolution untargeted metabolomics (HRM) was performed
using LC-MS/MS HILIC peak detection of ESI positive and negative polarity modes.

2.5. LC/MS/MS High-Resolution Mass Spectrometry (HRMS) Untargeted Metabolomics

The data were collected using Bruker’s maXis-II ESI-Q-q-TOF coupled to Dionex
Ultimate-3000 U(H)PLC system. This platform combines TOF technology with unique
software packages that deliver sub-ppm mass accuracy (<1 ppm) and up to 80,000 isotopic
mass resolution. The application includes LC-MS/MS (with CID and ETD capabilities).
The analytical conditions used are SeQuant ZIC-HILIC 150 × 2.1 mm column (Bruker,
Hamburg, Germany). Solvent A included 97% acetonitrile and 3% water with 7 mM
ammonium acetate. Solvent B was 97% water and 3% acetonitrile with 7 mM ammonium
acetate. The total gradient time was 30 min.

We applied the XCMS online cloud-based bioinformatics platform for mass spectrom-
etry processing developed by the Scripps Institute to link mTOR-regulated metabolites in
pancreatic islet β-cells data to the neural networks’ biological pathways using the mum-
michog algorithm [21–24]. The chromatogram parameters were applied using the XCMS
online version 2.3.1 and camera version 1.30.1. The Centwave, Positive polarity was used
for feature detection. The parameters included 10 ppm accuracy, and the obiwrap method
was used for retention time. Grouping and alignments were conducted using the density
method. After filling the Peaks, a differential report was generated to compare spectral
differences between multiple groups using the ANOVA-on-Ranks statistical test (Kruskal
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Wallis, with a p-value threshold of 0.001), and a secondary post-hoc analysis was performed
comparing every two groups. For system biology analysis, the Mummichog algorithm
analysis of metabolic pathways was utilized [25]. Quality control was determined using an
MDS plot and static PCA, and scaling plots were drawn. For annotation, both isotopes and
adducts were analyzed using the following parameters, 5 ppm, sigma 6, maximum charge
3, and maximum isotope 4. Metabolites were identified based on accurate mass to charge
unique m/z ratio measurements and matching their MS/MS fragmentation spectra with
the available metabolite databases (METLIN standard database matching and MoNA).

2.6. Live Cells Bioenergetics

We used pancreatic islet β cells (β-TC-6; CRL-11506) and employed the third-generation
mTOR inhibitor, RAPA-Link, (Rapamycin linked to mTOR ATP-competitive inhibitor) [26],
Torin 2 (ATP competitive inhibitor of mTORC1 and mTORC2), rapamycin (the proto-
type mTOR inhibitor, mainly mTORC1 inhibitor via FRB domain inhibition), and the
antidiabetic drug, metformin, which activates AMPK and indirectly blocks mTORC1, to
determine the functional role of mTORC1 and mTORC2 networks on energy homeosta-
sis and mitochondrial functions. The β-TC-6 cells (30,000 cells per well) were incubated
with one of the following treatments for 24 h: (1) no treatment control, (2) DMSO control,
(3) Torin-2 (100 nM, T), (4) RapaLink-1 (10 nM, RL), (5) metformin (1 mM, M), (6) Torin-
2 (100 nM) + metformin (1 mM, TM), (7) RapaLink (10 nM) + metformin (1 mM, RLM),
(8) Rapamycin (10 nM, R).

2.7. Live Cells Mitochondrial Functions

We measured the mitochondrial functions using Agilent seahorse XFe24 Live-Cell
metabolism analysis (Agilent/seahorse XFe24 Analyzer). The live-cell bioenergetics was
conducted to determine the basal mitochondrial functions, oxygen consumption rates
(OCR), extracellular acidification rates (ECAR), ATP production, proton leak, maximal res-
piration, spare respiratory capacity, mitochondrial stress, and nonmitochondrial respiration
using the standard manufacturers’ protocols [2,27,28].

2.8. Data Processing and Statistical Analysis

For the metabolomics study, the data were analyzed using the XCMS online cloud-
based bioinformatics platform. The raw metabolomics spectra were uploaded and pro-
cessed for peak detection, retention time, corrected chromatogram, alignments, and metabo-
lite feature annotation. These features allow for linking the metabolomics data to metabolic
pathways and biological systems [29–32].

We performed ANOVA on Ranks (Kruskal Wallis test) using SPSS software for para-
metric data to determine whether the treatment groups differed with respect to a given
outcome compared with the control group. If the overall ANOVA and Kruskal Wallis tests
were significant, a secondary post-hoc Welch t-test was employed to identify the pairs of
groups that differed. The statistical significance was preset to p < 0.05.

The mitochondrial functions data were analyzed and expressed as the mean ± stan-
dard error (S.E.). For the parametric data, we applied analysis of variance (ANOVA) to
determine the overall significance between groups, followed by an unpaired Welch t-test,
unequal variance.

3. Results
3.1. mTOR Complexes Module Cell Signaling

Pancreatic islet β cells (Beta TC-6) were incubated for 24 h with different classes of
mTOR inhibitors, as shown in Figure 1A. We used Western blotting analysis to show that
metformin treatment alone (M) did not affect mTOR signaling to phospho ribosomal protein
S6 (Figure 1B). However, Torin 2 (T), RapaLink-1 (RL), Rapamycin (R), and the combination
of Torin-2 and metformin (TM) or RapaLink-1 and metformin (RLM) inhibited phospho-
rylation of the mTORC1 downstream target ribosomal protein S6 (Figure 1B). The total



Nutrients 2022, 14, 3022 6 of 17

S6 and LAMTOR3 (Late Endosomal/Lysosomal Adaptor, MAPK, and mTOR Activator 3)
protein expressions localized to the late endosome were similar between groups.

3.2. mTORC1 and mTORC2 and Amino Acid Levels

In this study, we measured all of the 20 biologically natural amino acids found in
eukaryotes (Table 1) as part of the metabolome, including the nine essential amino acids
that cannot be synthesized in the human body and must be consumed. Out of the 20 amino
acids, we found 4 amino acid levels were statistically significantly different between groups
as determined by ANOVA and ANOVA-on-Ranks.

Table 1. LC-MS/MS Multigroup Comparison between all the Natural 20 Amino Acids.

Amino Acid
Mass/Ion Retention

Time (RT)
Intensity p-Value

(m/z) Control Torin-2 Metformin RAPA RapaLink-1
Glycine 98.02123 18.29 0.034
L-Alanine 90.05473 9.08 0.077
L-Serine 106.0497 18.34 0.279
L-Proline 116.0705 16.76 0.056
L-Valine 118.086 19.97 0.307
L-Threonine 120.0654 18.53 0.296
L-Cysteine 122.0268 16.83 0.154
L-Leucine 132.1018 13.51 0.676
L-Isoleucine 132.1019 3.31 0.056
L-Asparagine 133.0609 18.19 0.042
L-Aspartate 134.0448 17.01 0.009
L-Glutamine 147.0763 17.94 0.307
L-Lysine 147.1133 2.188 0.182
L-Glutamate 148.0604 17 0.012
L-Methionine 172.0402 14.32 0.22
L-Histidine 156.0766 19.62 0.731
L-Phenylalanine 166.0862 12.9 0.253
L-Arginine 175.1188 22.19 0.057
L-Tyrosine 182.0811 15.21 0.089
L-Tryptophan 205.0972 13.55 0.329

Notes: EIC is from the multigroup positive polarity comparison ID #1428608. Heatmap scale −2 (Blue), 0 (white)
to +2 (Red). The bold font is the show the values were statistically significant.

These differences included L-aspartic acid (p = 0.009), L-asparagine (p = 0.04), L-
glutamate (p = 0.01), and glycine (p = 0.03). Additionally, we applied the python algorithm
and METLIN database to link the raw metabolomics data to functional interpretation
enrichments of the metabolic pathways and integrate biological networks in pancreatic islet
β cells. The initial preprocessing of ZIC-HILIC LC/MS data included MS peak detection,
analysis of MS/MS data, retention time alignment, normalization, imputation, batch cor-
rection, and quality control (Figure 2A–D). First, we performed an exploratory multivariate
analysis with unsupervised Principal Component Analysis (PCA) for dimension reduction
and outlier identification. PCA dimension reductions show the clustering of each treatment
group. Then, we visualized the dimensionality of the data by the scree plot. Finally, the
Total Ion Chromatograms (TIC) were aligned, and PCA scores were centered and validated.
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We conducted a multigroup comparison to identify the differentially expressed metabo-
lite features across all groups (Table 1), followed by a post-hoc analysis of each two groups
(Figures 3 and 4).
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Figure 3. L -aspartic acid level decreased in pancreatic beta cells treated with mTORC1/mTORC2
inhibitors compared to > the control. Normal phase chromatography LC-MS/MS (HILIC) was used to
compare groups. We conducted a multi-group comparison to identify groups’ differentially expressed
metabolite features (A). (B) shows the differences of the intensity of the extracted ion chromatogram
between Rapa-Link-1 and the control. (C) shows the differences in intensity between Torin-2 and
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torin-2; M, metformin, R, rapamycin, RL, rapalink-1; NS, no significance.
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Figure 4. The L-asparagine level decreased in pancreatic beta cells treated with mTORC1/mTORC2
inhibitors compared to the control. Normal phase chromatography LC-MS/MS (HILIC) was used
to measure the level of L-aspartic acid. (A) shows the multigroup comparison in the Extracted
Ion Chromatogram Intensities. The difference in the extracted ion chromatogram intensity between
RapaLink-1 treatment and the control was shown in (B), the level change induced by Torin-2 treatment
was shown in (C), and the level change induced by rapamycin was shown in panel (D). Changes
induced by metformin were shown in panel (E). Multigroup comparison by non-parametric ANOVA
on ranks test was conducted, followed by post- hoc Welch unpaired t-test. * p < 0.05. (F) shows
the biochemical pathway of the conversion of L-aspartate to L-asparagine. C, control; T, torin-2; M,
metformin, R, rapamycin, RL, rapalink-1.

Our data in pancreatic beta TC-6 cells revealed that treatment with mTOR inhibitors
significantly decreased amino acid L-aspartate level compared to the control (p = 0.006,
ANOVA on Ranks (Kruskal Wallis test), Table 1, Figure 3A). Furthermore, using an unpaired
parametric Welch t-test post-hoc test, we show that RapaLink-1 significantly decreased L-
aspartate (p = 0.001), Torin-2 (p = 0.0001), and rapamycin (p = 0.01) compared to the control.
On the other hand, metformin alone did not show any statistical difference compared to
the control (Figure 3B–D).

All mTOR inhibitors, as well as metformin, decreased levels of L-asparagine compared
to the control. Since L-aspartate is converted to L-asparagine in a reaction catalyzed by
asparagine synthetase enzyme in the presence of ATP, L-glutamine, and H2O to form
L-asparagine and L-glutamate (Figure 4), we investigated the impact of mTOR inhibitors
on Beta TC-6 pancreatic cells on L-asparagine and L-glutamate levels (Figures 3 and 4).

The multigroup comparison showed that incubating pancreatic beta TC-6 cells with
mTOR inhibitors led to statistically significant differences in L-asparagine levels compared
to the control (p = 0.03, ANOVA on Rank, Kruskal Wallis test, Table 1, Figure 4A). Using
the post-hoc Welch unpaired t-test, we showed that compared to the control, RapaLink-1
significantly decreased L-aspartate (p = 0.01), Torin-2 (p = 0.03), rapamycin (p = 0.03), and
metformin (p = 0.009) compared to the control (Figure 4B–E). We did not find differences
in L-glutamine levels between groups (Table 1), indicating that L-aspartate and not L-
glutamine is the primary driver of L-asparagine and L-glutamate formation. These data
also suggest that L-asparagine is regulated by more than one mechanism, including mTOR
and AMP pathways. The predictive pathway that is affected is represented in Figure 4F.

There was an overall significant difference in L-glutamate (p = 0.01) and L-glycine
(p = 0.005) levels between the treatment groups and the control (p = 0.01) (Table 1). Using the
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post-hoc unpaired parametric Welch t-test, RapaLink-1 significantly decreased L-glutamate
levels (p = 0.03) and Torin-2 (p = 0.01) compared to the control. In contrast, rapamycin
and metformin did not alter L-glutamate levels (Figure 5A,B). Similarly, beta TC-6 cells
incubated with mTOR inhibitors data showed an overall difference in L-glycine levels
between the treatment groups and the control (p = 0.005) (Table 1). Using the post-hoc
Welch t-test, RapaLink-1 significantly decreased L-glycine levels (p = 0.00003) and Torin-2
(p = 0.002) compared to the control. Rapamycin and metformin did not alter L-glycine
levels in the same manner as the data related to L-glutamate levels (Figure 5C,D).
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Figure 5. L-glutamate and glycine levels decreased in pancreatic beta cells treated with mTORC1/
mTORC2 inhibitors compared to the control. Normal phase chromatography LC-MS/MS (HILIC) was
used to compare groups. We conducted a multi-group comparison to identify groups’ differentially
expressed metabolite features. (A) shows multigroup comparison in L-glutamate chromatogram
intensity. (B) shows the differ-ences in intensity between RapaLink-1 and the control. (C) Shows
the differences between Torin-2 and the control. (D) shows multigroup comparison in L-glycine
chromatogram intensity. (E) shows the differences in intensity between RapaLink-1 and the control.
(F) Shows the differences between Torin-2 and the control. * p < 0.05. C, control; T, torin-2; M,
metformin, R, rapamycin, RL, rapalink-1; NS, no significance.

3.3. Dysregulated Metabolic Pathways and the Metabolic Activity Network Predictive Model

The raw LCMS/MS data were processed using the XCMS biological systems module,
which applies the mummichog algorithm to identify the metabolic activity network and
dysregulated pathways. Thus, this system enables the biological interpretations of the
untargeted metabolomics data (Figure 6). The metabolites information was queried using
BioCyc integration with the METLIN database. The predicted metabolic activity network in
Beta-TC6 in response to mTORC1/mTORC2 inhibition is shown in Figure 6A. In addition,
the pathway cloud plot was generated to visualize the dysregulated metabolic pathways
(Figure 6B) based on the differential expression of amino acids L-aspartate, L-asparagine,
L-glutamate, and glycine with mTORC1/mTORC2 inhibition (Figures 3–5). The cloud-plot
data analysis for identifying differentially expressed metabolites showed that mTORC1
and mTORC2 inhibition altered various metabolic pathways, including protein O-N acetyl
glycosylation, adenine, and adenosine salve pathway, gluconeogenesis, glycogenolysis,
and glycogen biogenesis.
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Our data support the notion that L-aspartate and AMP interact to regulate adenine,
adenosine nucleotides, hypoxanthine, UDP-glucosamine, UDP, glucose metabolism, and
ATP-activated glucose-6-phosphate.

3.4. Live-Cell Bioenergetics

To address the mechanistic underpinning of these results, we conducted live-cell
mitochondrial functional studies, as shown in Figure 7. In the activity network predictive
model and pathway analysis, we conducted Beta-TC6 live-cell bioenergetics studies to
determine the differences in oxygen consumption rates (OCR), which are indicative of
mitochondrial oxidative phosphorylation, and extracellular acidification rate (ECAR),
which is suggestive of nonmitochondrial anaerobic glycolysis (Figure 7A,B). With the
addition of oligomycin, which inhibits ATP synthase (Complex V) in the mitochondrial
Electron Transport Chain, the impact did not differ between cells treated with rapamycin
and the control (Figures 7 and 8).

In comparison, all other treatment groups showed a difference in ATP production
(Figures 7A and 8B). Furthermore, the FCCP, which uncouples the oxidative phospho-
rylation by disrupting the mitochondrial membrane potential and collapsing the proton
gradient, had a similar effect in rapamycin-treated cells and the control (Figures 7 and 8).
On the other hand, injection of a mixture of rotenone (electron transport chain complex
I inhibitor), and Antimycin A (Complex III inhibitor), which shuts down mitochondrial
respiration and therefore enables the calculation of nonmitochondrial respiration, showed a
significant difference between the control and all other groups including rapamycin-treated
cells (Figure 8G). The data further showed that Rapalink-1, Torin-2, and metformin altered
mitochondrial functions in pancreatic islet beta cells by decreasing the basal respiration
(Figure 8A), ATP production (Figure 8B), proton leak (Figure 8C), maximum respiration
(Figure 8D), and spare respiratory capacity (Figure 8E).

On the contrary, rapamycin did not alter these mitochondrial function parameters
compared to the control. Rapamycin only decreased the nonmitochondrial respiration
compared to the control (Figure 8G), but still less than RapaLink-1, Torin-2, and met-
formin (Figure 8G). The coupling efficiency was slightly elevated with metformin and
the combination of metformin and Torin-2 or RapaLink-1 but not with mTOR inhibitors
alone (Figure 8F). As mentioned earlier, rapamycin had no significant effect on mitochon-
drial functions but decreased nonmitochondrial oxygen consumption (Figures 7 and 8).
The data showed that mTORC1/mTORC2 chemical knockout decreased ATP production,
nonmitochondrial oxygen consumption, and proton leak.
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(ECAR) reflects the anaerobic glycolysis in Beta-TC6 bioenergetics analysis incubated with different
treatment groups.
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Figure 8. Mitochondrial stress test. Bioenergetic dynamics and cellular metabolism were quantified
using MitoStress test XFe24 (Agilent, Seahorse). The real-time, live-cell approach simultaneously
measures oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) to determine
cellular respiration and metabolism, including basal respiration (A), ATP production (B), proton
leak (C), maximal respiration (D), spared respiratory capacity (E), coupling efficiency (F), and non-
mitochondrial oxygen consumption (G). ANOVA was applied to determine the statistically significant
differences between each treatment and the control, followed by an ad-hoc secondary unpaired t-test.
* p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

This study sought to identify the amino acid metabolites whose levels might be regu-
lated by mTORC1 and mTORC1 complexes by employing the high-resolution untargeted
metabolomics and live-mitochondrial functions in pancreatic beta cells. While the mTOR
inhibitors’ immediate application is pharmacological drug use, the advantage of using
mTORC1 and mTORC2 inhibitors as tools is gaining insight into the mechanistic pathways
that orchestrate cell anabolism and catabolism, which in turn inform nutrient metabolism
and allows for the development of strategies for chronic disease interventions. There-
fore, we chemically knocked out the mTOR complexes with drugs to determine their
functionality, monitor the mTORC1/mTORC2 signaling network’s inner workings, and
advance disease therapeutics. As such, we compared the effects of RapaLink-1 (third
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generation mTORC1/mTORC2 inhibitor), Torin-2 (second generation mTORC1/mTORC2,
ATP-competitive inhibitor), and the prototype mTOR inhibitor, rapamycin, which inhibits
mTORC1 in most cell lines with few exceptions, metformin (AMPK activator), which indi-
rectly inhibits mTOR to control groups. We linked the resultant untargeted metabolomics
spectra and peak annotation with metabolic pathways and biological networks. We fur-
ther leveraged the high-resolution liquid chromatography/mass spectrometry (LC-MS) to
link aspartate metabolism and raw metabolomics spectra changes with network visualiza-
tion and biological pathways [21–23,33–38]. As expected, mTOR inhibition decreased the
downstream targets’ phosphorylation (Figure 1B).

Here we reported that mTORC1 and mTORC2 complexes regulate L-aspartate, L-
asparagine, L-glutamate, and glycine levels compared to the control in pancreatic islet
beta cells. We report that mTORC1 and mTORC2 complexes regulate L-aspartate, L-
asparagine, L-glutamate, and glycine levels compared to the control in pancreatic islet beta
cells (Figures 3–5). Given that aspartic acid is the carbon source in purine synthesis and
glycine and aspartate incorporation in pyrimidine, it is possible the mTOR regulates the
incorporation of these amino acids in purine and pyrimidine bases and thus nucleotides
metabolism. Further, since glycine and glutamate are required for glutathione synthesis, it
is possible that mTOR complexes may play a role in the antioxidant capacity of glutathione.
Our study leveraged high-resolution metabolomics to link mTOR-associated metabolomics
raw spectra with metabolic pathways with predicted pathway enrichment biologic network
visualization (Figure 6A,B).

As mentioned earlier, mTORC1 receives inputs from amino acids, amino acid trans-
porters, and input from glucose via insulin signaling and responds to energy levels. As
such, mTORC1 controls amino acid and protein synthesis and energy metabolism, which
leads to the activation of glycolysis and the TCA cycle, and the generation of ATP. This
energy is used to drive anabolic pathways and imped catabolic pathways. mTORC1 reg-
ulates amino acid metabolism via several amino acid sensors. For example, leucine is
sensed via Sestrins sensors [10]. Similarly, CASTOR also senses arginine by disrupting
CASTOR1 and CASTOR 2 via GTP-RagA and GDP-RagC heterodimerization [9]. Further,
arginine is sensed via the SLC38A9 lysosomal transporter, which mediates the efflux of
arginine from the lysosome [11]. In contrast, glutamine signaling is relayed via the Arf-1
rag-independent mechanism and drives the glutaminolysis pathway [12]. In addition,
the sulfur-containing methionine is sensed via SAMTOR (S-adenosylmethionine sensor
upstream of mTORC1), a GATOR1/KICSTOR-interacting protein. As such, S-adenosyl
methionine binds to SAMTOR and interrupts SAMTOR-GATOR1 interaction, which is a
negative regulator of mTORC1.

Despite the discovery of all these amino acid sensors, no aspartate or asparagine amino
acid sensors have been identified to date. The gap in knowledge in amino acid metabolism
stems from two possibilities: First, whether the sensor mentioned above is specific to one
amino acid or can crosstalk and detect related amino acids. It is known that some amino
acids are more potent in mTORC1 activation than others, so these amino acid sensors
may be specific to individual amino acids. Second, it is unknown whether amino acid
sensing is tissue-specific, whether mTORC1 senses all amino acids, or if there are mTORC1
independent pathways. For example, a recent study showed that asparagine might affect
glycolysis in brown adipose tissue via mTORC1 activation [13]. In this study, we conducted
a multigroup comparison followed by a post-hoc secondary analysis to determine the dif-
ferential effects of different treatment group modalities that altered amino acid metabolism.
We report that mTORC1 and mTORC2 regulate L-aspartate, L-asparagine, L-glutamate,
and L-glycine levels. This novel observation warrants further research to understand basic
physiology and biology and identify the scientific bases for disease management.

To gain insight into the mTOR-regulated bioenergetics, we used seahorse live-cell
imaging to determine the impact of mTORC1/mTORC2 inhibition on mitochondrial func-
tions. This system enabled us to determine the differences in oxygen consumption rates
(OCR), indicative of mitochondrial oxidative phosphorylation and extracellular acidi-
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fication rate (ECAR), which suggest anaerobic glycolysis. In real-time, this system al-
lowed us to characterize and analyze cell metabolism phenotype, mitochondrial respi-
ration and glycolysis, oxygen consumption rates (OCR), and extracellular acidification
rate (ECAR). The addition of oligomycin, which inhibits ATP synthase (Complex V) in
the mitochondrial Electron Transport Chain, did not affect cells treated with Rapamycin
(Figures 6A and 7B). In comparison, all other treatment groups showed a difference in
ATP production (Figures 6A and 7B). These findings suggest that rapamycin inhibition of
the FRB domain does not alter mTOR catalytic activity. Despite the observation that both
RapaLink and Rapamycin treatment lead to decreased aspartate and asparagine levels, the
two mTOR inhibitors had different bioenergetics profiles (Figure 8A–E). While RapaLink
decreased basal oxygen consumption (Figure 8A), ATP production (Figure 8B), proton leak
(Figure 8C), maximal respiration (Figure 8D), and spare respiratory capacity (Figure 8E).
These observations could be explained by various mTOR inhibitors’ different modes of
action. Rapamycin only binds to the FRB domain, making a ternary complex with FKBP12
as FRBP-12-Rapamycin-FRB complex, which does not alter the mitochondrial functions.

Several papers reported that rapamycin decreased mitochondrial capacity in Jurkat
cell lines [39] and primary human trophoblasts [40]. However, our study found that
rapamycin decreased OCR oxygen consumption rate by reducing nonmitochondrial oxygen
consumption, not through ATP production (Figure 7). This finding is consistent with the
mechanism of action of rapamycin which functions by blocking the FRB domain rather than
inhibiting the mTOR kinase (PI3Kinase catalytic domain) as shown in Figure 1 mechanism
of action, while Rapalink-1 which blocks both the catalytic domain and FRB domain lead
to a significant reduction in mitochondrial functions. It is also possible that rapamycin
effects are cell-specific and time-specific. Indeed, investigators have documented biphasic
response to TSC ablation upstream of mTOR in pancreatic beta cells [41]. Moreover, a
study utilizing dynamic modeling of mTOR signaling revealed the biphasic dependence of
mTORC1 on mTORC2 [42]. Rapamycin has also been shown to have a biphasic effect on
insulin sensitivity in C2C12 myotubules [43].

On the other hand, RapaLink-1 binds to both FRB domains and the mTOR kinase
domain as MLN0128, which explains the effects of Rapalink-1 on mitochondrial functions.
Similarly, Torin-2, which competitively inhibits the mTOR kinase domain, has similar
inhibitory effects on mitochondrial functions (Figure 8A–E). Thus, the data provided mech-
anistic information about the mTOR complexes’ role in small molecular metabolites, local-
ization, and mitochondrial functions. In addition, the data showed that mTOR inhibition
decreased ATP production, nonmitochondrial oxygen consumption, and proton leak.

Our findings provided a mechanistic underpinning and biological insight to show how
mTORC1 and combined mTORC1 and mTORC2 chemical knockout alter the metabolomics
phenotype and links to mechanistic pathways and biological networks. The data support
the notion that the metabolomics profile can be applied for risk assessment, and early
detection and metabolic laboratory tests can be utilized for precision nutrition and person-
alized medicine. mTORC1 and mTORC2 regulated metabolites could potentially be useful
metabolic biomarkers as mTOR serves as a metabolic sensor and plays an integral role in
cellular growth and metabolism.

5. Conclusions

Findings from these studies enabled us to determine the causal contribution of
mTORC1 and combined mTORC1/mTORC2 to pancreatic islet β cells’ metabolic pro-
file by combining integrative bioinformatics and laboratory approaches. Our data indicate
that mTORC1/mTORC2 inhibition by RapaLink-1 and Torin-2 reduced L-aspartate and
L-asparagine in pancreatic beta TC-6 cell lines. The mechanism of action is through both
mTORC1 and mTORC2 inhibition of mitochondrial functions and decreasing ATP produc-
tion. Rapamycin alone does not affect the basal mitochondrial function or ATP production
in this pancreatic beta-cell model. Our findings provided a mechanistic underpinning and
biological insight to show how mTORC1 and combined mTORC1 and mTORC2 inhibition
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regulate the metabolomics phenotype and link the mechanistic pathways with biological
interpretations. The data support the notion that the metabolomics profile as a proxy of the
internal exposome can be applied for risk assessment and early detection, and metabolic
laboratory tests can be utilized for personalized medicine.
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