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ABSTRACT  The rediscovery and reinterpretation of the War-
burg effect in the year 2000 occulted for almost a decade the 
key functions exerted by mitochondria in cancer cells. Until 
recent times, the scientific community indeed focused on 
constitutive glycolysis as a hallmark of cancer cells, which it 
is not, largely ignoring the contribution of mitochondria to 
the malignancy of oxidative and glycolytic cancer cells, being 
Warburgian or merely adapted to hypoxia. In this review, we 
highlight that mitochondria are not only powerhouses in 
some cancer cells, but also dynamic regulators of life, death, 
proliferation, motion and stemness in other types of cancer 
cells. Similar to the cells that host them, mitochondria are 
capable to adapt to tumoral conditions, and probably to 
evolve to ‘oncogenic mitochondria’ capable of transferring 
malignant capacities to recipient cells. In the wider quest of 
metabolic modulators of cancer, treatments have already 
been identified targeting mitochondria in cancer cells, but 
the field is still in infancy. 
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INTRODUCTION 

The vital role of mitochondria in eukaryotic cells has been 
demonstrated over a hundred years ago by Otto Warburg, 
who was the first to perform mitochondrial respiration 
experiments [1]. In healthy replicative eukaryotic cells, 

mitochondria regulate important cellular processes, such 
as proliferation, death, metabolic adaptation and Ca2+ ho-
meostasis. Mitochondria are also the site of important 
reactions, including fatty acid oxidation (FAO), the tricar-
boxylic acid (TCA) cycle, oxidative phosphorylation 
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Abbreviatons: 
2DG – 2-deoxy-D-glucose; 2HG – D-2-hydroxyglutarate; 3BP – 3-
bromopyruvate; α-KG – α-ketoglutarate; α-TOS – α-tocopheryl 
succinate; ACO2 – aconitase 2; AML – acute myeloid leukemia; AMPK 
– AMP kinase; Atg - autophagy-related; Bcl-2 – B-cell lymphoma 2; 
CoQ – coenzyme Q; CS - citrate synthase; CSC – cancer stem cell; 
DRP1 – dynamin-related protein 1; EMT – epithelial to mesenchymal 
transition; EOC – epithelial ovarian carcinoma; ER – endoplasmic 
reticulum; ETC – electron transport chain; FAO – fatty acid oxidation; 
FH – fumarate hydratase; FoxO1 – forkhead O family protein 1; 
FUNDC1 – FUN14 domain-containing 1; GAPDH – glyceraldehyde-3-
phosphate dehydrogenase; GLUT – glucose transporter; GSH – 
glutathione; GST – glutathione S-transferase; HIF – hypoxia-inducible 
factor; HK – hexokinase; Hsp70 – heat shock protein 70; IDH – 
isocitrate dehydrogenase; IMM – inner mitochondrial membrane; 
IMS – intermembrane space; KD – ketogenic diet; KRAS – V-Ki-ras2 
Kirsten rat sarcoma viral oncogene homolog; LC3 – microtubule-
associated protein light chain 3; LDH-1 – lactate dehydrogenase-1; 
MAVS – mitochondrial anti-viral signaling; MCL-1 – myeloid leukemia 
cell differentiation protein-1; Mdivi-1 – mitochondrial division 
inhibitor-1; Mff – mitochondrial fission factor; Mfn – mitofusin; 
mtDNA – mitochondrial DNA; mtROS - mitochondrial ROS; mtSNP – 
single nucleotide polymorphism in mtDNA; Nrf2 – nuclear factor 
erythroid-derived 2-like 2; OMM – outer mitochondrial membrane; 
Opa1 – optic atrophy protein 1; OXPHOS – oxidative phosphorylation; 
PDT – photodynamic therapy; PEP – phosphoenolpyruvate; PKA – 
cAMP-activated protein kinase A; PINK1 – phosphatase and tensin 
homolog-induced kinase 1; PTEN – phosphatase and tensin homolog; 
ROS – reactive oxygen species; SCO2 – synthesis of cytochrome 
oxidase 2; SDH – succinate dehydrogenase; Sirt – sirtuin; SOD – 
superoxide dismutase; TCA – tricarboxylic acid (cycle); TERT – 
telomerase reverse transcriptase; TGFβ – transforming growth factor 
β; TIGAR – TP53-induced glycolysis and apoptosis regulator; TNT – 
tunneling nanotube; VDAC – voltage-dependent anion channel. 
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(OXPHOS), the first step of gluconeogenesis, ketogenesis, 
heme biosynthesis and Fe/S cluster formation [2]. They 
contain DNA that can vary with evolution, mutate or be 
partially deleted. Given the numerous functions of mito-
chondria, it is not surprising that mitochondrial dysfunc-
tions participate in a series of diseases, including cancer. In 
this review, we focus on mitochondrial functions and their 
contribution to carcinogenesis and cancer progression. 

 
MITOCHONDRIA PARTICIPATE IN CANCER DEVELOP-
MENT 
There are at least five mechanisms by which mitochondria 
may be involved in the development of the malignant phe-
notype over the metabolic reprogramming of cancer cells. 
First, it is widely demonstrated that a large number of dis-
eases are associated with DNA mutations that affect mito-
chondria, mainly due to alterations of subunits of the elec-
tron transport chain (ETC) [3]. For example, subsets of 
hepatocellular carcinomas and prostate cancers have been 
associated with a mutation in the D-loop region of Complex 
I, and some neurological cancers harbor mutations of suc-
cinate dehydrogenase (SDH; Complex II) [4-6]. Second, 
oxidative stress due to reactive oxygen species (ROS) is the 
most important stimulus for cancer generation and pro-
gression towards malignancy [7]. ROS are mainly produced 
by mitochondria that release superoxide as a byproduct of 
oxidative respiration [8]. Mitochondrial ROS (mtROS) can 
be generated either in the TCA cycle or in the ETC [9]. Due 
to their high reactivity, ROS act as toxic species for cellular 
macromolecules [10] and, at low concentrations, as intra-
cellular signaling agents regulating metabolic pathways [11, 
12]. Increased levels of ROS are often found in cancer cells 
due to increased metabolic activities and altered antioxi-
dant capacities [13]. Third, mitochondria are directly in-
volved in the regulation of cell death, including but not 
limited to apoptosis and necrosis [14, 15]. To induce apop-
tosis, B-cell lymphoma-2 (Bcl-2) family member proteins 
interact with mitochondria as they bind to the voltage-
dependent anion channel (VDAC) to accelerate its opening 
and the release of cytochrome c [16]. Thereby, these pro-
teins act as oncogenic or oncosuppressive triggers, partici-
pating in cancer progression and therapeutic resistance [17, 
18]. One of them, myeloid leukemia cell differentiation 
protein-1 (MCL-1), an anti-apoptotic member of the Bcl-2 
family, is frequently overexpressed in human cancer and 
associated with tumor aggressiveness [19]. MCL-1 and Bcl-
xL have been found in different mitochondrial subcom-
partments. They exert their anti-apoptotic activities by 
antagonizing the pro-apoptotic members of the Bcl-2 fami-
ly when located at the outer mitochondrial membrane 
(OMM) [20], and, when located in the mitochondrial matrix, 
by regulating mitochondrial homeostasis and bioenergetics 
by preserving the integrity of the inner mitochondrial 
membrane (IMM) and promoting the assembly of ATP-
synthase oligomers at the ETC [17]. Mitochondria also con-
trol necroptosis, a regulated form of necrosis that needs 
mtROS generation and depends on mitochondrial permea-
bility transition [21]. Fourth, metabolic reprogramming 

also concerns several mutations in genes encoding TCA 
cycle enzymes, which promote malignant transformation 
[22]. Indeed, some TCA cycle intermediates, such as 
fumarate, succinate, aspartate and D-2-hydroxyglutarate 
(2HG, a de novo metabolite resulting from mutations of 
isocitrate dehydrogenases (IDHs)), have important pro-
carcinogenic effects when accumulating in cells following 
genetic mutations and/or cancer-associated modifications 
of protein expression [23]. Fifth, a distinctive feature of all 
tumors is sustained cellular proliferation resulting from 
multiple molecular alterations. One of these alterations is 
the prevention of telomere erosion by constitutive te-
lomerase expression that ensures the maintenance of te-
lomere length [24]. It has been shown that telomerase 
reverse transcriptase (TERT) shuttles from the nucleus to 
mitochondria upon oxidative stress, preserving mitochon-
drial functions and decreasing oxidative stress, thus pro-
tecting mitochondrial DNA (mtDNA) and nuclear DNA 
(nDNA) from oxidative damage to avoid apoptosis [25, 26]. 
TERT was also found to accumulate in the mitochondria of 
brain cells in mice upon dietary restriction and rapamycin 
treatment [27]. 

 
MITOCHONDRIA ARE NOT ONLY THE POWERHOUSES 
OF THE CELL 
Despite the fact that mitochondria are well recognized to 
actively participate in cancer progression, their precise 
roles in the clinical outcome of cancer patients remain elu-
sive. The interest of scientists for mitochondria has in-
creased over the last 50 years, with discoveries on the im-
pact that these organelles have in multiple vital processes 
in eukaryotic cells [28].  

Mitochondria are tubular organelles of ~0.5 to ~3 µm in 
length that undergo a continuous remodeling of their net-
work by fusion and fission events [29]. Textbooks first de-
scribe mitochondria as the main site of energy production 
of cells, and, indeed, mitochondria are a major site of pro-
duction of ATP and macromolecules. The reactions of the 
TCA cycle take place in the mitochondrial matrix. Together 
with CO2 and protons, they generate reducing equivalents 
(NADH and FADH2) and precursors for the synthesis of 
lipids, carbohydrates, proteins and nucleotides. Equivalent-
reducing electrons fuel the ETC to generate an electro-
chemical gradient that is required both for ATP production 
and for the active transport of selective metabolites, such 
as pyruvate and ATP, across the IMM [30].  

In addition to this important role, mitochondria are im-
plicated in many other functions related to mitochondrial 
dynamics and architecture, which influence some of the 
most important cellular activities. The mitochondrial struc-
ture (Figure 1A) is intrinsically connected to mitochondrial 
functions (ATP production, cell cycle control, programmed 
cell death control, proliferation and cell signaling) [31]. 
Mitochondria are indeed composed of two membranes, 
the OMM and the IMM that delimitate an intermembrane 
space (IMS) and the mitochondrial matrix inside the orga-
nelle. The OMM can be considered as a platform for ex-
change and signaling, as it is the site where proteins phos- 
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FIGURE 1: Cancer is associated with alterations of mitochondrial functions. (A) Mitochondria in normal and in cancer cells are composed of 
three compartments. They are separated from the cell cytosol by an outer membrane (OMM), an intermembrane space (IMS), and an inner 
membrane (IMM) that forms invaginations called "crests". The IMM delimitates the mitochondrial matrix, a gelatinous material containing 
mitochondrial DNA (mtDNA), granules, ribosomes and ATP synthase particles. The mitochondrial matrix hosts the tricarboxylic acid (TCA) 
cycle, while the IMM hosts the electron transport chain (ETC). (B) In highly metabolically active or hypoxic cancer cells much more than in 
normal cells under normal conditions, electrons escape during mitochondrial electron transport at Complexes I and III generate superoxide 
(O2

-) from oxygen (O2) in both the IMS and the matrix. O2
- is immediately dismutated to H2O2 either spontaneously or under the catalysis of 

superoxide dismutases SOD1 (in the IMS) or SOD2 (in the matrix). In the matrix, H2O2 can be neutralized by glutathione (GSH). It can also 
signal to the cytosol. (C) In cancer cells, the TCA cycle not only serve to produce reducing equivalents to fuel the ETC (green arrows), but also 
to generate biosynthetic intermediates that are necessary for cell proliferation (pink arrows). The most important anaplerotic reaction pro-
duces oxaloacetate directly from pyruvate, and is catalyzed by pyruvate carboxylase (PC) (blue arrow). Oxaloacetate can further be con-
verted to phosphoenolpyruvate (PEP) by PEP carboxykinase (PC), contributing to gluconeogenesis. (D) Mitochondrial DNA (mtDNA) varia-
tions, including single nucleotide polymorphisms (SNPs), maternally inherited haplotypes and deletions have been studied for their associa-
tion with cancer. Among these, only large mtDNA deletions seem to be associated with malignancies. Cyt c - cytochrome c; Gpx - glutathione 
peroxidase; Q - coenzyme Q10. 
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phorylate substrates and regulate the immune response 
after viral infection trough activation of mitochondrial an-
tiviral signaling (MAVS) proteins [32, 33]. The IMM is less 
permeable and is the site where ETC complexes are located 
for ATP production and superoxide generation [34]. The 
matrix is the site of mitochondrial mtDNA replication, tran-
scription and macromolecule biosynthesis, where amphi-
bolic reactions of the TCA cycle take place [35]. The inves-
tigation of mitochondrial mechanisms that control meta-
bolic alterations and mitochondrial morphology has pro-
duced evidence that, in pathologies like cancer, they can 
be attractive targets for therapy. 

 
THE MITOCHONDRION: A COMPARTMENTALIZED OR-
GANELLE 
The OMM: a platform for signaling 
A main function of mitochondria is to ensure that the cell 
does not undertake processes for which mitochondria are 
not suitable, thus avoiding a discrepancy between cellular 
metabolic requirements and the mitochondrial capacity. 
There are different ways by which mitochondria can com-
municate with the cell. One of them is through the OMM, 
which can be compared to a signaling platform. The OMM 
connects mitochondria to other organelles within the cell, 
such as the endoplasmic reticulum (ER) and lysosomes, and 
to the plasma membrane [36, 37]. Thanks to VDAC that 
forms pores composed of different subunits, the OMM is 
permeable to small ions and proteins [38]. VDAC carries 
nucleotides, ions and metabolites between the cytosol and 
the IMS [38], and acts as an intracellular signaling platform 
for the modulation of metabolism and the control of cell 
death [39, 40]. With respect to metabolic regulation, VDAC 
also acts as platform for the anchoring of hexokinase 2 
(HK2), the embryonic version of the first enzyme of glycoly-
sis, to the OMM to facilitate the use of ATP by HK2 in can-
cer cells [41]. Because glucose phosphorylation by HK2 
traps glucose-6-phosphate within cells, this binding implies 
that VDAC is involved in the regulation of both glycolysis 
and mitochondrial respiration. With respect to cell death, 
the binding of Bcl-2 family members (Bax, Bak, Bok, Bad, 
Bid or Bim) to VDAC leads to the formation of a pore that 
results in the release of cytochrome c [16, 42], a small 
hemoprotein free to spread among the different mito-
chondrial compartments [43]. Cytochrome c, besides being 
a component of the ETC and, therefore, being necessary 
for the production of ATP at the ETC, also induces caspase-
dependent cell death in response to pro-apoptotic stimuli 
[44]. 

Mitochondria also exert a control on the innate im-
mune system. The OMM is indeed the site of phosphoryla-
tion of a wide range of proteins. For example, protein ki-
nase A (PKA), a tetramer composed of two subunits that 
bind cAMP and two catalytic subunits, is a mitochondrial 
resident [45]. Mechanistically, a-kinase-anchoring proteins 
(AKAPs) are found in the OMM where they allow the bind-
ing of the PKA catalytic subunits to the organelle mem-
brane, facilitating PKA localization for protein phosphoryla-
tion [32, 46]. When cAMP binds to PKA, the two catalytic 

subunits are dissociated, becoming active and phosphory-
lating a wide range of target proteins that have the argi-
nine-arginine-X-serine motif exposed, such as splicing fac-
tors SRSF1, SRSF2 and SRSF9 [47]. The OMM is also home 
to antiviral signaling regulators that activate the immune 
response thanks to MAVS, as recently reviewed in details 
by Mohanti A et al. [48]. 

OMM signaling is only one of the ways mitochondria 
communicate with the rest of the cell. Indeed, mitochon-
dria play a vital role in other important signaling pathways. 
First, they house the production of acetyl-CoA and  
S-adenosylmethionine that both regulate epigenetics by 
controlling signal transduction of DNA and histones 
through acetylation and methylation, respectively [49, 50]. 
Second, mtROS production and release is a response to 
cellular stress and a signaling factor to notably activate 
transcription factors hypoxia-inducible factors (HIFs), nu-
clear factor erythroid-derived 2-like 2 (Nrf2) and down-
stream gene expression [51]. Third, mitochondria control 
Ca2+ homeostasis. Ca2+ acts as a signaling molecule be-
tween mitochondria and the ER through contact sites 
termed ‘mitochondrial associated membranes’ (MAMs) 
[52]. It is one of the most important signals that these or-
ganelles use for communication [53]. Ca2+ acts as a bidirec-
tional signaling molecule, as mitochondrial Ca2+ uptake 
regulates mitochondrial metabolism, while mitochondrial 
Ca2+ release modulates apoptosis. Indeed, an increased 
Ca2+ concentration inside mitochondria activates several 
TCA cycle enzymes [54] and stimulates the production of 
cAMP [55], which in turn increases ATP production, allow-
ing metabolic adaptation. Conversely, Ca2+ is a signal for 
programmed cell death, with high levels of Ca2+ inducing 
the opening of mitochondrial permeability transition pores 
(MPTPs), triggering the release of cytochrome c and initiat-
ing apoptosis [56]. Ca2+ released from ER-mitochondria 
contact sites can also activate apoptosis through Bcl-2 fam-
ily members upon a fine regulation of Ca2+ homeostasis 
[57]. Furthermore, changes of ATP production by mito-
chondria act as a signal that is transmitted to the cytosol in 
the form of AMP: AMP activates energy sensor AMP kinase 
(AMPK), thus decreasing anabolic cell functions in favor of 
the catabolic reactions used for ATP production [58].  

Overall, mitochondrial signaling is a dynamic and com-
plex process that affects most cellular functions. By under-
standing these processes, it may be possible to more effec-
tively treat diseases like cancer. 

 
The IMM: the ATP factory 
Compared to the OMM, the IMM does not contain porins 
and is a highly impermeable barrier to ions and molecules 
that require specific membrane transport proteins for bidi-
rectional exchanges [59]. The IMM has an electrochemical 
membrane potential of about 180 mV that regulates their 
passage. It is also more extensive than the OMM, as it is 
organized in invaginations called ‘mitochondrial cristae’ 
[60] to allow the arrangement of ETC complexes. The num-
ber of invaginations depends on the energy demand of the 
tissue. In muscles, for example, mitochondria are particu-
larly rich in cristae [61].  
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The IMM further differs from the OMM by its high pro-
tein content, with a protein-to-lipid ratio of 80:20 in the 
IMM and of 50:50 in the OMM [59]. This high protein con-
tent is represented by all the complexes responsible for 
OXPHOS, as well as by transport proteins and proteins that 
regulate fusion and fission. The respiratory chain consists 
of a series of multi-enzymatic complexes and hydro- and 
liposoluble compounds capable of transferring electrons 
sequentially through the complexes towards the final ac-
ceptor, O2. This electron flow creates a motor force that 
transfers protons from the mitochondrial matrix (their site 
of production) to the IMS against their concentration gra-
dient, thus generating an electrochemical gradient across 
the IMM. The various complexes are arranged in increasing 
order of reduction potentials, in such a way that transport-
ed electrons pass from a higher energy state to a lower 
energy state with consequent energy release, which is 
used, in part, for ATP synthesis. Another part of the energy 
produced is used for thermoregulation [62] 

The respiratory chain is composed of five complexes 
(three of which are proton pumps) and two carriers that 
act as co-substrates and electron transporters (Figure 1A 
and 1B):  

Complex I - NADH dehydrogenase, also called coen-
zyme Q (CoQ) reductase. Complex I is composed of 45 
subunits. Among them, 14 have catalytic activities and are 
called ‘essential subunits’, of which seven are hydrophobic 
(ND1, ND2, ND3, ND4, ND4L, ND5 and ND6) and encoded 
by the mitochondrial genome, and the other seven are 
hydrophilic [63]. The remaining subunits are called ‘non-
essential subunits’. They are important for the assembly 
and stability of Complex I and are encoded by the nuclear 
genome [64]. Complex I receives two hydrogen atoms from 
NADH, which is oxidized, releasing two electrons and re-
ducing flavin mononucleotide (FMN) to FMNH2. The latter 
transfers the electrons to the second carrier of the ETC, 
CoQ, through its Fe/S centers. The energy obtained from 
the passage of electrons is used by Complex I to transport 
four protons from the mitochondrial matrix to the IMS, 
which represents a flow of two protons for each NADH 
consumed [65]. Complex I dysfunctions have been associ-
ated with cancer, as a reduced activity of the complex has 
been observed in renal oncocytomas [66, 67] and thyroid 
adenomas [68]. 

CoQ. CoQ is a lipophilic ubiquinone carrier embedded 
in the IMM lipid bilayer. It is able to separate the protons 
(which are released in the mitochondrial matrix) from the 
electrons provided by FMNH2 [69]. 

Complex II - SDH. Complex II is composed of four nu-
clear encoded subunits, with two hydrophilic catalytic sub-
units, SDHA/SDH1 and SDHB/SDH2, and two hydrophobic 
subunits, SDHC/SDH3 and SDHD/SDH4 [63]. It contains a 
heme b group and two CoQ-binding sites. It is also part of 
the TCA cycle. Complex II contributes to electron transfer, 
but there is no proton pumping towards the IMS. The two 
electrons produced during the oxidation of succinate to 
fumarate are directly transferred to CoQ [70]. The reduc-
tion activity of Complex II has been shown to be associated 
with human cancer in renal carcinoma [71] and breast can-

cer [72], where Complex II activity is lower compared to 
the corresponding normal tissues.  

Complex III - Cytochrome bc1 complex, also called Cy-
tochrome c reductase. Complex III is a symmetrical dimer, 
and each subunit is composed of three catalytic cores (MT-
CYB, CYC1 and UQCRFS1) and seven supernumerary subu-
nits [63]. This complex receives electrons from CoQ and 
passes them to cytochrome c; then, it carries four protons 
towards the IMS [73]. A higher than physiological activity 
of Complex III has been detected in breast cancer [72, 74]. 

Cytochrome c. Cytochrome c is a hydrophilic heme pro-
tein located at the outer surface of the IMM. It transfers 
electrons between Complexes III and IV [75]. 

Complex IV - Cytochrome c oxidase. Complex IV is 
composed of 13 or 14 subunits, and it is the only OXPHOS 
complex containing tissue-specific and developmentally 
regulated isoforms [63]. This complex transfers four elec-
trons (provided by four molecules of cytochrome c) directly 
to O2 (provided by the blood), reducing it to two molecules 
of H2O, which consumes four protons (taken from the mi-
tochondrial matrix) [76]. A reduced activity of Complex IV 
has been observed in cancer. In renal carcinomas, Complex 
IV expression was found to be 5-fold lower compared with 
healthy kidney tissues [71]. 

Complex V - ATP synthase. Complex V is composed of 
two distinct domains. The F1 domain is extrinsic to the 
IMM and is found in the matrix, while the Fo domain is 
intrinsic to the IMM. F1 is composed of nine subunits, 
while Fo has two subunits [63]. ATP synthase is the com-
plex where ATP is produced from the substrates ADP + 
H2PO4

- + H+ in a reaction at the end of the OXPHOS process. 
While electrons traveling across the ETC are finally trans-
ferred to O2 at Complex IV, most of the protons that were 
transferred from to mitochondrial matrix to the IMS return 
through the ATP synthase complex (a channel protein), 
nullifying the electro-chemical gradient. The energy re-
leased by the return of the protons according to their elec-
trochemical potential is used in the form of mechanical 
energy to allow the functioning of ATP synthase [77]. 

Recent data have suggested that ETC complexes are 
organized in supermolecular structures called ‘supercom-
plexes’ [78]. These structures appear to be organized in 
different ways and to adopt stoichiometry [79]. For exam-
ple, Complex I is frequently bound with a dimer of Complex 
III and with Complex IV [80]. This type of supercomplex is 
called ‘respirasome’ because it contains all the complexes 
responsible for the transfer of electrons from NADH down 
to O2. It has also been shown that Complex I is always as-
sociated with supercomplexes, while Complexes III and IV 
also exist as free oligomeric enzymes [80]. This suggests 
that the assembly of the complexes in a single structure is 
necessary for the stabilization and the correct functioning 
of Complex I in the respiratory chain [81]. Indeed, several 
studies have shown that loss of Complexes III and IV also 
causes the loss of Complex I [82, 83].  

ETC activity is associated with cancer in several ways. A 
growing amount of experimental evidence indicates that 
OXPHOS affects the production of ATP more significantly in 
cancer cells than in normal cells [84, 85]. In particular, 
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OXPHOS is used for a massive production of ATP by inva-
sive and metastatic cells, as well as by circulating cancer 
cells [86]. Further evidence shows that cancer stem cells 
(CSCs) utilize OXPHOS as a preferred form of energy me-
tabolism, and in general they display higher rates of oxygen 
consumption, ROS production and an overall increase in 
mitochondrial functions compared to non-stem cancer 
cells [87]. Moreover, mtROS promote V-Ki-ras2 Kirsten rat 
sarcoma viral oncogene homolog (KRAS)-induced anchor-
age-independent growth [88].  

As demonstrated by Porporato et al. [89], an ETC over-
load can increase the migration, invasion, clonogenicity 
and metastatic potential of cancer cells through a mito-
chondrial superoxide-dependent mechanism that activates 
the transforming growth factor β (TGFβ) pathway at the 
level of src kinase. Despite mitochondrial respiration can 
be perceived as an intriguing target for cancer treatment, it 
has been amply demonstrated that tumors are metaboli-
cally heterogeneous and influenced by different substrates 
and factors from the tumor environment [90]. Not only 
does metabolism differ among the various cancer types, 
but it also differs between subpopulations of cancer cells 
within the same tumor [91, 92]. Cellular subpopulations 
with different metabolic phenotypes (elevated OXPHOS or 
dysfunctional glycolysis) have been identified in melanoma 
[93], lymphomas [94], pancreatic [95] and breast [96] tu-
mors. 
 
The mitochondrial matrix: the fulcrum of metabolism 
The mitochondrial matrix is the inner mitochondrial space 
delimited by the IMM. It mostly hosts mtDNA, ribosomes, 
enzymes, small organic molecules, nucleotide cofactors 
and inorganic ions [97]. The mitochondrial matrix is a vis-
cous space due to its high protein content with respect to 
the IMS, and it has a higher pH than the IMS (7.8 in the 
matrix; 7.0-7.4 in the space) [98]. It is the site of numerous 
enzymatic reactions, including those of the TCA cycle, ana-
plerotic and cataplerotic reactions, the urea cycle (at least 
in part), transamination reactions and part of ETC reactions 
(Complex II).  
 
The TCA cycle 
The TCA cycle (also known as Kreb’s cycle or citric acid cy-
cle, Figure 1C) is the most important process that takes 
place in the mitochondrial matrix. It is composed of a se-
ries of chemical reactions capable of processing two-
carbon units from carbohydrates, amino acids and fatty 
acids in acetyl-CoA to generate GTP and the reducing 
equivalents (NADH and FADH2) that fuel the mitochondrial 
ETC to generate ATP [97]. Acetyl-CoA is oxidized in a cyclic 
metabolic pathway to CO2, with a net production of one 
CoA-SH, two CO2, three NADH, one FADH2, one GTP/ATP 
and three H+ for each molecule of acetyl-CoA consumed.  

The first reaction of the cycle is the condensation of 
acetyl-CoA with oxaloacetate by citrate synthase (CS) to 
form citrate. Citrate is then converted to its isomer, iso-
citrate, by mitochondrial aconitase (ACO2) and subse-
quently decarboxylated to α-ketoglutarate (α-KG) by mito-
chondrial IDH. In this reaction, a CO2 molecule is released 

and a NAD+ molecule is reduced to NADH + H+. A second 
decarboxylation occurs when α-KG is converted to succinyl-
CoA by α-KG dehydrogenase, which also produces NADH + 
H+. The next reactions serves to regenerate oxaloacetate 
through (1) oxidation of succinyl-CoA in succinate by suc-
cinate-CoA synthetase, which produces GTP; (2) oxidation 
of succinate to fumarate by SDH with the production of a 
molecule of FADH2; (3) hydration of fumarate to malate by 
fumarate hydratase (FH); and, finally, (4) oxidation of mal-
ate by malate dehydrogenase to regenerate oxaloacetate, 
which produces NADH + H+ [97].  

The TCA cycle is a focal point of cellular metabolism 
with a central importance for both energy production and 
biosynthesis. Therefore, to retain the homeostasis of cellu-
lar metabolism, a balance between intermediate produc-
tion and consumption must be maintained [99]. Anaplerot-
ic reactions are a series of enzymatic reactions that pro-
duce metabolic intermediates aimed to replenish the TCA 
cycle, whereas cataplerotic reactions are biosynthetic reac-
tions that use TCA cycle intermediates as substrates for 
macromolecule synthesis [99] (Figure 1C). The TCA cycle, in 
fact, not only produces NADH and FADH2 useful for ATP 
synthesis at the ETC, but it also provides molecules useful 
for other metabolic pathways, such as gluconeogenesis 
and the synthesis of fatty acids and nucleotides [35].  

The most important anaplerotic reaction produces ox-
aloacetate directly in mitochondria starting from pyruvate, 
a reaction which is catalyzed by pyruvate carboxylase (PC) 
[100]. This reaction is allosterically regulated by acetyl-CoA 
and aspartate, which signal a deficiency in oxaloacetate 
[101]. Other anaplerotic reactions produce different inter-
mediates of the TCA cycle, including α-KG produced from 
glutamate by glutamate-dehydrogenase, succinyl-CoA pro-
duced by FAO, and oxaloacetate produced from aspartate 
by aspartate transaminase [100].  

When the production of intermediates of the TCA cycle 
is sufficient for its correct functioning, cataplerotic reac-
tions intervene to balance metabolite concentrations [100]. 
Hence, citrate can be exported to the cytosol and convert-
ed to acetyl-CoA by ATP citrate lyase, initiating fatty acids 
biosynthesis. In a reversible reaction, α-KG with aspartate 
produce glutamate and oxaloacetate by the activity of as-
partate transaminase, participating in purine synthesis [99]. 
Oxaloacetate can also be converted to phosphoenolpy-
ruvate (PEP) by PEP carboxykinase (PEPCK), contributing to 
gluconeogenesis [99]. 

 
Alterations of the TCA cycle in cancer 
Mutations in genes encoding TCA cycle enzymes and the 
abnormal accumulation of TCA cycle intermediates can 
promote carcinogenesis [102, 103]. The main enzymes that 
were found to be altered in cancer are SDH, FH, IDH, CS 
and ACO2, which by itself highlights an extensive area open 
to investigation. Mitochondrial abnormalities induce met-
abolic reprogramming with cells increasingly relying on 
glycolysis, which further supports the tumorigenic process 
[104]. 

The first studies on the implication of SDH mutations in 
cancer showed that patients with hereditary paragangli-
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omas and pheochromocytomas, two rare neuroendocrine 
neoplasms, displayed inactivating mutations of subunits of 
SDH enzymes [105, 106]. As a consequence, succinate ac-
cumulates in these tumors.  

Inactivating mutations of FH predispose to hereditary 
leiomyomatosis, renal cancer and multiple cutaneous and 
uterine leiomyomas [107-109]. Indeed, upon accumulation, 
fumarate acts as an oncometabolite that inhibits α-KG-
dependent dioxygenases involved in DNA and histone de-
methylation [110, 111]. It also promotes the epithelial to 
mesenchymal transition (EMT) by inhibiting 
ten eleven translocation (TET)-dependent DNA demethyla-
tion of a regulatory region of antimetastatic miR-200, lead-
ing to a decreased expression of miR-200 and E-cadherin, 
and an increased expression of Twist1 and vimentin, 
among other target genes [112]. Defects of FH further 
stimulate the nuclear translocation and activity of Nrf2, 
and the consequent transcription of antioxidant genes 
through antioxidant response elements (AREs). These 
genes comprise mitochondrial residents thioredoxin 2, 
thioredoxin reductase 2, peroxiredoxins and superoxide 
dismutase 2 (SOD2), as well as transporters and enzymes 
involved in glutathione (GSH) biosynthesis and redox recy-
cling (see reference [113] for a recent review). Nrf2 activity 
is mitigated by Kelch-like ECH-associated protein 1 (KEAP1) 
that interacts with Nrf2 in the cytosol, targeting it for 
polyubiquitylation followed by proteasomal degradation 
[114], and by transcription modulators that heterodimerize 
with Nrf2 in the cell nucleus [115]. Conversely to its induc-
tion of antioxidant systems, fumarate can directly react 
with GSH to produce succinated GSH that mimics the GSH 
reductase substrate [116]. This causes NADPH consump-
tion without antioxidant effects, thus increasing oxidative 
stress. 

IDH presents three isoforms, with NADP+-dependent 
IDH1 found in the cytoplasm and in peroxisomes, and 
NADP+-dependent IDH2 and NAD+-dependent IDH3 found 
in the mitochondrial matrix. IDH1 and IDH2 have been re-
ported to be mutated in 70% of grade II and III gliomas and 
glioblastomas [117, 118], as well as in angio-immunoblastic 
T-cell lymphomas [119], acute myeloid leukemia (AML) 
[120, 121] and other common cancer types, such as thyroid, 
colorectal and prostate cancers [122, 123]. IDH1 and IDH2 
mutations decrease NADPH and GSH levels, leading to en-
hanced PI3K-AKT-mTOR signaling pathway activity and 
cancer cell migration [124, 125]. Several studies have 
shown that carcinogenesis and cancer progression are 
modulated by IDH mutations, and it has been reported that 
these mutations increase ROS levels in cancer cells [126, 
127]. Both increased ROS levels and PI3-AKT pathway acti-
vation lead to an increased signaling activity in favor of 
cancer formation and progression [128, 129]. Interestingly, 
mutated IDHs most often gain the function of producing 
2HG, the R enantiomer of α-KG [130]. 2HG is an on-
cometabolite that, when accumulated at a very high con-
centration, inhibits α-KG-dependent dioxygenases [131], 
such as histone lysine demethylases, leading to a hyper-
methylated state of DNA and histones [132]. It also acti-

vates HIF-1 by inhibiting HIF-1α degradation through 
prolylhydroxylases [133]. 

CS is an important enzyme often considered to be the 
rate-limiting enzyme of the TCA cycle [134]. Its loss causes 
a metabolic shift from an oxidative to a glycolytic metabo-
lism and induces EMT, increasing tumor malignancy [135]. 
However, a high expression of CS has been observed in 
pancreatic, renal and ovarian cancers [136-138].  

A decreased expression of ACO2 has been associated 
with gastric [139] and prostate [140] cancers. Interestingly, 
FH-deficient cells also have impaired aconitase activity 
because fumarate accumulating in these cells exerts a 
dose-dependent inhibition of ACO2 activity via succination 
of critical cysteine residues [141]. 

When inactivating mutations occur in TCA cycle en-
zymes, metabolic intermediates different than the direct 
substrates of mutated enzymes may accumulate, and they 
can act as oncometabolites [102, 103]. For example, citrate 
is an oncometabolite that, when accumulating, disrupts 
the equilibrium of the TCA cycle and promotes cancer de-
velopment [142]. Indeed, high levels of citrate reduce the 
activity of pyruvate dehydrogenase, with consequent py-
ruvate accumulation [142]. In this situation, cells convert 
pyruvate to lactate with NAD+ regeneration, thus causing a 
metabolic shift towards glycolysis, a well-known phenom-
enon in cancer progression [143]. Furthermore, citrate is a 
substrate of acetyl-CoA carboxylase, by which acetyl-CoA 
and malonyl-CoA are produced as precursors for lipid and 
steroid synthesis [144]. On the one hand, lipids are the 
major structural components of biological membranes and 
play important functions in cell signaling promoting cell 
proliferation and transformation [145, 146]. On the other 
hand, acetyl-CoA derived from citrate is a mandatory sub-
strate for histone acetylation, modulating chromatin struc-
ture, and, thus, gene transcription [147].  

Histone acetylation consists of a dynamic and reversi-
ble acetyl group transfer process controlled by histone 
acetyltransferases (HATs) and histone deacetylases 
(HDACs) [147]. Acetylation of specific histones allows 
chromatin relaxation, which facilitates the transcription of 
important genes that regulate cell proliferation, cell cycle 
transition, differentiation and apoptosis, and have been 
linked to tumor development, influencing the cellular 
growth program of cancer cells [148]. The use of HDAC 
inhibitors has proven to be an effective therapy capable of 
reversing the transformed cellular phenotype, and several 
HDAC inhibitors have been approved by the FDA for cancer 
therapy [149, 150]. Of note, in addition to histones, onco-
proteins, tumor suppressors and enzymes can be acetylat-
ed as well, which controls their activities. It is the case of 
HIFs, Myc, KRAS, p53, retinoblastoma protein pRb and 
PTEN, and of enzymes involved in glucose, fatty acid and 
glutamine metabolism [147].  

 
Alterations of mtDNA in cancer 
Both mtDNA mutations and deletions have been associat-
ed with cancer (Figure 1D). 

Single nucleotide polymorphisms in mtDNA (mtSNPs) 
were tested for their potential correlation with an in-



D. Grasso et al. (2020)  Mitochondria in cancer 

 
 

OPEN ACCESS | www.cell-stress.com 121 Cell Stress | JUNE 2020 | Vol. 4 No. 6 

creased risk of developing cancer or with a more aggres-
sive progression. While on the one hand a study correlated 
a decrease in mtDNA copy number with colorectal cancer 
malignancy [151], on the other hand a similar study ex-
cluded any correlation between mtDNA copy number and 
mtSNPs on cancer progression in colorectal cancer patients 
[152]. In this study, six mtSNPs (MitoT479C, MitoT491C, 
MitoT10035C, MitoA13781G, 10398 A/G and 16189 T/C) 
were analyzed in 536 patients and mtDNA copy number in 
274 patients, comparing tumor and healthy tissues. A po-
tential correlation between mtSNPs and the risk of pros-
tate cancer has also been studied. Following the compari-
son of 350 mtSNPs between 4,086 cancer patients and 
3,698 healthy subjects in a multiethnic cohort, the authors 
reported no association between mtSNPs and the risk of 
prostate cancer [153]. 

Ethnicities are characterized by different haplogroups, 
which can be defined as clusters of mtDNA sequence varia-
tions that are statistically inherited from the ancestral ma-
ternal mitochondrial genome [154]. For example, Europe-
ans present nine major haplogroups (H, U, J, T, K, W, I, V 
and X) [155]. Differences in the mtDNA sequence can result 
in alterations of mitochondrial proteins, mostly compo-
nents of the ETC, that influence their activity, ETC efficien-
cy and ROS production. In oncology, haplogroups have 
been extensively studied, in particular regarding their pos-
sible correlation with the risk of developing specific cancer 
types. Analyses suggested that some haplogroups are in-
deed correlated with an increased risk for specific cancer 
types, whereas they simultaneously reduce the risk of oth-
er types of cancer [156]. For example, haplogroup K would 
statistically be protective against thyroid cancer in South-
eastern Europeans, but would increase the risk of breast 
cancer in European Americans [157]. Another interesting 
study in a cohort of over 7,700 European individuals found 
no correlation between haplogroups and breast cancer risk 
factors, neither in mothers nor in their children [158]. A 
major difficulty to link haplogroups to cancer risks is due to 
the way results are analyzed. As a typical example, one 
study reported that haplogroup N is correlated with an 
increased risk of breast cancer [159], whereas another 
similar study reported that haplogroup U and haplogroup K 
are correlated with a decreased and an increased risk of 
breast cancer, respectively [160]. However, according to 
phylotree.org, haplogroup N contains haplogroup U, which 
in turn includes haplogroup K, making it complex to define 
what is the actual weight of these alterations on the risk of 
developing cancer, and making of the comparison of dif-
ferent studies a difficult task. From a molecular point of 
view, it is still unclear how a same set of mtDNA variations 
could simultaneously be pro- and anticarcinogenic. 

Large mtDNA deletions usually result in severe altera-
tions of the ETC and, consequently, in OXPHOS defficiency. 
Three main studies have analyzed the frequencies of these 
events in cancers. In the first study, a 4,977 bp mtDNA de-
letion has been analyzed in more than 1,600 samples of 
tumor and adjacent healthy tissues [161]. Results suggest-
ed that this particular deletion could be a cancer biomarker, 
especially in breast cancer. The second and third studies 

focused on the frequency of a 3,400 bp mtDNA deletion in 
prostate cancer [162, 163]. They reported that this dele-
tion is highly frequent in prostate cancer and in the healthy 
tissue directly adjacent to the lesion, while it was absent in 
normal prostate epithelium. The 3,400 bp large mtDNA 
deletion was therefore proposed as a biomarker of pros-
tate cancer. 

Altogether, to the exception of large mtDNA deletions, 
the amount of contradictory studies regarding mtDNA var-
iations and their correlations with cancers makes it impos-
sible to conclude anything clinically relevant today. In addi-
tion to contradictions, the biological consequences of 
these alterations are poorly characterized at both molecu-
lar and functional levels. Consequently, targets cannot be 
easily identified and pharmacological approaches cannot 
be developed. The complete picture is even worse if one 
considers that the amount of studies with statistical or 
methodological fallacies, in particular regarding breast 
cancer, is so high that Salas A et al. wrote an entire article 
on that topic [164]. 

 
MITOCHONDRIAL REACTIVE OXYGEN SPECIES 
Mitochondria as ROS producers 
The term ‘ROS’ refers to a class of highly reactive mole-
cules containing oxygen and having a very short average 
half-life. ROS collectively design superoxide (O2

°-), the hy-
droxyl radical (OH) and hydrogen peroxide (H2O2). Mito-
chondria are considered to be the most important produc-
ers of superoxide in cells [34].  

Mitochondrial superoxide, the proximal ROS, is mainly 
produced at the ETC from the leakage of electrons at the 
ubiquinone-binding sites of Complex I (IQ site) and Com-
plex III (IIIQo site) during electron transport [9] (Figure 1B). 
Superoxide production primarily occurs through the dona-
tion of a single electron from totally reduced or partially 
reduced electron carriers, such as semiquinone, to O2 [34]. 
The kinetics of O2

°- production depend on the carrier en-
zyme average time in a reduced form and on its concentra-
tion [34], highlighting that the concentration of enzymes 
responsible for O2

°- production tunes the functions that 
ROS play within cells. Another important variable is the O2 
concentration in cells. Accordingly, altering experimentally 
the local O2 concentration can increase or decrease the 
rate of mitochondrial O2 consumption, leading to altera-
tions of O2

°- production [34]. Being highly reactive, O2
°- is 

immediately dismutated to H2O2 either spontaneously or 
under the catalysis of mitochondrial SODs. SOD1 is present 
in the IMS and in the cytosol where it inactivates superox-
ide produced at ETC Complex III, whereas SOD2 is localized 
in the mitochondrial matrix where it inactivates superoxide 
produced at Complexes I and III [34] (Figure 1B). 

In addition to ubiquinone-binding sites in ETC Com-
plexes I and III, other ROS-producing sites have been iden-
tified in mitochondria: flavin in Complex I (IF site), the elec-
tron transferring flavoprotein Q oxidoreductase (ETFQOR) 
in FAO, glycerol 3-phosphate dehydrogenase, pyruvate 
dehydrogenase and 2-oxoglutarate dehydrogenase [165]. 
Although the mechanisms governing the functioning of 
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each of those sites are not yet fully understood, studies 
have shown that all of them produce ROS in the mitochon-
drial matrix, while only the IIIQo site and glycerol 3-
phosphate dehydrogenase can release O2

°- in the IMS [165]. 
In these two cases, once produced in the IMS, H2O2 can 
cross the OMM and exercise signaling activities in the cyto-
sol [166] (see Section ‘Antioxidant defenses in mitochon-
dria‘) for more details). 

Strong evidence exists supporting the signaling role of 
mtROS as a mode of communication between mitochon-
dria and cellular processes involved in the maintenance of 
homeostasis and adaptation to stress conditions [167]. 
mtROS play different signalization roles in cells by promot-
ing cell survival or by enhancing cell death, and for mito-
chondrial recycling. First, mitochondrial H2O2 regulates 
posttranscriptional protein modification through oxidation 
of the thiol groups of cysteines, thus changing the activity 
of target proteins and, therefore, the final response [168]. 
For example, the reaction of H2O2 with phosphatases, such 
as mitogen-activated protein kinase phosphatase (MKP), 
inhibits their dephosphorylative activity, leading, e.g., to c-
Jun N-terminal kinase (JNK) activation [169]. Second, an 
increased release of mtROS is an adaptive response of cells 
to hypoxia that activates HIFs [170]. ROS indeed oxidize the 
iron moiety of HIF prolylhydoxylases (PHDs), thus inhibiting 
the activity of these enzymes that normally initiate the 
process of HIF-1α degradation by catalyzing the hydroxyla-
tion of this HIF subunit [171]. ROS further oxidize vitamin 
C, which is a necessary co-factor for PHD recycling though 
Fe3+ reduction. Notably, HIF-1 is known to upregulate the 
expression of glycolytic enzymes and transporters to main-
tain sufficient ATP levels in cells [172] and to enhance the 
production of vascular endothelial growth factor (VEGF) for 
the simulation of angiogenesis [173]. Third, mtROS act as a 
signal for triggering autophagy, which exerts either prosur-
vival or pro-apoptotic effects [168]. During starvation, 
mtROS oxidize and inactivate cysteine protease Atg4, 
which triggers the lipidation of Atg8, an essential step in 
the process of autophagy, thus promoting autophagy and 
facilitating the recycling of intracellular molecules [174]. 
Interestingly, autophagy can further contribute to ROS 
accumulation due to selective catalase degradation [175]. 
Fourth, mtROS generate signaling responses at nuclear 
gene expression level by forming a perinuclear clustering of 
mitochondria, leading to an accumulation of ROS in the 
nucleus with subsequent alterations of gene transcription 
[176].  
 
Antioxidant defenses in mitochondria 
In order to maintain the balance between ROS production 
and their harmful consequences, cells harbor specific de-
fense mechanisms. They protect cells from detrimental 
ROS effects, i.e., damage to lipids, proteins and nucleic 
acids, and induction of double strand DNA breaks [177]. 
Superoxide produced in mitochondria is reduced to H2O2 
by SOD1 (also known as cumin-zinc superoxide dismutase, 
CuZnSOD) in the IMS and in the cytosol, and by SOD2 (also 
known as manganese superoxide dismutase, MnSOD) in 
the mitochondrial matrix [34] (Figure 1B). Of note, SOD3 is 

also a member of the CuZnSOD family, but is extracellular 
[178]. After the conversion of superoxide to H2O2 by SODs, 
the subsequent conversion of two H2O2 to O2 + two H2O is 
catalyzed by peroxidases: catalase, located in peroxisomes, 
the thioredoxin system, and GSH peroxidase. The thiore-
doxin system coupled to the peroxiredoxins catalyzes the 
reduction of H2O2 to H2O in the presence of NADPH, and 
consists of thioredoxin peroxidases, thioredoxin reductases 
and the substrates thioredoxin an peroxiredoxin [179] 
(Figure 2). Mitochondria have their own specific thioredox-
in reductase (ThxR2) for redox regulation and peroxiredox-
in for the reduction of peroxides [180]. Finally, in the cyto-
sol, GSH peroxidase catalyzes the conversion of H2O2 to 
H2O using GSH as a substrate, which is reduced to GSSG 
and then regenerated with the use of NADPH by GSH re-
ductase [180]. Thus, GSH synthesis (via glutaminolysis and 
the serine pathway) and NADPH production actively sup-
port H2O2 inactivation [181]. 

 
METABOLIC AND MITOCHONDRIAL CONTROL OF CELL 
DEATH 
There is a clear connection between metabolism and cell 
death mediated by various signal transduction pathways. 
In cancer cells, p53 coordinates a common central pathway 
[182]. p53 is the most important pro-apoptotic protein and 
is mutated/inactivated in ~50% of tumors [183]. However, 
while p53 has a central role in tumor suppression, it is also 
involved in the modulation of cancer metabolism. Two 
well-known targets of p53 that regulate cell metabolism 
are TP53-induced glycolysis and apoptosis regulator (TI-
GAR) [184] and synthesis of cytochrome oxidase 2 (SCO2), 
a cytochrome oxidase 2 (COX2) assembly protein [185]. 
While TIGAR decreases the glycolytic flux by dephosphory-
lating fructose-2,6-bisphosphate [184], SCO2 promotes ETC 
assembly and OXPHOS [186]. p53 is thus able to repress 
glycolysis and to promote OXPHOS and FAO [182].  

Nutrient availability is commonly altered during tumor 
growth [187]. Abnormal tumor perfusion and, consequent-
ly, nutrient restriction, impact cell death. For instance, a 
common microenvironmental alteration in tumors is hy-
poxia, which can act as a signal for p53 activation and cell 
death induction [188]. In addition, the metabolic status of 
the cell acts as a signal for p53 induction: when cellular ATP 
levels decline, the resulting decrease in the ATP/AMP ratio 
activates AMPK, and AMPK phosphorylates/activates p53 
on serine 15, thus initiating an AMPK-dependent cell-cycle 
arrest [189, 190].  

AMPK acts in most cases as a tumor suppressor, not 
only by inducing a cell cycle arrest, but also by inhibiting 
the synthesis of most cellular macromolecules. AMPK acti-
vation indeed inhibits mammalian target of rapamycin 
complex 1 (mTORC1) by phosphorylating its upstream reg-
ulator tuberous sclerosis complex 2 (TSC2), thus inhibiting 
cell growth [191]. ATP levels and AMPK thereby provide an 
important connection between p53-mediated regulation of 
energy metabolism and programmed cell death [191]. Of 
note, adenosine signaling can further induce apoptosis by 
stimulating adenosine receptor A2B, which activates a 
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caspase- and p53-upregulated modulator of apoptosis 
(PUMA)-dependent apoptotic response involving a down-
regulation of Bcl-2 expression [182]. 

Mitochondria are another important crossroad be-
tween metabolism and cell death. They control cell death 
through apoptosis (most notably by regulating the release 
of cytochrome c through VDAC and the mitochondrial tran-
sition pore), and some forms of necrosis [14, 192]. Mito-
chondria control the intrinsic apoptotic pathway through 
OMM permeability, which is tightly regulated by Bcl-2 pro-
teins [193, 194]. A release of mitochondrial Ca2+ is critically 
involved in the initiation and effectuation of apoptotic cell 
death. In this context, AKT activation confers resistance to 
apoptosis by stimulating Bcl-2 protein expression [195], 
and the binding of HK2 to VDAC on the mitochondrial sur-
face further represses apoptosis [196]. In addition to cir-
cumstances where mitochondrial integrity is altered, cell 
death is directly related to the metabolic activity of mito-
chondria. For example, inhibiting mitochondrial OXPHOS in 
renal cell carcinoma cells resistant to glucose starvation 
was reported to induce cell death under glucose depriva-
tion [197].  

Different from classical types of cell death, autophagy 
is considered to exert a dual function in cancer, as it is both 
a tumor suppressor and a protector of cancer cell survival 
[198]. Autophagy is indirectly modulated by metabolic en-
zymes. For example, lactate dehydrogenase-1 (LDH-1), 
catalyzing the conversion of lactate and NAD+ to pyruvate, 
NADH and H+, recently emerged as a modulator of autoph-
agy [199]. LDH-1 indeed interacts with proton pump vacuo-
lar (V)-ATPase at the surface of lysosomes, which it fuels 
with protons. Another example concerns glycolytic enzyme 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

[200]. During glucose deprivation, GAPDH is phosphory-
lated by AMPK and is translocated to the cell nucleus 
where it interacts with the NAD+-dependent deacetylase 
sirtuin 1 (Sirt1) [201]. Both AMPK-dependent phosphoryla-
tion and the nuclear translocation of GAPDH mediate rapid 
Sirt1 activation in the nucleus, leading to the transcription-
al induction of the autophagic program [201].  

Other sirtuins also exert their activities at the interface 
between cell metabolism and death. Sirt2 has dual effects 
on mitophagy. In normal metabolic conditions, it can trans-
locate from the cytosol to mitochondria, where it forms a 
complex with heat shock protein 70 (Hsp70), preventing 
Hsp70 acetylation and, thereby, inhibiting mitophagy [202]. 
However, Sirt2 also exists as a heterodimer with forkhead 
O family protein 1 (FoxO1) in the cytoplasm of cancer cells: 
upon serum starvation or oxidative stress, the complex is 
disrupted, resulting in FoxO1 acetylation and FoxO1 activa-
tion of autophagy-related 7 (Atg7) through protein-protein 
interaction, which triggers autophagic cell death [203]. 
Comparatively, Sirt3 is a mitochondrial resident. Under 
hypoxia, it promotes mitophagy and prevents mtROS-
induced apoptosis by facilitating the binding of Parkin to 
VDAC1 [204]. The exact mechanism underlying this effect is 
not well characterized. Sirt4-7 could also regulate mitoph-
agy, but molecular details are lacking. Sirt4 would promote 
mitochondrial fusion, thereby limiting mitophagy [205], 
while Sirt5 would indirectly prevent mitophagy by limiting 
ammonia production [206]. The expression of both Sirt6 
and Sirt7 was shown to be important to preserve function-
al autophagy in cancer cells [207, 208].  

 
 
 

FIGURE 2: The arsenal of mitochondrial antioxidant defenses comprises the thioredoxin and peroxiredoxin pathways. The image depicts 
redox reactions catalyzed by the thioredoxin and peroxiredoxin systems, comprising thioredoxin reductases (TrxR, of which ThxR2 is ex-
pressed in mitochondria), thioredoxins (Trx), peroxiredoxins (Prx) and NADPH. The electron source is NADPH, which mostly originates from 
the pentose phosphate pathway (PPP). Oxidized thioredoxins (Trx-S2) are reduced by NADPH and selenoenzymes TrxRs. Electrons are se-
quentially transferred from NADPH to FAD, to the N-terminal redox active disulfide in one subunit of TrxR, and, finally, to the C-terminal 
active site of another subunit. Reduced thioredoxins (Trx-SH2) catalyze disulfide bond reduction in many proteins, including Prxs, thus ensur-
ing oxidative damage repair in proteins as well as H2O2 detoxification.  
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MITOCHONDRIAL DYNAMICS 
Mitochondria are dynamic organelles that move through 
the cell, divide, fuse and undergo a regulated turnover 
through mitophagy [209, 210] (Figure 3). They can also be 
exchanged between cells. These mitochondrial dynamics 
reflect metabolic alterations. 
 
Mitochondrial fission and fusion 
Mitochondrial fission is the process during which mito-
chondria divide into two or more independent structures, 
allowing the creation of new mitochondria. Conversely, 
mitochondrial fusion characterizes the merging of several 
neighboring mitochondria, which mixes the content of 
partially damaged mitochondria as a form of complemen-
tation [211]. Both processes require highly regulated 
mechanisms to allow the formation of new, functional or-
ganelles and to avoid a loss of intramitochondrial content.  

During fission, mitochondria are divided into smaller 
pieces, an essential process to increase their number in 
dividing cells. Fission also promotes mitochondrial removal 
through mitophagy, facilitates the movement of mito-
chondria through the cytoskeletal network and regulates 
apoptosis and Ca2+ homeostasis [211-213]. The process is 
initiated by actin and the ER that first mark the site of divi-
sion on the OMM [214, 215] (Figure 3A). Once the contact 
between ER and mitochondria is established through VDAC 
at the mitochondrial surface and the inositol 1,4,5-
trisphosphate receptor InsP3R at the ER surface, the ER 
releases Ca2+ into the mitochondrion to trigger actin 
polymerization at the constriction site [216]. This provides 
a site for the recruitment and assembly of dynamin-related 
protein 1 (DRP1), a cytosolic GTPase that translocates to 
the OMM upon activation [217]. DRP1 then recruits mem-
brane-anchored receptor protein Fis1 [218], tail-anchored 
mitochondrial fission factor (Mff) and anchored mitochon-
drial dynamic proteins (MiDs) [219]. Together, these pro-
teins spirally surround the mitochondrion, constricting and 
breaking it in two pieces. 

High DRP1 expression has been associated with differ-
ent types of cancers, including glioblastomas, thyroid, lung 
and breast tumors [220-223], as well as with an increased 
metastatic potential of cancer cells [224, 225]. Interestingly, 
silencing DRP1 has been shown to reduce the metastatic 
capacity of breast cancer cells due to inhibition of lamel-
lipodia formation, an important mechanism that drives cell 
migration [224]. DRP1 was also found to be overexpressed 
in squamous cell carcinomas (SCCs), and loss of DRP1 in 
this tumor type causes mitochondrial elongation with sub-
sequent inhibition of cell proliferation and a G2 arrest 
[226]. Mechanistically, DRP1 expression was found to posi-
tively correlate with the expression of cell cycle genes that 
regulate mitosis in epithelial ovarian carcinoma (EOC) [227]. 
Elevated DRP1 expression promotes mitosis, thus support-
ing cell proliferation in the development of primary and 
relapsed EOC. DRP1 is also linked to cancer cell metabolism, 
since depletion of DRP1 in HeLa cells has been shown to 
decrease the activity of ETC complexes, mitochondrial res-
piration, mitochondrial membrane conductance and ATP 

synthesis [228, 229]. An intriguing link between mitochon-
drial fission and cancer comes from the functional connec-
tion between DRP1 and cellular stress, where DRP1 has 
been proposed as a transcriptional target of p53 [230] and 
where oncogenic RAS/MAPK signaling upregulates DRP1 
mRNA levels [223]. The multiple ways by which DRP1 is 
involved in cancer suggest that this protein plays important 
roles that could be independent of its principal role of 
‘separating’ mitochondria. 

Numerous studies have addressed the metabolism of 
CSCs (see references [231, 232] for reviews). While their 
metabolic activities vary across tumor types, mitochondrial 
fission has been singled out to be important for stemness 
maintenance [233]. Accordingly, silencing DRP1 or its 
pharmacological inhibition in brain tumor-initiating cells 
reduced their tumorigenicity and triggered apoptosis [220]. 
Similarly, the pharmacological inhibition of DRP1 by mdivi-
1 not only caused a defect in tumor sphere formation by 
breast CSCs, but also inhibited their migration and survival 
[234]. In another recent example, Civenni et al. [235] ob-
served that depleting Mff in prostate CSCs rapidly exhaust-
ed their tumorigenic potential, which was associated with 
the induction of CSC senescence. Interestingly, the high 
rate of mitochondrial fission in CSCs has been proposed to 
allow mother stem cells to keep an intact mitochondrial 
content, whereas daughter cells committed to differentiate 
would inherit a pool of intact and deficient mitochondria 
[236]. This asymmetric segregation would participate in the 
perpetuation of cancer stemness despite frequent cell divi-
sions [233]. 

During fusion, for example following mitochondrial rep-
lication (also known as mitochondrial biogenesis, Figure 
3B), the OMM and the IMM merge, and the contents of 
the IMS and mitochondrial matrix are mixed (Figure 3C). 
Molecularly, fusion is controlled by three dynamin family 
GTPases, mitofusin (Mfn) 1 and 2 in the OMM and optic 
atrophy protein 1 (Opa1) in the IMM [237, 238]. Opa1 dis-
plays two long isoforms (L-Opa1) and three short isoforms 
(S-Opa1) [239]. The fusion of the OMMs is for the most 
part synchronized with the fusion of the IMMs. Fusion pro-
teins are regulated through ubiquitination of OMM pro-
teins and proteolytic cleavage of IMM proteins [240]. 
When two mitochondria are in close proximity, Mfn1 and 
Mfn2 start to dimerize with homo- and heterotypic interac-
tions, which creates antiparallel connections between mi-
tochondria, allowing the fusion of the OMM through mix-
ing the lipid bilayers [241]. Further interaction of the two 
fusing mitochondria with the ER is believed to facilitate the 
process, as Mfn2 has also been found in the ER where it 
promotes the interaction between mitochondria and ER 
and allows the exchange of Ca2+ for signaling [242]. Fusion 
of IMMs is then ensured by Opa1 together with Mnf1 [243].  

In cancer cells, mitochondrial fusion appears to have 
the opposite effect than fission in terms of tumor growth, 
metastatic capacity and metabolic activities. Indeed, lower 
levels of Mfn1/2 have been found in mouse medulloblas-
toma cancer cells compared to non-transformed cells [244], 
and inhibition of DRP1 by mitochondrial division inhibitor-1 
(Mdivi-1) stimulated fusion and initiated mtDNA replication 
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[245]. Moreover, Mfn2 overexpression reduced lung can-
cer growth [222], as well as the migration and invasion of 
breast cancer cell lines [224]. Hyperfused mitochondria are 
found during the G1/S phase of the cell cycle that is associ-
ated with a greater oxidative capacity and higher ATP pro-

duction [245]. Interestingly, Mfn2 gene therapy, which 
involves the insertion of genetic material (DNA) into the 
cells to restore Mfn2 gene expression, has been reported 
to reduce the proliferation of A549 human lung cancer 
cells by promoting apoptosis [222]. 

FIGURE 3: A high mitochondrial turnover rate is characteristic of many cancer cells. Mitochondrial quality control involves fission and mitophagy to 
eliminate defective mitochondria, whereas repopulation and functionalization depends on mitochondrial biogenesis and fusion. (A) During fission, 
the mitochondrion is marked and anchored by the endoplasmic reticulum (ER), notably through the binding of inositol 1,4,5-trisphosphate receptor 
(InsP3R) at the ER surface to voltage-dependent anion channel (VDAC) at the mitochondrial surface. This leads to the recruitment of dynamin-related 
protein 1 (DRP1), mitochondrial receptor protein 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamic proteins (MIDs), allowing 
oligomerization and constriction to yield two daughter mitochondria. (B) During mitochondrial biogenesis, a mitochondrion self-replicates. (C) During 
fusion, mitofusins Mfn1 and Mfn2 are located on the outer mitochondrial membrane, allowing the exchange of calcium for signaling and creating 
antiparallel connections between two fusing mitochondria. Optic atrophy 1 (Opa1) together with Mnf1 participate in the fusion of the inner mito-
chondrial membrane. Fusion allows the formation of mitochondrial networks. (D) The mitophagic process consists in the engulfment of damaged 
mitochondria in a vacuole, called ‘mitophagic vacuole’. The subsequent fusion of the mitophagosome with lysosomes, forming a mitophagolyso-
some, allows the degradation of mitochondria in macromolecules that are delivered to the cytosol. Mitophagy can be non-selective or selective, 
using canonical and non-canonical pathways. It prevents the accumulation of damaged mitochondria that could harm or even kill the cell if apoptosis 
and/or the production of reactive oxygen species would derail.  
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Fusion and fission also allow a subcellular specialization 
of mitochondria [246]. Mitochondria indeed distribute 
subcellularly depending on where their metabolic function 
is required (local demand of ATP, Ca2+ buffering and other 
functions). For example, at the axonal level in neurons, 
mitochondria appear fragmented because they move along 
the cytoskeleton (interacting with desmin, vimentin and 
tubulin), while at the dendritic level in the region of synap-
ses, they appear elongated because in this region the de-
mand/consumption of ATP is higher for pumping back the 
ions derived from synaptic vesicles [247]. Fission facilitates 
the distribution of mitochondria within the cell, and apop-
tosis through the release of cytochrome c [248]. Converse-
ly, fusion benefits the cell thanks to mitochondrial com-
plementation, which allows damaged mitochondria or mi-
tochondria with altered mtDNA to fuse with healthy mito-
chondria in order to compensate the deleterious effects of 
dysfunctional organelles [249].  

 
Mitophagy and mitochondrial transfer 
The quality control of mitochondrial dynamics also includes 
mitophagy, i.e., a degradation process that removes dys-
functional or damaged mitochondria (Figure 3D) [250]. This 
process is vital to guarantee the physiological functions of 
cells and tissues and to avoid the onset of diseases like 
cancer [251]. It also regulates the number of mitochondria 
in response to the metabolic needs of cells and during 
some stages of cell development, such as the differentia-
tion of erythrocytes [252].  

Mitochondrial removal most often uses the molecular 
machinery of macro-autophagy, a specific type of autopha-
gy characterized by the formation of mitophagosomes, i.e., 
double-membrane structures that form vesicles around 
mitochondria [253, 254]. It can occur either in a selective 
way or in a non-selective way where autophagosomes se-
quester mitochondria together with cytosolic components 
and other organelles [255].  

Selective mitophagy starts with the evaluation of 
healthy and damaged mitochondria by PTEN-induced ki-
nase 1 (PINK1) (Figure 4). PINK1 is recruited by mitochon-
dria as it contains a mitochondria-targeting sequence [252]. 
If the mitochondrion is healthy (polarized), PINK1 is trans-
ported from the cytosol towards the mitochondrial matrix 
by translocases of the OMM (TOM) and of the IMM (TIM) 
(Figure 4A). When crossing the IMM membrane, it is 
cleaved and released back to the cytosol by mitochondrial 
protease presenilin-associated rhomboid-like protein 
(PARL) and matrix processing peptidase (MPP) [252, 256]. If, 
on the contrary, the mitochondrion is dysfunctional, the 
IMM becomes depolarized, PINK 1 is not cleaved and can-
not be transported to the IMS. It accumulates in the OMM 
(Figure 4B). There, it can recruit and activate Parkin by 
phosphorylating OMM-resident ubiquitins [257, 258] and 
Parkin itself [259]. Parkin is a cytosolic E3 ubiquitin ligase 
[260] that, once activated, starts to ubiquitinate proteins in 
the OMM, including Mfn1, Mfn2, VDAC1, TOM20 and mi-
tochondrial Rho GTPase 1, initializing mitophagy [261-264]. 
In the cascade, autophagy receptors (such as optineurin) 
and autophagy initiators (such as unc-51 like autophagy 

activating kinase 1 [ULK1]) are recruited and activated, as 
recently detailed in reference [255]. Protein ubiquitination 
further activates microtubule-associated protein light chain 
3 (LC3) [265], which is normally present in the cell cytosol 
under the form of LC3-I. When activated, LC3 is conjugated 
to phosphatidylenolamine to form LC3-II [265], which is 
recruited to autophagosomes during the formation of their 
double membrane. Besides this canonical pathway, alter-
natives routes have also been described involving a direct 
interaction between an activated form of OMM protein 
FUN14 domain containing 1 (FUNDC1) and LC3, or BH3 
only domain proteins (BNIP3 and NIX), beclins and ULK1 
[255]. Interestingly, a study by Soubannier et al. [266] fur-
ther showed that mitochondria-derived vesicles can be 
formed in early oxidative stress response, and these vesi-
cles are directed to lysosomes independently of LC3 as a 
form of mitophagy complementation.  

Dysfunctional mitophagy is associated with tumor initi-
ation and progression in many types of cancers [267, 268]. 
In response to stresses such as hypoxia and nutrient star-
vation, mitophagy is activated to reduce the overall mito-
chondrial mass, thus preserving valuable nutrients and 
preventing excessive mtROS generation [269, 270]. Even if 
the exact molecular mechanism is not yet well understood, 
part of the response could be mediated by receptors that 
dispose of C-terminal transmembrane domains localized at 
the OMM, including BNIP3, NIX and FUNDC1 [255]. Parkin 
has been suspected to be a tumor suppressor: its expres-
sion increases oxidative metabolism, limits the Warburg 
Effect and regulates levels of cyclin D1, cyclin E and cyclin-
dependent kinase 4 (CDK4) in cancers [267]. Interestingly, 
mitophagy appears to have a dual role in cancer treatment 
resistance, as both its inhibition (in colorectal CSCs) and 
induction (in preclinical AML models) increased the sensi-
tivity to chemotherapeutic drugs, such as doxorubicin [271]. 
Mitophagy could also participate in the radioresistance of 
head and neck cancer cells to γ rays [272]. 

While mitophagy coupled to mitochondrial biogenesis 
is a major pathway to maintain a pool of functional mito-
chondria in cancer cells [273], cancer cells can also acquire 
intact mitochondria from nonmalignant cells present in the 
tumor microenvironment. This mitochondrial transfer in-
volves the formation of intercellular tunneling nanotubes 
(TNTs) and larger microtubes that have been observed in 
several types of cancer cells [274] based on the initial find-
ing that mitochondria-deficient ρ0 cells could acquire 
mtDNA from host cells [275]. mtDNA transfer was later 
found to involve full mitochondria transfer between non-
malignant donor cells and malignant receiver cells [276]. In 
AML, ROS have been identified to drive the formation of 
TNTs that support full mitochondria exchange between 
bone marrow stromal cells and AML blasts, which was fur-
ther shown to contribute to the metabolic capacity of can-
cer cells [277]. While the molecular mechanisms of TNT 
formation have been extensively reviewed elsewhere [278], 
it is in our opinion important to further mention that mito-
chondrial transfer can also transfer malignant capabilities 
between cancer cells. In one example, the experimental 
transfer of mitochondria from an invasive (T24 cells) to a 
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less invasive (RT4 cells) bladder cancer cell line resulted 
increased invasiveness of RT4 cells [279]. In another exam-
ple, mtDNA transfer between poorly and highly metastatic 
lung cancer cells was found to simultaneously transfer the 
high metastatic traits [280]. In yet another example, Pas-
quier et al. [281] showed that MCF7 breast cancer cells 
that received mitochondria from endothelial cells became 
more resistant to doxorubicin chemotherapy. Together, 
even if TNT formation is extremely difficult to document in 
vivo, these observations support a potential clinical signifi-
cance of intercellular mitochondrial transfer. 

 
Mitochondrial dynamics reflect metabolic alterations 
Due to frequent fission and fusion events, different forms 
of mitochondria can be found inside a cell. They can mor-
phologically resemble to small vesicles, short bars or re-
ticular nets, which are a snapshot of shapes resulting from 
a constantly changing balance. Their organization further 
depends on cellular types and specific stress conditions 
[211].  

Mitochondrial dynamics have been closely related to 
the activities that they perform, and changes in mitochon-
drial morphology have been linked to alterations that oc-
cur in cancer [282]. Many studies have demonstrated the 
existence of a link between energy substrates, oxygen sup-
ply and the mitochondrial architecture [283, 284]. Cellular 
metabolic dysfunctions have been associated with in-
creased mitochondrial fragmentation, whereas hyperfused 
mitochondria better resist to metabolic insults and, given 
to the merge, can protect cellular integrity [285]. In β cells 
of the pancreas, Molina et al. [286] have shown that mito-
chondria that are in a nutrient-rich environment are sepa-
rated and subject to fission, whereas mitochondria in a 
starved environment characterized by a severe deficiency 
of nutrient availability below cellular needs tend to create 
nets and remain elongated for a long duration. Moreover, 
starvation induces the accumulation of fatty acid droplets 

inside mitochondria, shifting cellular metabolism towards 
FAO for ATP production [287]. Mechanistically, nutrient 
starvation induces mitochondrial elongation through 
cAMP-activated PKA that inhibits mitochondrial fission and 
protects the organelles against autophagosomal degrada-
tion [288, 289]. In cancer, existing data suggest that a hy-
perfused state of mitochondria supports the survival of 
cancer cells not only by maintaining the production of ATP, 
but also by compensating for damaged mitochondria, sus-
taining intramitochondrial exchanges of fatty acids and 
avoiding metabolic reprogramming towards autophagy 
[287-289]. 

 

THERAPEUTIC STRATEGIES TARGETING MITOCHON-
DRIA IN CANCER CELLS 
Given the key functions that mitochondria exert in cancer 
cells, several strategies have been imagined and tested 
that considered mitochondria as anticancer targets (Table 
1). We here offer a brief overview of major approaches 
aiming to modulate mitochondrial anaplerosis, mitochon-
drial turnover, the TCA cycle, the ETC, mtROS and mito-
chondria-driven apoptosis. 

 
Targeting mitochondrial anaplerosis 
Targeting pathways supporting mitochondrial anaplerosis, 
i.e., glycolysis, glutaminolysis and FAO, has been consid-
ered as an anticancer approach. While these anaplerotic 
pathways may in part support cancer cell survival and pro-
liferation independently of mitochondrial metabolism, 
their inhibition results in TCA cycle fuel deprivation. 

2-Deoxy-D-glucose (2DG) is a competitor of glucose for 
glucose transporters (GLUTs) and HKs, which are often 
overexpressed in cancer cells, offering some anticancer 
selectivity for the treatment [290]. By interfering with glu-
cose uptake and phosphorylation, 2DG reduces the availa-
bility of pyruvate for mitochondria, thus impairing mito-
chondrial anaplerosis  and OXPHOS. In  addition to  its anti- 

FIGURE 4: Dysfunctional mito-
chondria are targeted to mi-
tophagy. (A) Healthy mitochon-
dria have a polarized outer mito-
chondrial membrane (OMM), 
which allows PTEN-induced ki-
nase 1 (PINK1) to cross the 
membrane and be degraded by 
presenilin-associated rhomboid-
like protein (PARL) at the inner 
mitochondrial membrane (IMM). 
(B) Impaired mitochondria, in-
stead, have a depolarized OMM, 
which hinders the entry of PINK1 
and, therefore, its degradation. 
PINK1 can thus bind to parkin to 
initiate mitophagy. MPP- matrix-
processing peptidase; TIM - 
translocase of inner mitochon-
drial membrane; TOM - trans-
locase of outer mitochondrial 
membrane. 
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TABLE 1. Therapeutic strategies targeting mitochondria in cancer with clinical perspectives. 

Compound name Targeted functions Molecular targets Phase 
ClinicalTrials.gov identi-
fier or reference 

2-Deoxy-D-glucose Mitochondrial anaplerosis GLUTs and HKs 
Phase I NCT00096707 

Phase III [302, 303] 

3-Bromopyruvate Mitochondrial anaplerosis HK2 and GAPDH Case study [307, 308] 

Etomoxir Fatty acid oxidation 
Carnitine palmitoyltrans-
ferase I 

Preclinical [314, 315] 

Mdivi-1/Dynasore Mitochondrial turnover DRP1 Preclinical [368-371] 

CB-839 TCA cycle Glutaminase Phase I 
NCT02071927, 
NCT02071888 

CPI-613 TCA cycle 
Pyruvate dehydrogenase 
and α-ketoglutarate de-
hydrogenase 

Phase I 
NCT02168140, 
NCT02232152 

Phase I/II NCT01766219 

AG-221 TCA cycle 
Mutant IDH2-R140 and 
IDH2-R172 

Phase I/II 
NCT01915498, 
NCT02273739 

AG-881 TCA cycle Mutant IDH1/2 Phase I/II 
NCT02492737, 
NCT02481154 

Carboxyamidotriazole ETC Complex I Preclinical [319] 

Fenofibrate ETC Complex I Preclinical [320] 

Metformin ETC Complex I Phase III NCT01101438 

Papaverin ETC Complex I Phase I NCT03824327 

Lonidamine* ETC Complex II 
Phase II NCT00237536 

Phase III NCT00435448 

Atovaquone ETC Complex III Phase I NCT02628080 

Arsenic trioxide ETC Complex IV Preclinical [348-350] 

mitoTEMPO ROS signaling Superoxide Preclinical [89] 

MitoQ ROS signaling Superoxide Preclinical [354] 

Photodynamic ther-
apy 

Mitochondria-driven apopto-
sis 

Cytochrome c release 
Phase I NCT03053635 

Phase II NCT03945162 

Curcumin Mitochondria-driven apoptosis Cytochrome c release 

Phase III NCT02064673, 

Phase II 
NCT02944578, 
NCT02782949 

Aloe-emodin Mitochondria-driven apoptosis Cytochrome c release Preclinical [362] 

Betulin Mitochondria-driven apoptosis Cytochrome c release Preclinical [363] 

Resveratrol Antioxidant modulators Cytochrome c release Phase I 
NCT00256334, 
NCT00433576 

α-tocopheryl succin-
ate (α-TOS) 

Mitochondrial destabilization GSTP1-1 and GSTO1-1 Preclinical [377] 

Canfosfamide 
(TLK286) 

DNA replication 
Pro-drug bio-activated by 
GSTP1-1 in an alkylating 
agent 

Phase III NCT00102973 

Brostallicin DNA replication 
Pro-drug activated by 
GSTP and GSTM 

Phase II 
NCT00060203, 
NCT01091454 

Ketogenic diet Glycolysis 
Mitochondria in cancer 
cells that would not use 
ketone bodies as a fuel 

Pilot NCT01535911 

Not appli-
cable 

NCT03075514, 
NCT02286167, 
NCT01754350, 
NCT03278249 

Phase I 
NCT00575146, 
NCT03451799, 
NCT01865162 

Phase I/II 
NCT02046187, 
NCT02939378 

Phase II  NCT02302235 

* withdrawn from clinical studies. DRP1 - dynamin-related protein 1; ETC - electron transport chain; GLUT - glucose transporter; GST- 
glutathione S-transferase; HK - hexokinase; IDH - isocitrate dehydrogenase; ROS - reactive oxygen species; TCA - tricarboxylic acid (cycle). 
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metabolic activity, preclinical studies reported that 2DG 
exerts additional anticancer effects that comprise an anti-
angiogenic activity [291], inhibition of cancer metastasis 
[292] and inhibition of the viral replication of Kaposi's sar-
coma-associated herpes virus [293]. It can also improve the 
effects of autophagy inhibition [294-296]. However, clinical 
trials were generally inconclusive, as 2DG as a standalone 
treatment did not show significant anticancer activity at 
tolerated doses for patients [297]. Additional in vitro and in 
vivo preclinical studies nevertheless suggested its possible 
application in combination with conventional chemothera-
py, including cisplatin [298, 299] and doxorubicin [300, 
301]. Promising results have also been obtained in combi-
nation with radiotherapy for the treatment of glioblastoma, 
and a Phase III clinical is currently ongoing [302, 303]. 

3-Bromopyruvate (3BP) is an alkylating agent that, 
among other effects, has been reported to inhibit glycolysis. 

3BP indeed inhibits HK2 [304] and GAPDH [305] among a 
larger list of targets [306]. However, even if promising case 
studies have been published supporting that 3BP exerts 
anticancer effects in humans [307, 308], to our knowledge 
no clinical trial has been completed to date. Although a 
promising compound, 3BP faces several limitations for its 
clinical utility, including a rapid deactivation by GSH and a 
burning sensation when administered intravenously. In 
order to limit side effects and potentiate its anticancer 
properties, 3BP can be formulated in liposomes, PEG-
liposomes or other targeted or untargeted nanocarriers 
[309]. 

Glutaminolysis has been shown to support cancer cells 
growth, in particular in human pancreatic ductal adenocar-
cinoma (PDAC) [310, 311] and triple negative breast cancer 
[312]. Glutaminase 1 (GLS1) has been proposed as a target 
for anticancer treatment, however there are no pharmaco-
logical treatments available today. 

Targeting FAO is another potential anticancer strategy. 
A special focus has been set on carnitine palmitoyltransfer-
ase I (CPT1), an enzyme located at the OMM that converts 
acyl-CoA (the end product of FAO) to acyl-carnitine that 
crosses mitochondrial membranes in order to fuel the TCA 
cycle in the mitochondrial matrix [313]. The irreversible 
CPT1 inhibitor etomoxir has been shown to improve the 
effectiveness of radiotherapy [314], and it may be used to 
treat cachexia, a syndrome associated to elevated FAO in 
cancer patients [315]. Etomoxir has been tested in clinical 
trials for type 2 diabetes and congestive heart failure, 
which revealed a safe to use profile of the drug [316, 317]. 
However, to our knowledge, no clinical trial in cancer pa-
tients has been initiated today. 

 
Targeting the TCA cycle 
Whether and how to selectively target the TCA cycle in 
cancer cells has been extensively explored in the past years 
and recently reviewed in details by Anderson et al. [35]. 
Importantly, several Phase I and II clinical trials have been 
conducted involving drugs capable of inhibiting deregulat-
ed pathways related to the TCA cycle. They include CB-839, 
a specific inhibitor of glutaminase (NCT02071927 and 
NCT02071888); CPI-613, a lipoate analog inhibiting py-

ruvate dehydrogenase and α-KG dehydrogenase that was 
recently tested in Phase I and II clinical trials as a single 
agent or in combination with standard chemotherapy to 
treat diverse types of cancers (NCT02168140, 
NCT02232152 and NCT01766219); and enasidinib/AG-221, 
an orally available inhibitor of mutant IDH2-R140 and 
IDH2-R172 that undergoes Phase I/II clinical trials as a sin-
gle agent for the treatment of AML, angio-immunoblastic 
T-cell lymphoma and glioma (NCT01915498 and 
NCT02273739). In addition, AG-881 is a promising orally 
available dual inhibitor of mutant IDH1 and mutant IDH2 
that was in Phase I/II clinical trial until this year, recruiting 
AML patients with mutant IDH1/2, as well as glioma pa-
tients (NCT02492737 and NCT02481154). 

 
Targeting the ETC 
As reviewed in the section ‘Antioxidant defenses in mito-
chondria‘, cancer cell mitochondria can also display altera-
tions in the functions of ETC complexes that constitute 
attractive anticancer targets. 
 
Complex I 
A multiplicity of compounds have been tested in vitro and 
in vivo to inhibit Complex I [318], which include carboxy-
amidotriazole [319] and fenofibrate [320]. However, the 
most advanced drugs targeting Complex I are biguanides 
metformin and phenformin. These two compounds are 
FDA-approved drugs widely used for diabetes treatment 
[321]. Interestingly, they can also impair the proliferation 
of several cancer cell lines [322, 323], and in vivo studies 
further demonstrated that metformin and phenformin 
inhibit tumor growth and metastasis formation in several 
animal models [324-328]. While these two drugs were be-
lieved to primarily act through AMPK activation, two stud-
ies published in the year 2000 demonstrated that metfor-
min primarily inhibits ETC Complex I in cancer cells, conse-
quently inhibiting OXPHOS and activating AMPK [329, 330]. 
The mode of action of these biguanides involves inhibition 
of ubiquinone reduction [331]. This finding opened new 
perspectives for the use of biguanides in the field of cancer. 
In fact, metformin is currently tested in several clinical tri-
als for cancer patients [332]. Until now, most promising 
results have been obtained in Phase III clinical trial 
NCT01101438, which tested the efficacy of metformin for 
the treatment of breast cancer, other nonmetastatic can-
cers and cancers with a smaller degree of malignity [333]. 
After receiving metformin twice a day for five years after 
diagnosis, patients experienced a significant improvement 
of progression-free survival. Papaverin, a non-narcotic opi-
oid usually used for the treatment of vasospasms and erec-
tile dysfunction by inhibiting phosphodiesterase 10A [334], 
has also been reported as a Complex I inhibitor in cancer 
cells [335]. As a consequence, Benej et al. [335] reported 
that papaverin can, through oxygen sparing, radiosensitize 
lung and breast cancer cells and tumors in vivo. With the 
additional description of anticancer effects of papaverin on 
prostate [336], breast [337] and hepatocarcinoma [338] 
cancer cells, as well as on glioma xenografts in mice [339], 
a Phase I clinical trial is ongoing where papaverin hydro-
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chloride is tested as a radiosensitizer in non-small cell lung 
cancer patients (NCT03824327).  
 
Complex II 
Comparatively to Complex I, there are currently no well 
characterized Complex II inhibitors. Lonidamine has recent-
ly been shown to inhibit Complex II in isolated mitochon-
dria and in DB-1 melanoma cells [340, 341]. However, the 
compound did not demonstrate any benefit in two ran-
domized Phase III clinical trials in combination with chemo-
therapy, and was therefore withdrawn from clinical studies 
[340]. 
 
Complex III 
Atovaquone is an FDA-approved drug used to treat pneu-
mocystis, pneumonia and malaria [342]. This drug is a 
ubiquinone analogue that acts as a Complex III inhibitor in 
parasites, cancer cell lines and breast CSCs, diminishing the 
oxygen consumption rate and reducing tumor hypoxia at 
pharmacologically acceptable concentrations [343-347]. 
Atovaquone is currently tested in a Phase I clinical trial 
(NCT02628080) for its effects on hypoxia in non-small cell 
lung carcinoma in a pre-operative window of opportunity 
study. While recruitment has been completed, no results 
have been published yet regarding this trial.  
 
Complex IV 
Arsenic trioxide has been described as a Complex IV inhibi-
tor and is FDA-approved for the treatment of acute pro-
myelocytic leukemia. In the past years, it has been ex-
plored in other types of cancer. Preclinically, because it 
inhibits cell respiration, arsenic trioxide was shown to de-
crease hypoxia in Lewis lung carcinoma and transplantable 
mouse liver tumors, leading to an improvement of the re-
sponse of mice to radiotherapy [348]. Nitric oxide and hy-
drocortisone are other compounds that, among other ef-
fects, can inhibit Complex IV and increase the efficacy of 
radiotherapy preclinically [349, 350]. 
 
Complex V 
To our knowledge, no studies involving in vivo or clinical 
trials have been reported with drugs targeting ATP syn-
thase in cancer models.  

 
Targeting mitochondrial ROS production 
The use of mitochondria-targeted antioxidants like mito-
TEMPO and mitoQ [89] has proven to be a good strategy to 
repress the migratory, invasive and metastatic phenotypes 
of cancer cells. Both drugs repress mtROS-induced activa-
tion of the TGFβ pathway [89]. MitoTEMPO is a superoxide 
scavenger able to mimic mitochondrial SODs [351]. It can 
easily pass through lipid bilayers and selectively accumu-
lates in negatively charged mitochondria thanks to a posi-
tively charged triphenylphosphonium moiety. MitoQ is a 
very similar compound, with an ubiquinone covalently 
bound to triphenylphosphonium. Similar to mitoTEMPO, it 
can rapidly cross biological membranes and concentrate up 
to 100-fold in mitochondria [352]. It can access the mem-
brane core of mitochondria, acting as a chain-breaking 

antioxidant, which further allows the recycling of MitoQ to 
its ubiquinol form via reduction by ETC Complex II [353]. 
Besides its antimetastatic potential, MitoQ as a mitochon-
dria-targeted antioxidant can successfully decrease KRAS-
induced pancreatic tumorigenesis in vivo [354]. 

 
Restoring mitochondria-driven apoptosis 
Strategies that stimulate cytochrome c release can be used 
to induce apoptotic cancer cell death. Several studies [355-
357] have indeed proposed that photodynamic therapy 
(PDT) can induce damage in cancer cells by disturbing the 
mitochondrial membrane potential, thus triggering the 
release of cytochrome c and activating caspase-dependent 
cell death. Several photosensitizers used in PDT have been 
approved for clinical applications or are under clinical trials 
[358].  

Additionally, the use of natural compounds to induce 
cancer cell apoptosis has shown interesting results. For 
examples, resveratrol [359, 360], curcumin [361], aloe-
emodin [362] and betulin [363] were shown to stimulate 
apoptosis in various cancer cell lines by increasing cyto-
chrome c release from mitochondria. Resveratrol is tested 
in Phase I clinical trials with colon cancer patients 
(NCT00256334, NCT00433576). Encouraging preclinical 
results obtained with FDA-approved curcumin in cancer 
were an incentive to launch several clinical trials in cancer 
patients (NCT02064673, NCT02944578, NCT02782949). 
The non-toxicity towards non-cancer cells demonstrated by 
these natural compounds added to the low toxicity in-
duced in normal cells by PDT suggests that targeting cancer 
cells by restoring cytochrome c-driven apoptosis deserves 
further research efforts.  

 
Targeting mitochondrial turnover 
Mitochondrial fission, fusion and mitophagy have been 
investigated as potential anticancer targets. However, few 
studies specifically investigated mitophagy compared to 
more general autophagy. 

Mdivi-1 can block fission by inhibiting the GTPase activ-
ity of DRP1 [364], thus preventing mitophagy. For treat-
ments longer than 24 h, mdivi-1 has a cytostatic effect 
[365], which may be an additional advantage over mito-
chondrial impairment [366] in cancer therapy. Dynasore is 
another GTPase inhibitor of DRP1 [367]. Inhibition of mito-
chondrial fission by dynasore has been shown to suppress 
cancer cell proliferation and to induces apoptosis in A549 
lung cancer cells [368]. It inhibits migration and/or invasion 
in different cancer cell lines, including bladder cancer cell 
line T24 [369], lung cancer cell line H1080 [370] and osteo-
sarcoma cancer cell lines MNNG/HOS [371], MG-63 [371], 
and U2OS [370]. In vivo in mice, dynasore showed additive 
effects when combined to cisplatin [371]. 

Inducing mitochondrial fusion can also have anticancer 
effects, as illustrated by S3, a small natural molecule that 
has been shown to promote fusion hence inhibiting mi-
tophagy [372]. Its mechanisms of action remain to be elu-
cidated, which will necessitate in vivo studies. Of note, 
inhibiting mitophagy may be one of the mechanisms of 
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action of Temsirolimus, a mTOR inhibitor already in use for 
other clinical applications than cancer [373, 374].  

 
Other mitochondrial modulators 
In addition to mitochondrial inhibitors, other compounds 
can indirectly modulate mitochondrial functions. Among 
them is α-tocopheryl succinate (α-TOS), an analogue of  
α-tocopherol (vitamin E). α-tocopherol is a potent inhibitor 
of cytosolic GSH S-transferases GSTP1-1 [375] and GSTO1-1 
[376], i.e., enzymes that normally detoxify endogenous and 
exogenous compounds by catalyzing the conjugation of 
electrophilic centers to GSH. Its analogue  
α-TOS selectively induces apoptosis in cancer cells by de-
stabilizing mitochondria [377]. This activity, however, 
seems to be independent of GST inhibition, and would 
rather primarily involve ETC Complex I [378] or Complex II 
[379] inhibition. 

Interestingly, the catalytic activity of GSTs could also be 
used to bio-activate prodrugs, allowing their selective ac-
cumulation in cancer cells with high expression of some 
GST isoenzymes. For example, canfosfamide/TLK286, a 
modified GSH analogue and nitrogen mustard prodrug, is 
bio-activated by GSTP1-1 in an alkylating metabolite capa-
ble of covalently binding DNA [380]. This compound 
reached Phase III clinical trials with good tolerability [381-
383]. Brostallicin is another example of a GST-activated 
prodrug [384-386]. It is currently in Phase II clinical trials.  

Ketogenic diets (K.Ds) based on a high fat and low car-
bohydrate alimentation have the objective to limit glucose 
availability for tumors [387]. They were initially developed 
as a treatment for rare metabolic diseases, such as GLUT1 
and pyruvate dehydrogenase (PDH) complex deficiencies 
[388, 389]. KDs have been reported to decrease blood glu-
cose levels and to increase ketone body use, leading to a 
shift from glycolysis to respiration. Their anticancer activity 
is based on the assumption that cancer cells with altered 
mitochondria should not be able to use ketone bodies [390, 
391]. Several studies associating mitochondrial modulators 
to KDs have been performed to treat cancer patients, 
which have recently been reviewed by Weber et al. [387]. 
The most significant findings pertain to case reports of 
patients with glioblastoma [392-394]. While anticancer 
activities have been reported, many clinical trials are still 
ongoing. The results of these studies are expected to con-
firm whether KDs, and which type of KD, could be used as a 
nutritional support to improve the outcome of some types 
of cancers. 

 
CONCLUSIONS 
Introductory statements in the scientific literature too of-
ten describe cancer cells as being constitutively glycolytic. 
This reductionist view is based on the rediscovery of the 
Warburg effect that has strongly increased our knowledge 
of cancer biochemistry since the year 2000, with the draw-
back that studying other metabolic pathways has been 
under pursued for almost a decade. If indeed the Warburg 
phenotype provides a biosynthetic advantage for cancer 
cell proliferation [143, 395, 396], it is evident that not all 

cancer cells simultaneously proliferate in experimental and 
clinical tumors. Hence, tumor metabolism is generally 
characterized by the same heterogeneity as the phenotypic 
heterogeneity of the cancer cells that compose the tumor. 
Good examples are the metabolic cooperativity that exists 
between oxidative and glycolytic cancer cells in many tu-
mor types [397, 398] and the observation that, in a given 
tumor, metastatic progenitor cells [89] and CSCs [87] have 
a different metabolic behavior than the bulk population of 
cancer cells. It is nevertheless noticeable that mutations in 
genes encoding TCA cycle enzymes [111, 121, 399] or ETC 
subunits [67, 105, 106] logically limit this metabolic plastic-
ity, but they are rare events in rare tumor types. 

This review paper aimed to contribute to re-center mi-
tochondria in the overall metabolic map of cancers. We 
therefore attempted to provide a comprehensive overview 
of the many functions that these organelles exert in cancer 
cells, not only as powerhouses, but also as dynamic signal-
ing organelles controlling cell survival and death, motility, 
stemness and resistance to treatment. However, key ques-
tions have not yet been answered by the scientific com-
munity. In our opinion, a significant issue is to determine 
whether metabolic alterations are a cause or a conse-
quence of the malignant process. Elements in the literature 
support both possibilities. For example, it is clear that an-
aerobic glycolysis coupled to lactic fermentation [170, 172, 
400] and increased mitophagy [401] are adaptive survival 
pathways to hypoxia, hence consequences of hypoxia. The 
situation is less clear for aerobic glycolysis, where an allo-
steric control of pyruvate kinase M2 by fructose-1,6-
bisphosphate (that activates the enzyme) and alanine (that 
inhibits the enzyme) may dictate progression in the cell 
cycle [402], or, vice versa, the cell cycle could impose met-
abolic cycles to cancer cells. These cycles would be charac-
terized by alternations of energy production and biosyn-
thesis. For mitochondria in particular, experiments of mito-
chondrial transfer have clearly demonstrated that these 
organelles can carry and transfer malignant information, 
such as the capacity to metastasize [280]. Identifying 
whether specific metabolic alterations drive or merely fol-
low the phenotypic evolution of cancer cells is not trivial, 
as in the first case targeting these changes may block phe-
notypic progression, whereas in the second case metabolic 
plasticity could rapidly overcome therapeutic interventions. 

In the last section of this review, we briefly described 
the most advanced therapeutic compounds targeting mito-
chondria in cancer. For experts in the field, it is obvious 
that the list is short and that most of the drugs do not have 
unique targets. It probably reflects that the field is still in 
its infancy, in the sense that several important fundamen-
tal discoveries are still to be made that would identify pre-
cise mitochondrial alterations in cancer allowing specific 
anticancer interventions. In other words, the molecular 
definition of ‘oncogenic mitochondria’, i.e., mitochondria 
that carry and can transfer malignant information, should 
be a priority for basic research. Because they carry their 
own genetic material and are subjected to environmental 
changes within cells (such as pH, pO2, the availability of 
metabolites and exposure to treatments) and as metabolic 
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sensors of the extracellular microenvironment, it is possi-
ble that mitochondria could undergo Darwinian selection 
during tumor progression. In support of this hypothesis, 
several papers already identified mutations in mtDNA with 
functional effects [403], for example in renal oncocytomas 
[404] and pancreatic cancers [405]. The development of 
mtDNA editing tools [406] is expected to provide experi-
mental strategies to track, characterize and repair onco-
genic mitochondria, which will further require a deep un-
derstanding of mitochondrial epigenetics in cancer. 
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