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Abstract
Herpes simplex virus 1 (HSV-1) ICP0 is a multi-functional phosphoprotein expressed with

immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to

study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency,

entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope

protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from

HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation.

The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original

62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues.

The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8

and FXE, but absent from the parental 17+, suggesting that the mutation was introduced

during the construction of the dl1403 virus, and not as a result of passage in culture.

Introduction
Herpes simplex virus 1 (HSV-1) is a prototype virus of the Alphaherpesvirinae subfamily that
causes lifelong latent infections in humans. Upon infection of the host cell, HSV-1, like all her-
pesviruses, executes a cascade of temporally regulated gene expression. Infected cell protein
(ICP0) is an HSV-1 immediate early (IE) phosphoprotein that acts as a promiscuous transacti-
vator of viral and cellular genes, and is required for low multiplicity infection [1,2,3,4,5]. ICP0
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is important for progression to lytic infection and for reactivation from latency [6,7,8,9].
Although initially thought to function in the nucleus by targeting repressive cellular proteins
for degradation using the E3 ubiquitin ligase activity of its RING finger domain (reviewed in
[1], ICP0 has been more recently suggested to have additional functions in the cytoplasm
[10,11,12], and many of its binding partners are not directed to the proteasome
[13,14,15,16,17,18,19,20,21,22]. In addition to being expressed in the host cell, ICP0 is a minor
structural component of the tegument layer of viral particles [23,24,25,26,27,28,29]. Tegument
ICP0 has been proposed to regulate transport of entering viral capsids to the nuclear pore com-
plex in a proteasome-dependent manner [30,31].

HSV-1 dl1403 is an ICP0 deletion mutant virus derived from wild type strain 17+. The
ICP0 gene is present in two copies within the HSV-1 genome, one each in the TRL and IRL

inverted repeat regions. Bearing a 2 kilobase deletion in both copies of the ICP0 gene, HSV-1
dl1403 was constructed via homologous recombination between the HSV-1 17+ genome and a
plasmid specifying the ICP0 gene containing a 2 kb deletion [4]. The resultant virus has been
used in many studies of ICP0 function [30,32,33,34,35,36,37,38,39]. Here, we demonstrate that
HSV-1 dl1403 contains a previously unrecognized secondary mutation that renders it incapa-
ble of synthesizing the wild type gC gene product.

Materials and Methods

Cells and viruses
Vero, HEL and U2OS cells (American Type Culture Collection, Rockville, MD) were propa-
gated in Dulbecco modified Eagle medium (Invitrogen, Grand Island, NY) supplemented with
10% fetal bovine serum (Gemini Bio-Products, West Sacramento, CA). CHO-nectin-1 (M3A)
cells (provided by Roselyn Eisenberg and Gary Cohen, University of Pennsylvania) are stably
transformed with the nectin-1 gene and contain the E. coli lacZ gene under the control of the
HSV-1 ICP4 promoter. The cells were propagated in Ham F-12 nutrient mixture (Invitrogen)
supplemented with 10% fetal bovine serum, 150 ug of puromycin (Sigma, St. Louis, MO)/ml,
and 250 ug of G418 sulfate (Fisher Scientific, Fair Lawn, NJ)/ml.

HSV-1 wild-type Glasgow strain 17 syn+ (17+) [40], its ICP0 mutant derivative dl1403, the
rescuant dl1403R, and dl1403-derived mutants FXE and D8 were provided by Roger Everett,
MRC Virology Unit, Glasgow, United Kingdom. HSV-1 dl1403 has a 2 kilobase lesion in both
copies of the ICP0 gene [4]. FXE, D8 and the rescued virus dl1403R were obtained by co-trans-
fection of mutant virion DNA and a plasmid containing a fragment specifying the ICP0 gene
[41,42]. Wild-type HSV-1 strain KOS and its derivative 7134, which contains the lacZ gene in
place of both inverted repeat copies of the ICP0 gene [43] and the KOS-derived ICP0-null
virus n212 [44] were obtained from P. Schaffer (Harvard University). HSV-1 KOS-tk12 con-
tains the lacZ gene under the control of the viral ICP4 promoter [45] and was obtained from P.
Spear (Northwestern University). The ICP0-null virus 7910 derived from HSV-1 strain F was
obtained from B. Roizman (University of Chicago). HSV-1 KOS-derived mutant gCΔ2–3 (pro-
vided by Curtis Brandt, University of Wisconsin) lacks gC coding sequences [46]. 17+, dl1403,
dl1403R, FXE, D8, n212, 7910 and 7134 virus stocks were grown and titered on U2OS cells.
KOS and gCΔ2–3 virus stocks were grown and titered on Vero cells.

Antibodies
Mouse monoclonal antibody H1A027 (Virusys, North Berwick, ME) recognizes ICP0. R47 is a
rabbit polyclonal antibody to gC [47], and DL6 is a mouse MAb to gD [48] (both provided by
Gary Cohen and Roselyn Eisenberg). Mouse MAb H1817 (Virusys) recognizes gB, and mouse
MAb AC-74 (Sigma) recognizes beta-actin.
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SDS-PAGE andWestern blot analysis
Samples in Laemmli buffer were separated by SDS polyacrylamide gel (4–20% gradient) elec-
trophoresis. Gels were either fixed and stained with Coomassie blue (Sigma) or blotted onto
nitrocellulose and probed with 1 μg of mouse monoclonal antibody (MAb)/ml specific for
HSV gB, VP5 (MAbs H1359, H1A021, respectively, Santa Cruz), ICP0 (MAb 11060, Virusys,
Sykesville, MD), or 0.01 μg MAb 1–21 to VP16 (Virusys). Nitrocellulose membranes were
incubated with horseradish peroxidase-conjugated goat anti-mouse immunoglobulin G
(Pierce, Rockford, IL), developed with enhanced chemiluminescence detection reagents
(Pierce), and exposed to X-ray film (Kodak) [49].

DNA sequencing
DNA sequence from HSV-1 17+, dl1403, and dl1403R viruses was amplified by PCR using the
forward primer 5’ GAGGGGGAGGCGTCGG (this study) and reverse primer 5’ CGGACGAC
GTACACGATT [50]. PCR products were electrophoresed on a 1% agarose gel, and the 1520 bp
band corresponding to the gC gene was cut from the gel. DNA was purified from gel using a
MiniElute PCR purification kit (Qiagen) and sequenced with the PCR primers. Sequences were
analyzed with the Vector NTI Advance (Life Technologies).

RT-PCR
Total RNA was extracted from Vero cells infected with HSV-1 17+ or dl1403 (MOI of 1) for 24
hours using the iPrep TRIzol Plus RNA kit per the manufacturer's instructions (Life Technolo-
gies), modified to include DNAse treatment. RNA was converted into cDNA using the iScript
Advanced cDNA synthesis kit (Bio Rad). gC transcripts was detected using the CFX96 Real-
Time PCR Detection System (Bio-Rad) and forward primer 5’GTCCACCCTGCCCATTTC
(this work) and reverse primer 5’ CGGACGACGTACACGATT [50].

Effect of proteasome-inhibitor MG132 on HSV entry
Confluent CHO-nectin-1 cell monolayers grown in 96-well dishes were treated with culture
medium containing MG132 for 15 min at 37°C. HSV-1 KOS, 7134, gCΔ2–3, 17+ or dl1403
(multiplicity of infection [MOI] of 1) was added. Cells were incubated in the constant presence
of agent for 7 h. 0.5% Nonidet P-40 (Sigma) cell lysates were prepared, chlorophenol red-beta-
D-galactopyranoside (Roche Diagnostic, Indianapolis, IN) was added, and the beta-galactosi-
dase activity was read at 595 nm with an ELx808 microtiter plate reader (BioTek Instruments,
Winooski, VT). The MG132 treatments tested had no adverse effect on cell viability as mea-
sured by trypan blue exclusion [31]. Beta-galactosidase activity indicated successful entry [51].
Mean results and standard errors were calculated for four replicate samples.

Effect of heparin on HSV-1 infectivity
Confluent Vero cells were pre-chilled on ice. HSV-1 17+, dl1403, KOS, or gCΔ2–3 (100 PFU
per well) was mixed with indicated heparin concentrations in carbonate-free DMEM contain-
ing 5 mMHEPES and 0.2% BSA. Chilled inocula were added to cells and incubated at 4˚C on
ice for 1 hr to allow virus binding to the cell surface. Cultures were washed thrice with PBS,
and then incubated at 37˚C for 24 hr. Plaque formation was detected by immunoperoxidase
staining with anti-HSV-1 polyclonal antibody HR50 (Fitzgerald Industries) [52]. Plaque for-
mation in the untreated sample was set to 100%. The data are means of quadruplicate determi-
nations with the standard error.
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Viral growth assays
HEL cells were infected with the indicated viruses for 24 hr (MOI of 10). Cells and supernatant
media were harvested, freeze-thawed three times, and then titered on U2OS cells in the pres-
ence of hexamethylene bisacetamide (HMBA) and 2% human serum. After three days, cells
were fixed with methanol, stained with Giemsa (Sigma), and then plaques were counted.

Results and Discussion

HSV-1 dl1403 virions lack gC protein
ICP0-null virions have a protein composition similar to that of the wild type virions. Specifi-
cally, the HSV-1 proteins VP5, VP1/2, ICP4, VP16, VP22, VP13/14, gB, gD, gH, and gL are
incorporated into extracellular dl1403 virions in the absence of ICP0 [24]. To continue this line
of inquiry, equivalent VP5 units of wild type 17+ virions or dl1403 virions were analyzed by
SDS-PAGE and Western blotting with polyclonal antibody to gC. Interestingly, gC was not
detectable in dl1403 virions (Fig 1). As expected, tegument ICP0 was also not detected. Virion
gB and gD did not appear to be reduced in the absence of ICP0 (Fig 1) in agreement with previ-
ous observations [24].

To address one possible reason for the absence of gC from dl1403 virions, we determined
whether gC was present in the viral particles of a different ICP0-null HSV-1. We utilized the
ICP0-null virus, HSV-1 7134, which was constructed in an HSV-1 wild type KOS background.
gC was detected in 7134 virions (Fig 2B), suggesting that gC can be assembled into viral parti-
cles in the absence of ICP0.

gC is not detectable in cells infected with HSV-1 dl1403
We next determined whether dl1403-infected cells expressed gC. HSV-1 dl1403-infected cell
lysates were analyzed by SDS-PAGE and Western blot. There was no detectable gC (or ICP0)
present in the dl1403-infected cells (Fig 2A). Lysates of the wild type 17+-infected cells con-
tained detectable levels of gC and ICP0 (Fig 2A). gC was also readily detected in cells infected
with ICP0-null viruses n212, 7134 (KOS strain) and 7910 (F strain) that were generated inde-
pendently from dl1403 (data not shown). Thus, the results suggest that gC was undetectable in
dl1403 virions (Fig 1) because gC protein was not expressed in the infected cells from whence
they came. Similarly, cells infected with the dl1403-derived viruses, D8, in which the nuclear
localization signal of ICP0 has been disrupted, and FXE, which lacks the RING finger domain
of ICP0, also lacked detectable gC (data not shown). Therefore, the possibility that HSV-1
dl1403 contained a previously unrecognized mutation in its gC gene was investigated.

HSV-1 dl1403 contains a frameshift mutation in its gC gene
Sequencing the gC gene from HSV-1 dl1403 revealed a single nucleotide deletion of C186 rela-
tive to the wild type parent 17+, which results in a frameshift (Fig 3A). The new reading frame
introduces a premature stop codon at nucleotide positions 356–358. Unlike the wild type gC
polypeptide which is 511 amino acids, the predicted polypeptide encoded by the dl1403 gC
gene consists of the first 62 native gC residues followed by 112 non-gC amino acids (Fig 3B
and 3C). The sequence also revealed a G to A substitution at nucleotide 170 (Fig 3A), which
corresponds to a predicted S56N amino acid mutation (Fig 3B). The dl1403 virus that was
sequenced was the same passage that was analyzed in Figs 1 and 2. Identical sequencing results
were obtained with the earliest passage virus to which our two laboratories had access
(dl1403_ori). Thus, in addition to not expressing ICP0, HSV-1 dl1403 fails to express a detect-
able gC protein likely due to these mutations.

gCMutation in HSV-1 dl1403
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To explore further whether the mutations in the gC gene arose during recent passage in cell
culture, we sequenced the gC gene from dl1403R, a dl1403 virus that was rescued with the wild
type ICP0 gene, and from FXE and D8, ICP0 mutants derived from dl1403. The gC gene from
each of these dl1403-derived viruses contained the same substitution and frameshift mutations
that were detected in all preparations of dl1403 tested (Fig 3A). These results suggest that the
gC mutations were introduced during the original construction of the dl1403 virus.

Despite the detected mutations in the gC gene, we addressed the formal possibility that
HSV-1 dl1403 may lack the gC protein due to an inability to synthesize gC mRNA. gC tran-
scripts containing a region downstream of the substitution and frameshift mutations were
detected by RT-PCR in both dl1403-infected cells and wild type infected cells (data not

Fig 1. Virion gC is undetectable in the HSV-1 ICP0 deletion mutant, dl1403. Equivalent VP5 units of
extracellular 17+ or dl1403 virions were analyzed by SDS-PAGE followed byWestern blotting with antibodies
against the indicated proteins. VP5 content of virion preparations was determined by SDS-PAGE and
Coomassie staining.

doi:10.1371/journal.pone.0131129.g001
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shown). Together, the results suggest that dl1403 virions and infected cells lack detectable levels
of gC, due to the identified mutations in the dl1403 gC gene.

Entry of ICP0-null mutants is resistant to inhibition by MG132, regardless
of the presence of gC
ICP0 present in the virion tegument layer regulates the proteasome-dependent delivery of
incoming viral capsids to the nuclear pore complex [30]. The entry of ICP0-null virions is less
sensitive to inhibition by proteasome inhibitors. Specifically, we showed previously that the
entry of wild type HSV-1 strain 17+ was inhibited by the proteasome inhibitor MG132, a pep-
tide aldehyde, in a concentration dependent manner, but HSV-1 dl1403 was refractory to inhi-
bition [30]. Since dl1403 lacks gC in addition to ICP0, we assessed directly whether gC
contributes to the proteasome-dependence of HSV-1 entry. The effect of MG132 on the entry
of a gC-null (ICP0+) virus, HSV-1 gCΔ2–3, was determined. MG132 inhibited the entry of
gCΔ2–3 in a concentration-dependent manner as measured by beta-galactosidase reporter
gene expression, similar to the wild type virus (KOS) from which it was derived (Fig 4A). The
highest concentration of MG132 inhibited> 90% of entry of either virus. These results suggest
that gC does not contribute to the reliance of HSV-1 entry on the degradative activity of the
proteasome. In contrast, as demonstrated previously [29,30], the entry of viruses that lacked
gC and ICP0 (dl1403; Fig 4B) or lacked ICP0 alone (7134; Fig 4C), were refractory to MG132
relative to matched viruses that contained ICP0.

Fig 2. Detection of gC in cells infected with HSV-1 dl1403. A. U2OS cells were infected with the indicated virus (MOI of 1) for 18 h. Cell lysates were
analyzed by SDS-PAGE followed byWestern blotting with PAb R47 to gC, MAb H1A027 to ICP0, or MAb AC-74 to beta-actin (Sigma). B. Equivalent VP5
units of extracellular HSV-1 KOS or 7134 virions were analyzed by SDS-PAGE followed byWestern blotting with antibodies against the indicated proteins.
VP5 content of virion preparations was determined by SDS-PAGE and Coomassie staining.

doi:10.1371/journal.pone.0131129.g002
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HSV-1 dl1403 is more resistant to inhibition by heparin than is its HSV-1
17+ parent
Envelope gC is the principal mediator of HSV-1 attachment to cell surface glycosaminoglycans,
such as heparan sulfate [53,54,55]. In the absence of gC, gB mediates attachment of HSV-1 to
heparan sulfate proteoglycans [46]. We assessed the ability of heparin to inhibit the infectivity

Fig 3. Sequence analysis of the HSV-1 gC gene from parental wild type 17+ and dl1403 derivatives. A.
Nucleotide alignment of a fragment of the gC gene from the current passage of HSV-1 dl1403 in our
laboratory (dl1403), from the original dl1403 stock received by our lab (dl1403_ori), from the original HSV-1
dl1403R (ICP0 rescuant) received by our lab as well as from D8 and FXE, ICP0 mutant viruses derived from
dl1403. Nucleotide differences are indicated in color between wild type 17+ (blue) and the virus derivatives
(red). Deletion is indicated by "-". Numbering of nucleotides is indicated at the top.B. Alignment of gC
proteins from the four virus preparations based on DNA sequence results. Sequences in gray have no
homology to the gC protein expressed by the parental HSV-1 17+. Stop codons are indicated by “*”.
Numbering of amino acids is indicated in the top.C. Schematic representation of the region of the genomes of
HSV-1 17+ and dl1403 encoding the gC gene. The DNA sequence encoding gC is in black, and the
frameshifted coding sequence that results in altered protein sequence is in gray. Forward and reverse
primers used for sequencing are indicated.

doi:10.1371/journal.pone.0131129.g003
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Fig 4. Effect of proteasome inhibitor MG132 on the entry of HSV-1 that lacks gC.CHO-nectin-1 cells (A,
B) or Vero cells (C) were treated with MG132 for 15 min at 37°C. HSV-1 KOS, gCΔ2–3, 17+, dl1403, KOS-
tk12, or 7134 was added (MOI of ~1) for 6 h. The percent beta-galactosidase activity relative to that obtained
in the absence of MG132 is indicated. The data are means of quadruplicate determinations with the standard
error of the mean. Results are representative of three independent experiments.

doi:10.1371/journal.pone.0131129.g004
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of dl1403. HSV-1 dl1403 was inhibited by heparin to a lesser extent than the gC-containing
parental virus 17+ (Fig 5). Likewise, the infectivity of gC-null HSV-1 gCΔ2–3 was inhibited to
a lesser extent than its parental wild type virus, KOS (Fig 5), consistent with previous reports
[56]. The results from Fig 5 suggest that dl1403 behaves similarly to a gC-null virus in an assay
of biological function.

HSV-1 ICP0-null mutants grow to similar titers regardless of gC
expression
Upon the initial generation of dl1403, marker rescue experiments showed that restoration of
the ICP0 sequence returned viral replication to wild type levels in cultured cells [4]. If the loss
of gC had affected viral growth in culture, a decrease in the growth of the rescued virus would
have been expected, suggesting that in this background in cultured cells, the additional disrup-
tion of gC does not decrease the infectivity of dl1403. Similarly, when grown on HEL fibroblasts

Fig 5. Resistance of HSV-1 dl1403 to inhibition by heparin.HSV-1 17+, dl1403, KOS, or gCΔ2–3 (100
PFU per well) was added to Vero cells at 4˚C for 1 hr in the presence of 0 to 5 μg/ml heparin as indicated.
Cultures were washed thrice with PBS, and then incubated at 37˚C for 24 hr. Plaque formation was detected
by immunoperoxidase staining. Plaque formation in the untreated sample was set to 100%. The data are
means of quadruplicate determinations with the standard error of the mean. Results are representative of
three independent experiments.

doi:10.1371/journal.pone.0131129.g005
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and titered on U2OS cells, as previously described [12], we found that dl1403, n212 and 7134
all reached similar titers (Fig 6). This suggests that despite the loss of gC, dl1403 is not more
attenuated than other ICP0-null viruses with intact gC expression. Interestingly, all three of
these viruses reach higher titers than what is observed for 7910, which may be a strain-specific
difference.

In summary, HSV-1 dl1403 virions and strains derived from it, such as D8 and FXE, lack
gC, and dl1403-infected cells fail to synthesize gC, likely due to detected mutations in the gC
gene. Our results illustrate the potential for secondary mutations in the construction and evalu-
ation of HSV-1 mutant strains. In general, it is desirable to construct and examine the same
mutations in multiple wild type strains. Although our stocks of the parental 17+ strain lack the
gC mutations, it is possible that the stock of 17+ from which dl1403 was originally derived was
the original source of the mutations. Notably, laboratory strains of HSV-1 considered to be
wild type also contain mutations in their genomes [57,58,59,60,61].

Several strains of HSV-1 that lack gC have been identified [62,63,64,65]. These strains are
viable in cell culture, consistent with the non-essential role of gC in HSV-1 replication. While
HSV-1 gC plays a well-defined role in virion attachment to cell surface glycosaminoglycans
[66], it is not an absolute requirement for HSV-1 entry via endocytic and non-endocytic path-
ways [67,68]. Repair of the ICP0 deletion in HSV-1 dl1403 restores the virus to wild type phe-
notype in cell culture assays that test ICP0 functions [4,41]. For example, exogenous
expression of ICP0 restores plaque formation efficiency of dl1403 to wild type in cell culture
[4], suggesting that the observed phenotype of this mutant likely results from the loss of ICP0
and not gC. Studies using dl1403 in mouse models have also effectively used an ICP0 rescuant
as a control [6]. HSV-1 gC also binds to complement component C3b, providing protection
from antibody-independent neutralization [69,70]. Although this function of gC would not be
necessary in cell culture, the loss of gC would be expected to have a more significant impact on
experiments performed in vivo. Indeed, in some animal models, gC-null viruses are highly

Fig 6. Loss of gC does not render HSV-1 dl1403 more attenuated than other ICP0-null strains with
intact gC expression.HEL cells were infected with HSV-1 dl1403, n212, 7134, or 7910 for 24 hr (MOI of 10).
Cells and supernatant were harvested, freeze-thawed three times, and then titered on U2OS cells in the
presence of hexamethylene bisacetamide (HMBA). The data is the average of 3–4 independent replicates
with the standard error of the mean. Statistical analysis was performed using one-way ANOVA and Tukey’s
multiple comparison post-test. *** p <0.001, ns = not significant.

doi:10.1371/journal.pone.0131129.g006
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attenuated [69,71,72,73]. However, in others, the lack of gC does not affect disease outcome
[71,74,75,76,77]. A previous study comparing the growth of 17 syn, dl1403, and the marker res-
cue virus R4 in mice indicated that R4 replicated similarly to 17 syn, although it did show some
evidence of mild attenuation compared to the wild type virus [6]. This suggests that while the
lack of gC in dl1403 may have produced minor additional defects in replication in vivo, the
effect of the loss of ICP0 is much greater. Along with the present study, this also highlights the
importance of using rescuants as controls in experiments using mutant HSV-1 strains. Pheno-
types of HSV-1 dl1403 attributable to the absence of gC, but unrelated to ICP0 function, such
as enhanced resistance to heparin (Fig 5), are also expected to manifest in other dl1403-derived
viruses including ICP0 rescuants.

HSV-1 dl1403, dl1403R, D8 and FXE are widely used viruses. Thus, our finding that these
strains contain a secondary mutation in gC impacts a large number of studies. We are currently
in the process of creating repaired versions of dl1403, D8 and FXE with intact gC expression.
Our findings suggest that caution is necessary in using the current viruses and also suggest that
previous studies should be interpreted with the absence of both the ICP0 and gC genes in
mind.
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