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Abstract
Background: Computer-assisted analyses have shown that all bacterial genomes contain a small
percentage of open reading frames with a frameshift or in-frame stop codon We report here a
comparative analysis of these interrupted coding sequences (ICDSs) in six isolates of M. tuberculosis,
two of M. bovis and one of M. africanum and question their phenotypic impact and evolutionary
significance.

Results: ICDSs were classified as "common to all strains" or "strain-specific". Common ICDSs are
believed to result from mutations acquired before the divergence of the species, whereas strain-
specific ICDSs were acquired after this divergence. Comparative analyses of these ICDSs therefore
define the molecular signature of a particular strain, phylogenetic lineage or species, which may be
useful for inferring phenotypic traits such as virulence and molecular relationships. For instance, in
silico analysis of the W-Beijing lineage of M. tuberculosis, an emergent family involved in several
outbreaks, is readily distinguishable from other phyla by its smaller number of common ICDSs,
including at least one known to be associated with virulence. Our observation was confirmed
through the sequencing analysis of ICDSs in a panel of 21 clinical M. tuberculosis strains. This analysis
further illustrates the divergence of the W-Beijing lineage from other phyla in terms of the number
of full-length ORFs not containing a frameshift. We further show that ICDS formation is not
associated with the presence of a mutated promoter, and suggest that promoter extinction is not
the main cause of pseudogene formation.

Conclusion: The correlation between ICDSs, function and phenotypes could have important
evolutionary implications. This study provides population geneticists with a list of targets, which
could undergo selective pressure and thus alters relationships between the various lineages of M.
tuberculosis strains and their host. This approach could be applied to any closely related bacterial
strains or species for which several genome sequences are available.
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Background
Recent in silico surveys showed that most bacterial
genomes contain interrupted coding sequences (ICDSs)
[1-3]. These ICDSs generally result from the insertion or
deletion of nucleotides, affecting the frame read and split-
ting the original coding sequence into two or more
smaller open reading frames. These mutations may also
result in a shift in reading frame, thereby altering the car-
boxy-terminus of the protein. ICDSs may be present in
genes with known or unknown functions, or in hypothet-
ical open reading frames [4]. Reported prokaryotic
genomes have a mean of 74 ICDSs per genome, corre-
sponding to 1 to 5% of the genes present, irrespective of
genome size or GC content [2,3]. One of the few excep-
tions is the genome of M. leprae, which contains about
30% ICDSs, frequently described as pseudogenes [2,5].
The accumulation of mutations in this species is thought
to be due to the loss of the proofreading activity of the
DnaQ subunit of DNA polymerase III [6]. A similar sort of
reductive evolution is also observed in the case of M. ulcer-
ans [7] or for species of the genus Rickettsiales [8]. ICDSs
may correspond to authentic mutations, generally result-
ing in a loss of function, but may in some cases reflect
sequencing errors. These sequencing errors are misleading
when conducting genomic analysis, but have been shown
to account for only some of the detected ICDSs [4,9-12].
Most ICDSs correspond to authentic mutations and can
therefore be compared between strains, making it possible
to explore conserved and unique mutation events.

The availability of complete genomes sequences for genet-
ically related organisms has facilitated comparative analy-
ses of ICDSs. This simple concept, which has not been
reported before, enables to investigate evolutionary rela-
tionship between isolates or species. In this study, we took
the finished genome of two mycobacterial species as a
model: M. tuberculosis, which causes tuberculosis in
humans, and M. bovis, which principally causes tuberculo-
sis in ruminants. We also studied six phylogenetically dis-
tinct isolates of M. tuberculosis – H37Rv, CDC1551,
Haarlem, F11, C [13], and 210 (a representative of the W-
Beijing family) and M. africanum, a species of the M. tuber-
culosis complex for which the genome sequence is still at
the assembly step. These isolates are different from each
other as they belong to distinct evolutionary branches of
the M. tuberculosis species, sensu stricto (s.s), yet more
closely related to each other than to the more distantly
related members of the M. tuberculosis complex (M. africa-
num, M. bovis, M. microti and M. pinnipedii) [14]. The W-
Beijing family is a clonal group of highly successful M.
tuberculosis strains associated with multiple outbreaks
[15]. This family is one of the oldest lineages to diverge as
determined by single nucleotide polymorphism (SNP)
and region of deletion analysis [14]. In contrast, H37Rv,
the first M. tuberculosis strain to be completely sequenced

is believed to be one of the most recent (youngest) line-
ages of M. tuberculosis [14,16]. Strain CDC1551 belongs to
a lineage that branched between the W-Beijing and the
H37Rv isolates. Overall these three isolates represent 3
different genetic groups of the species [14-17]. These iso-
lates have been studied in detail and display differences in
genotype [14,18], phenotype and virulence properties
[19,20]. By comparing the open reading frames contain-
ing frameshifts in these organisms, we showed that ICDSs
could be classified as "common to all strains" or "lineage-
or strain-specific". The common ICDSs probably corre-
spond to mutations occurring before the divergence of the
isolates, whereas lineage- or strain-specific ICDSs corre-
spond to more recently acquired mutations. Thus, ICDS
investigation can be used to characterize the molecular
scars of evolutionary relationships between organisms
and may well provide a unique molecular signature for a
particular strain or species, complementary to single
nucleotide polymorphism (SNP) and other molecular
markers analyses for the characterization of strain varia-
tion [18,21]. We also show that ICDS formation is not
associated with mutation in the promoter region. The
present data suggests that promoter extinction is not a
major event in the "pseudogenization" process. To exper-
imentally prove that ICDSs comparison is a powerful phy-
logenomic tool, we analyzed 21 clinical M. tuberculosis
isolates for their ICDS content. We showed that the W-
Beijing lineage differs from the other TB phyla by a lower
number of common ICDSs, confirming early divergence
with M. tuberculosis s.s strains. ICDS characterization in
addition to phylogenetic investigations or typing can be
used to select strains or phenotypes for studies of particu-
lar phenotypic characters, such as virulence. Indeed, as
frameshift acquisition may lead to a loss of function,
researchers should consider the possible presence of ICDS
before choosing a strain or species for investigating a par-
ticular phenotype.

Results
Detecting the molecular scars of evolution in M. 
tuberculosis and in M. bovis
Comparative analyses of frameshift-containing genes
require the complete genome sequences of closely related
organisms. The TB complex, which includes two recently
sequenced species and at least 6 accessible strains, is there-
fore a highly suitable model. We investigated ICDSs in M.
tuberculosis and in M. bovis. The genome sequence of M.
tuberculosis H37Rv has been available since 1998 and has
recently been re-annotated [22,23]. The genome
sequences of M. tuberculosis strain CDC1551 and M. bovis
have been characterized independently [18,24]. The great
advantage of studying this model system is that the evolu-
tion of these two species and the phylogenetic links
between them are well documented [25]. The M. tubercu-
losis genomes (CDC1551 and H37Rv) have nucleotide
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sequences more than 99.95 % identical to that of M. bovis
[18,24]. The three genomes were screened for the presence
of ICDSs. To this end, the genomic sequences of each pre-
dicted ICDS [3] were extracted for each strain or species
and compared between them. Each common or specific
ICDS was then analyzed manually to characterize the
molecular event leading to the detected frameshift. The
genome of H37RV contains 113 ICDSs, whereas
CDC1551 has 137 ICDSs and M. bovis has 134 ICDSs, cor-
responding to about 2% of the total coding sequences [3].
These organisms have similar numbers of ICDSs, but the
alterations do not always affect the same genes. We there-
fore investigated whether some of these ICDSs were com-
mon to all three organisms. We compared the nucleotide
and deduced amino-acid sequences of each frameshift-
containing open reading frame in the three organisms. We
found that 81 of the frameshift-containing genes were
common to all three strains (Figure 1A, Table 1), and were
identical at the molecular level. The proteins affected by
these frameshifts included proteins of unknown function
as well as annotated and/or characterized proteins (Table
1). The fact that these three mycobacterial genomes were
sequenced and assembled independently suggests that
these 81 common ICDSs correspond to authentic

frameshift-containing genes rather than sequencing
errors. These results indicate that these 81 ICDSs corre-
spond to frameshifts acquired before the splitting of the
M. tuberculosis and M. bovis species (Table 1). Alterna-
tively, the same 81 genetic mutations may result from
convergent evolution and hence have occurred independ-
ently in all three genomes, a highly unlikely scenario.

The two M. tuberculosis s.s strains were found to have 19
additional common ICDSs, raising their total number to
100 (Figure 1A, Table 2). This suggests that the 19 addi-
tional mutations common to these two strains but not to
M. bovis were acquired post-divergence of M. tuberculosis
and M. bovis. One ICDS in M. bovis (ICDS0046, Mb1789c-
Mb1790c) was present in M. tuberculosis CDC1551
(ICDS0057, MT1807) but not in M. tuberculosis H37Rv
(Rv1759c). This mutation (deletion of one G) was identi-
cal in the M. bovis and M. tuberculosis CDC1551 strains,
but an additional mutation was present close to this
mutation in the M. bovis genome. One ICDS in M. bovis
(ICDS0128, Mb3813-Mb3814) was also present in M.
tuberculosis H37Rv (ICDS0118, Rv3784-Rv3785) but not
in M. tuberculosis CD1551 (MT3893) (Table 2).

The availability of genomic resources for M. tuberculosis is
increasing exponentially. This enabled us to investigate
the presence or absence of these shared ICDSs in the Haar-
lem, F11, and C strains, the genomic sequences of which
are currently at the assembly stage at the Broad Institute
[26]. As the sequence of these genomes is in progress, the
total number of frameshift-containing genes in these
genomes cannot yet be accurately determined; nonethe-
less, it is possible to check whether the 81 ICDSs present
in M. bovis and in other M. tuberculosis strains are present
in these strains. All 81 ICDSs common to all three strains
previously tested were also present in Haarlem and F11
strains, while 79 were present in the C strain (correspond-
ing H37Rv ORFs ICDS0103 and ICDS0105 were full-
length in this strain) (see Additional file 1). Noteworthy,
was the identification of additional mutations in the
vicinity (≤ 200 bp) of the original frameshift (see addi-
tional file 1). We next investigated whether the 19 ICDSs
common to all M. tuberculosis s.s strains were present in
the other clinical isolates. In each case, the ICDSs were
also present in the three strains (Haarlem, F11, and C),
but accompanied, in some cases, by additional mutations
in the flanking region (see Additional file 1). Thus, 98
frameshift-containing genes were found to be conserved
in all five M. tuberculosis strains analyzed.

The recently published M. bovis BCG genome sequence is
of a particular interest in this respect [27]. This strain,
which is currently used for vaccination in humans, was
derived from M. bovis after 13 years of repetitive passages
in vitro [28]. A number of genetic differences, such as dele-

A- Schematic representation of the ICDSs common to M. bovis AF2122/97 or specific to one of these strainsFigure 1
A- Schematic representation of the ICDSs common to M. 
tuberculosis H37Rv, CDC1551 and M. bovis AF2122/97 or 
specific to one of these strains. The total number of ICDSs is 
indicated. B- Schematic representation of the ICDSs of M. 
bovis BCG 1173P2 compared to the other analyzed strains.
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T 1182.

M Functional classification

0 PE/PPE
0 PE/PPE
0 tical Unknown
0 tical Unknown
0 methyltransferase Intermediary metabolism
0 nsor kinase Regulation
0 tical Unknown
0 tical Unknown
0 tical Unknown
0 ynthesis protein Intermediary metabolism
0 ulator Regulation
0 IS/phage
0 IS/phage
0 IS/phage
0 Intermediary metabolism
0 Intermediary metabolism
0 terase Intermediary metabolism
0 tical Unknown
0 Lipid metabolism
0 IS/phage
0 arI-J Intermediary metabolism
0 tical Unknown
0 tical Unknown
0  Pks8/17 Lipid metabolism
0 n, ABC transporter Cell wall, process
0 t protein Cell wall, process
0 se GlnA3 Intermediary metabolism
0 tical Unknown
0 tical Unknown
0 tical Unknown
0 IS/phage
0 tical Unknown
0 tical Unknown
0 tical Unknown
0 tical Unknown
0 nsferase RocD1 Intermediary metabolism
0 tical Unknown
0 Unknown
0 tical Unknown
0 l incorporation protein HypB Intermediary metabolism
0 tical Unknown
able 1: List of the 81 ICDSs common to M. tuberculosis H37Rv, CDC1551, M. bovis AF2122/97 and M. africanum GM04

. tub H37Rv M. tub CDC1551 M. bov AF2122/97 M. bov BCG 1173P2 M. africanum Putative function

002 (Rv0151c 588 aa) 0004 0006 0109 ICDS PE family protein
003 (Rv0152c 525 aa) 0005 0007 0004 ICDS PE family protein
007 (Rv0366c 197 aa – Rv0367c 129 aa) 0011 0010 0110 ICDS Conserved hypothe
009 (Rv0393 441 aa) 0012 0011 0008 ICDS Conserved hypothe
010 (Rv0520 116 aa – Rv0521 101 aa) 0014 0013 0012 ICDS Dimethylglycine N-
012 (Rv0601c 157 aa) 0017 0018 0016 ICDS° Two-component se
014 (Rv0635 158 aa – Rv0636 142 aa) 0019 0020 0111 ICDS Conserved hypothe
015 (Rv0636 142 aa – Rv0637 166 aa) 0020 0021 0112 ICDS Conserved hypothe
017 (Rv0724A 112 aa – Rv0725c 301 aa) 0022 0023 0020 ICDS Conserved hypothe
020 (Rv0865 160 aa) 0026 0085 0113 ICDS Molybdopterin bios
021 (Rv0890c 882 aa – Rv0891c 285 aa) 0027 0025 0114 ICDS Transcriptional reg
023 (Rv1034c 130 aa – Rv1035c 228 aa) 0030 0030 0031 ICDS Transposase
024 (Rv1035c 228 aa – Rv1036c 112 aa) 0031 0031 0032 ICDS Transposase
025 (Rv1041c 287 aa – Rv1042c 135 aa) 0032 0086 0034 ICDS Transposase
026 (Rv1104 229 aa) 0034 0087 0115 ICDS Esterase
027 (Rv1104 229 aa) 0035 0088 0037 ICDS Esterase
028 (Rv1105 171 aa) 0036 0033 0036 ICDS Para-nitrobenzyl es
029 (Rv1119c 49 aa - Rv1120c 164 aa) 0037 0034 0039 ICDS Conserved hypothe
030 (Rv1136 113 aa) 0039 0089 0040 ICDS Enoyl-CoA
032 (Rv1149 135 aa – Rv1150 183 aa) 0041 0090 0041 ICDS Transposase
033 (Rv1163 201 aa – Rv1164 246 aa) 0042 0035 0116 ICDS Nitrate reductase N
035 (Rv1203c 194 aa – Rv1204c 562 aa) 0044 0036 0043 ICDS Conserved hypothe
036 (Rv1413 171 a) 0046 0041 0047 ICDS Conserved hypothe
040 (Rv1662 1602 aa – Rv1663 502 aa) 0053 0043 0117 ICDS Polyketide synthase
041 (Rv1687c 255 aa) 0054 0132 0128 ICDS° ATP binding protei
043 (Rv1735c 166 aa) 0056 0112 0050 ICDS Malic acid transpor
046 (Rv1878 450 aa) 0061 0052 0118 ICDS° Glutamine syntheta
047 (Rv1888A 58 aa – Rv1889c 118 aa) 0062 0053 0119 ICDS Conserved hypothe
048 (Rv1931c 259 aa) 0064 0054 0058 ICDS Conserved hypothe
049 (Rv1949c 319 aa – Rv1950c 63 aa) 0065 0055 0059 ICDS Conserved hypothe
050 (Rv2013 159 aa – Rv2014 196 aa) 0066 0056 0061 ICDS° Transposase
051 (Rv2086 201 aa) 0067 0093 0062 ICDS Conserved hypothe
052 (Rv2086 201 aa – Rv2087 76 aa) 0068 0058 0063 ICDS Conserved hypothe
053 (Rv2087 76 aa) 0069 0094 0064 ICDS Conserved hypothe
054 (Rv2095c 316 aa – Rv2096 332 aa) 0070 0133 0129 ICDS Conserved hypothe
058 (Rv2321 182 aa – Rv2322c 221 aa) 0074 0060 0067 ICDS Ornithine aminotra
059 (Rv2325 282 aa – Rv2326c 697 aa) 0075 0096 0120 ICDS Conserved hypothe
060 (Rv2331 129 aa) 0076 0134 0130 ICDS Hypothetical
061 (Rv2337 372 aa – Rv2338c 318 aa) 0077 0097 0068 ICDS Conserved hypothe
062 0081 0065 0076 ICDS Hydrogenase nicke
063 (Rv2877c 287 aa – Rv2878c 173 aa) 0082 0099 0077 ICDS° Conserved hypothe
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00 IS/phage
00 al Unknown
00 e I Intermediary metabolism
00 al Unknown
00 Unknown
00 IS/phage
00 Intermediary metabolism
00 Intermediary metabolism
00 ndopeptidase Intermediary metabolism
00 al Unknown
00 IS/phage
00 IS/phage
00 ylase Intermediary metabolism
00 IS/phage
00 IS/phage
00 al Unknown
00 al Unknown
00 al Unknown
00 e Intermediary metabolism
00 al Unknown
00 IS/phage
01 ne protein Cell wall, process
01 Intermediary metabolism
01 t ABC transporter Cell wall, process
01 al Unknown
01 Unknown
01 A and dehydrogenase Lipid metabolism

01 tor Information pathway
01 Unknown
01 IS/phage
01 ase Intermediary metabolism
01 r SigE Information pathway
01 al Unknown
01 Unknown
01 Information pathway
01 adenylyltransferase NadD Intermediary metabolism
01 al Unknown
01 Intermediary metabolism
01 EchA21 and lipase LipE Lipid metabolism
01 al Unknown

IC ding ORF numbers in M. tuberculosis H37Rv are 
ind is AF2122/97.

Tab 82. (Continued)
65 (Rv2943A 177 aa – Rv2944 239 aa) 0083 0066 0079 ICDS Transposase
68 (Rv3128c 338 aa) 0088 0068 0082 ICDS Conserved hypothetic
69 (Rv3152 410 aa – Rv3153 211 aa) 0089 0100 0121 ICDS NADH dehydrogenas
70 (Rv3172c 160 aa) 0090 0069 0083 ICDS Conserved hypothetic
71 (Rv3200c 355 aa) 0091 0101 0122 ICDS Hypothetical
75 (Rv3349c 246 aa) 0100 0102 0085 ICDS° Transposase
76 (Rv3351c 264 aa – Rv3352c 123 aa) 0101 0071 0088 ICDS Oxidoreductase
77 (Rv3352c 123 aa – Rv3353c 86 aa) 0102 0072 0089 ICDS Oxidoreductase
79 (Rv3419c 344 aa) 0104 0135 0131 ICDS O-sialoglycoprotein e
80 (Rv3420c 158 aa – Rv3421c 211 aa) 0105 0104 0092 ICDS° Conserved hypothetic
83 0108 0107 0095 ICDS Transposase
84 (Rv3636 115 aa – Rv3637 166 aa) 0111 0076 0097 ICDS Transposase
87 (Rv3741c 224 aa – Rv3742c 131 aa) 0114 0078 0099 ICDS° Aromatic-ring hydrox
88 (Rv3770A 61 aa – Rv3770B 64 aa) 0115 0079 0100 ICDS° Transposase
89 (Rv 3844 164 aa – Rv3845 120 aa) 0116 0136 0132 ICDS Transposase
90 (Rv3866 283 aa – Rv3867 183 aa) 0117 0109 0123 ICDS Conserved hypothetic
91 (Rv3880c 115 aa – Rv3881 460 aa) 0118 0137 0133 ICDS Conserved hypothetic
95 (Rv3900c 311 aa) 0122 0083 0124 ICDS Conserved hypothetic
97 (Rv3913 335 aa – Rv3914 116 aa) 0123 0111 0001 ICDS Thioredoxin reductas
98 0124 0032 0035 ICDS Conserved hypothetic
99 (Rv3386 234 aa – Rv3387 225 aa) 0125 0103 0090 ICDS Transposase
00 (Rv0342 640 aa – Rv0343 493 aa) 0126 0009 0125 ICDS Isoniazid inductible ge
01 (Rv0763c 69 aa – Rv0764c 451 aa) 0127 0084 0126 ICDS Cytochrome P450
02 (Rv1858 264 aa – Rv1859 369 aa) 0128 0092 0127 ICDS Molybdenum transpor
03 (Rv0449c 439 aa) 0129 0113 0010 ICDS Conserved hypothetic
04 (Rv0471c 162 aa) 0130 0114 0011 ICDS Hypothetical
05 (Rv0859 403 aa – Rv0860 720 aa) 0131 0115 0024 ICDS° Acyl-CoA thiolase Fad

FadB
06 (Rv0880 143 aa – Rv0881 288 aa) 0132 0116 0025 ICDS° Transcriptional regula
07 (Rv0997 143 aa) 0133 0117 0029 ICDS Hypothetical
08 (Rv1041c 287 aa – Rv1042c 135 aa) 0134 0118 0033 ICDS° Transposase
09 (Rv1104 229 aa – Rv1105 171 aa) 0135 0119 0038 ICDS Para-nitrobenzyl ester
10 (Rv1221 257 aa – Rv1222 154 aa) 0136 0120 0044 ICDS Alternative sigma facto
11 (Rv1752c 149 aa) 0137 0121 0051 ICDS Conserved hypothetic
12 (Rv1961 164 aa) 0138 0122 0060 ICDS Hypothetical
13 (Rv2309c 151 aa) 0139 0123 0066 ICDS Integrase
14 (Rv2420c 127 aa – Rv2421c 211 aa) 0140 0124 0070 ICDS nicotinate-nucleotide 
15 (Rv2732c 205 aa – Rv2733c 512 aa) 0141 0125 0073 ICDS Conserved hypothetic
16 (Rv2922A 94 aa – Rv2923c 137 aa) 0142 0126 0078 ICDS Acylphosphatase AcyP
17 (Rv3774 274 aa – Rv3775 274 aa) 0143 0127 0101 ICDS° Enoyl-CoA hydratase 
19 (Rv2599 143 aa – Rv2600 133 aa) 0144 0098 0134 ICDS° Conserved hypothetic

DS number (variable, according to the strain), the size of the predicted protein and its putative function are indicated. The correspon
icated in brackets. "°" indicates ICDSs containing additional mutations with respect to M. tuberculosis H37Rv, CDC1551 and M. bov

le 1: List of the 81 ICDSs common to M. tuberculosis H37Rv, CDC1551, M. bovis AF2122/97 and M. africanum GM0411
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Table 2: 

M. tub H37Rv M. tub CDC1551 M. bovis AF2122/97 M. tub 210 M. africanum Putative function Functional classification

0001 (Rv0095c 136 aa) 0003 Mb0098c 260 aa ICDS Not Found Conserved hypothetical Unknown
0005 (Rv0325 74 aa – Rv0326 151 aa) 0010 Mb0333 229 aa FL FL Hypothetical Unknown
0011 (Rv0590 275 aa – Rv0590A 9 0 84 aa) 0016 Mb0605 343 aa FL FL MCE-family protein Virulence, detox, adapt
0013 (Rv0618 231 aa – Rv0619 1 8 181 aa) 0018 Mb0635 394 aa ICDS FL Galactose-1-phosphate uridylyltransferase Intermediary metabolism
0022 (Rv0924c 428 aa – Rv0925c 245 aa) 0028 Mb0948c 684 aa ICDS ICDS Manganese transport protein MntH Cell wall, process
0031 (Rv1145 303 aa – Rv1146 470 aa) 0040 Mb1177 781 aa FL FL Transmembrane transport protein MmpL13 Cell wall, process
0037 (Rv1503c 182 aa – Rv1504c 199 aa) 0048 Mb1542c 382 aa ICDS FL Conserved hypothetical Unknown
0038 (Rv1549 175 aa – Rv1550 571 aa) 0051 Mb1576 647 aa ICDS FL Fatty-acid-coA ligase FadD11 Lipid metabolism
0039 (Rv1553-Rv1554 247 aa – 126 aa) 0052 Mb1579 374 aa ICDS° ICDS° Fumarate reductase Intermediary metabolism
0045 (Rv1792 59 aa) 0058 Mb1820 98 aa ICDS FL ESAT-6-like protein EsxM Cell wall, process
0055 (Rv2227 233 aa) 0072 Mb2252 124 aa ICDS FL Conserved hypothetical Unknown
0066 (Rv2946c 1616 aa – Rv2947 496 aa) 0084 Mb2971c 2112 aa FL FL Polyketide synthase Pks15/1 Lipid metabolism
0067 (Rv2974c 470 aa – Rv2975c 84 aa) 0085 Mb2999c 553 aa FL FL Conserved hypothetical Unknown
0072 (Rv3233c 196 aa – Rv3234c 271 aa) 0092 Mb3262c 469 aa FL FL Conserved hypothetical Unknown
0073 (Rv3337 128 aa – Rv3338 214 aa) 0094 Mb3370 297 aa ICDS FL Conserved hypothetical Unknown
0078 (Rv3373 213 aa – Rv3374 82 aa) 0103 Mb3408 296 aa ICDS FL Enoyl-CoA hydratase EchA18 Lipid metabolism
0085 (Rv3725 309 aa) 0112 Mb3752 333 aa FL FL Oxidoreductase Intermediary metabolism
0086 (Rv3738c 315 aa – Rv3739c 77 aa) 0113 Not determined ICDS ICDS PPE family protein PE/PPE
0094 (Rv3897c 210 aa – Rv3898c 110 aa) 0121 Mb3927c 329 aa FL FL Conserved hypothetical Unknown

M. tub H37Rv M. bovis AF2122/97 M. tub CDC1551 M. tub 210 M. africanum Putative function Functional classification

0118 (Rv3784 326 aa – Rv3785 357 aa) 0128 MT3893 712 aa NT ICDS NAD-dependent epimerase/dehydratase Information pathway

M. tub CDC1551 M. bovis AF2122/97 M. tub H37Rv M. tub 210 M. africanum Putative function Functional classification

0057 (MT1806 820 aa – MT1807 94 aa) 0046 Rv1759c 914 aa NT NT PE_PGRS family protein PE/PPE

List of the 19 ICDSs common to M. tuberculosis H37Rv and CDC1551, the ICDSs common to M. tuberculosis H37Rv and M. bovis AF2122/97 and the ICDSs common to M. tuberculosis CDC1551 and M. 
bovis AF2122/97. ICDS number (variable, according to strain), the size of the predicted protein and its putative function are indicated. The genes that do not contain a frameshift in either M. tuberculosis 
strain 210 and in M. africanum and that correspond to a full-length ORF are noted "FL". "NT", not tested.
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tions and duplications had already been identified in the
BCG strain [29,30], but large amounts of additional infor-
mation have now been obtained from its genome
sequence. According to our investigation, M. bovis BCG
1173P2 contains 127 ICDSs in total, 9 of which are strain-
specific (Figure 1B). The 81 ICDSs common to the 3 other
isolates are also present in this strain (Table 1) and 35
ICDSs are common to the M. bovis strain. We detected
frameshift-containing genes in M. bovis AF2122/97 that
corresponded to full-length ORFs in M. bovis BCG
1173P2, suggesting that this M. bovis strain is not the
direct progenitor of the BCG vaccine (see Additional file
2).

Strain-specific ICDSs reflect newly acquired mutations and 
are a useful phylogenetic tool
Eighty-one ICDSs were common to all three strains, but
some were specific to one strain only: 12 for M. tuberculosis
H37Rv (see Additional file 3), 36 for CDC1551 (see Addi-
tional file 4) and 51 for M. bovis (see Additional file 2, Fig-
ure 1A). The proportion of ICDSs that were strain-specific
was highly variable. These ICDSs accounted for 10% of all
ICDSs in H37Rv, 26% in CDC1551 and 38% in M. bovis.
The much larger proportion of strain-specific ICDSs in
CDC1551 than in H37Rv strain is surprising, and we cur-
rently have no reasonable explanation for this phenome-
non. A plausible hypothesis is that the genome sequence
of CDC1551 strain has not been re-sequenced like the
H37Rv genome sequence [22,28]. Strain-specific
frameshift-containing genes most likely correspond to
mutations acquired after the divergence of these strains.
Like the common ICDSs, these events affected genes from
several classes, including "unknown or hypothetical
ORFs", "intermediary metabolism" and "cell wall, proc-
ess" (Additional files 2, 3 and 4). As stated above, few of
these strain-specific ICDSs may correspond to errors intro-
duced during the sequencing procedure [4,11], but such
errors would nonetheless have only a slight effect on the
overall outcome of the comparative analysis.

This study shows that the genome sequence of M. tubercu-
losis contains ICDSs that have been acquired during the
evolution of this species. The pool of ICDSs can be classi-
fied into ICDSs common to a set of strains or species and
ICDSs specific to a particular strain-lineage or strain,
revealing genetic differences between strains or species.

Using ICDS comparisons to type W-Beijing strains and 
other M. tuberculosis lineages
W-Beijing is a lineage of M. tuberculosis that has attracted
considerable attention. Indeed, strains of this lineage have
been implicated in severe outbreaks and have been shown
to have different genetic and phenotypic properties
[20,21,31]. The genome of a strain of the W-Beijing family
(strain 210) is currently sequenced but not yet fully

assembled; nevertheless it can be consulted in homology
searches. Consequently the total number of frameshift-
containing genes in this species and the full characteriza-
tion of specific ICDSs remain elusive. It is however possi-
ble to screen for the presence of ICDSs in this strain.

We first investigated whether the 81 frameshift-containing
genes common to all strains were also present in the
genome of strain 210. All 81 of these genes also contained
the same frameshift in strain 210, in agreement with the
data described above. This suggests that these 81
frameshift mutations were acquired before the divergence
of strain 210 from these other strains. We then investi-
gated the 19 genes containing frameshifts common to the
five strains of M. tuberculosis (H37Rv, CDC1551, Haarlem,
F11, C) but not to M. bovis. We found that eight of these
19 genes contain no frameshift in strain 210, and hence
corresponded to full-length ORFs (Table 2). Three genes
contained frameshifts corresponding to those observed in
strains CDC1551, H37Rv, Haarlem, F11 and C, but also
contained additional mutations in the corresponding
flanks (≤ 200 bp) of the original frameshift (Table 2). The
remaining 11 ICDSs corresponded to frameshift-contain-
ing genes common to all six TB strains examined
(CDC1551, H37Rv, Haarlem, F11, C, 210) and the events
were identical at the molecular level. Thus, the 19
frameshift-containing genes in the two TB strains
(CDC1551 and H37Rv) displayed polymorphism in
strain 210 and 11 of these identified ICDSs were common
to all six TB strains examined. Some of these ICDSs dis-
play no further mutation (the gene contains the
frameshift alone), whereas others have acquired addi-
tional mutations, contributing to the "pseudogenization"
process (data not shown).

We then investigated the eight ICDSs showing polymor-
phism in M. tuberculosis in 21 strains of the W-Beijing lin-
eage from several phylogenetic groups (Table 3). The eight
loci were amplified by PCR, sequenced and the nucleotide
sequence was compared with that of strains 210 and
H37Rv. In all W-Beijing strains tested, the eight genes
were full-length, with sequences 100% identical to that in
strain 210, excepted for the ICDS0085 where a non-dis-
ruptive SNP is present in the region. The W-Beijing lineage
is therefore a genetically homogeneous group with fewer
ICDSs in common with other TB strains.

To extend our analysis, we investigate the M. africanum
strain, which is currently sequenced at the Sanger centre.
Similarly to M. tuberculosis 210 strain, the M. africanum
genome is still at the assembly step, but can be neverthe-
less consulted on line. We investigated whether the 81
frameshift containing genes common to all strains tested
were also present in the M. africanum strain (Table 1). All
81 of these genes also contained a frameshift in M. africa-
Page 7 of 14
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Table 3: Analysis in 21 W-Beijing isolates of the 8 ICDSs of H37Rv strain corresponding to full-length ORFs in W-Beijing strain 210.

Finger print Tracking Number ICDS 0005 ICDS 0011 ICDS 0031 ICDS 0066 ICDS 0067 ICDS 0072 ICDS 0085 ICDS 0094

W-Beijing W 10648 FL FL FL FL FL FL NT FL
W 565 FL FL FL FL FL FL FL* FL
W4 10775 FL FL FL FL FL FL FL* FL
W14 3617 FL FL FL FL FL FL FL* FL
W26 10270 FL FL FL FL FL FL FL* FL
W69 5418 FL FL FL FL FL FL FL* FL
W88 7052 FL FL FL FL FL FL FL* FL
W130 6707 FL FL FL FL FL FL FL* FL
W148 8561 FL FL FL FL FL FL* FL* FL
W183 7657 FL FL FL FL FL FL NT FL
W215 8963 FL FL FL FL FL FL FL* FL
W342 10644 FL FL FL FL FL FL FL* FL

Ancestral W-Beijing N17 3046 FL FL FL FL FL FL FL* FL
LB 8128 FL FL FL FL FL FL FL* FL
AR 12360 FL FL FL FL FL FL FL* FL
AM 4948 FL FL FL FL FL FL FL* FL
CK 6595 FL FL FL FL FL FL FL* FL

CN1 16116 FL FL FL FL FL FL FL* FL
HE7 13454 FL FL FL FL FL FL FL* FL
HI 5116 FL FL FL FL FL FL FL* FL
KY 10583 FL FL NT FL FL FL FL* FL

AF/H37 lineage H37Rv ATCC25618 ICDS ICDS ICDS ICDS ICDS ICDS ICDS ICDS

M. bovis AF2122/97 FL FL FL FL FL FL FL FL

M. tuberculosis isolates from various lineages for which chromosomal DNA was used as a template for PCR amplification of the selected locus. "FL" indicates the presence of a full-
length ORF identical to that in the M. tuberculosis 210 strain, "*" indicates an additional mutation acquired in these isolates with respect to M. tuberculosis H37Rv, "NT", not tested.
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num, which suggests that these mutations were acquired
before the divergence of the M. tuberculosis complex. We
then investigated the 19 genes containing frameshift com-
mon to the 5 M. tuberculosis strains (CDC1551, H37Rv,
Haarlem, F11, C). We found that 15 out of these 19 genes
were deprived of the frameshift in M. africanum and corre-
sponded to full-length ORFs in this strain (Table 2). Eight
out of these 15 genes match the wild-type ORFs identified
in M. tuberculosis strain 210 and other strains of the W-Bei-
jing lineage. In conclusion, the genome of M. africanum
contains fewer ICDSs in common with the other TB iso-
lates (CDC1551, H37Rv, Haarlem, F11, C) than with the
W-Beijing strain and seems genetically closer to this line-
age.

ICDS formation is not correlated with mutation in the 
promoter region
It has been suggested that pseudogene formation is asso-
ciated with mutations in the upstream untranslated
region, abolishing pseudogene expression to prevent a

loss of metabolic function [32]. Once turned off, the gene
continues to accumulate mutations, leading to complete
pseudogene formation. ICDSs are not pseudogenes in the
strict sense of the word. Indeed, the ORF is split into only
two or three unframed fragments and can, in theory,
revert to a wild-type allele. ICDSs are therefore considered
to be ORFs undergoing "pseudogenization" rather than
pseudogenes per se. Strain-specific ICDSs are, by defini-
tion, genes that are mutated in one strain, but not in
another. We therefore investigated whether ICDS forma-
tion was correlated with mutation in the promoter region.
All the intergenic regions (99) located upstream from
strain-specific ICDSs of M. tuberculosis H37Rv, CDC1551
and M. bovis were compared with the corresponding
region in the two strains having a wild-type gene. We used
as a control the promoter region of randomly selected
genes that are full-length in these 3 strains. We compared
the level of differences observed in the promoter regions
of genes full-length or containing frameshift. Nucleotide
differences were observed in 27% of the upstream region

Hypothetical phylogenetic links assessed by comparative analyses of ICDSsFigure 2
Hypothetical phylogenetic links assessed by comparative analyses of ICDSs. In this schematic representation, the common 
ancestor gave rise to several branches of strains of the TB complex. Eighty-one frameshifts were acquired during the common 
evolution of M. bovis and M. tuberculosis. Since the separation of these species, M. bovis has acquired 51 frameshifts, while the 
branch leading to M. tuberculosis isolates has acquired 19 new frameshifts. Since separation of the isolates, M. tuberculosis H37Rv 
has acquired 12 new frameshifts and CDC1551 36 new frameshifts. Common and unique ICDSs are shown in dark and light 
gray, respectively. "*" these 8 ICDSs correspond to full-length ORF in M. tuberculosis 210 and in M. africanum GM041182. "**" 7 
out of these 11 ICDSs correspond to full-length ORF in M. africanum GM041182 (Table 2).

M. bovis BCG 1173P2

M. bovis AF2122/97

Common

ancestor
81 ICDS

11 ICDS **

36 ICDS

35 ICDS

M. tuberculosis CDC1551

M. tuberculosis H37Rv12 ICDS

pks 8/17, rocD1

narJ, glnA3…

pks 15/1, mmpL13…

pks 6, pknD, mmpL9…

pks 5, mycP2…

pks 3/4, sigM…

8 ICDS *

9 ICDS

18 ICDS

fadD11, esxM …
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of genes containing frameshift (see Additional file 5A),
while 20% was observed in the case of the full-length
genes (see Additional file 5B), which is not statistically sig-
nificant using the chi square test. In all but 6 cases for
ICDS and 2 cases for full-length genes, the difference in
the upstream region was limited to one or two SNPs.

We therefore conclude that ICDS formation is not corre-
lated with mutation in the untranslated upstream region
and suggest that either promoter mutations do not play a
major role in pseudogene formation in the M. tuberculosis
complex or that "pseudogenization" is recent.

Discussion
The presence of frameshift-containing genes in bacterial
genomes is well documented [1-3,33]. A few species can
bypass such frameshifts, but most do not, generally result-
ing in a loss of function.

We show here that ICDSs can be classified as "common to
all strains" or "strain-specific". The ICDSs common to all
strains probably correspond to mutations acquired before
the divergence of the strains, whereas strain-specific ICDSs
correspond to those acquired subsequently (Figure 2).
Mutations acquired after the speciation of M. tuberculosis
from M. bovis were also detected. We identified 19 ICDSs
common to the five M. tuberculosis strains (H37Rv,
CDC1551, Haarlem, F11 and C) but not to M. bovis, about
one-fifth of ICDSs common to all strains. Comparative
analyses of ICDSs help to characterize the phylogenetic
relationships between highly related strains and species
(Figure 2) and could be applied to any bacterial species for
which several genome sequences are available. In few
cases, ICDSs may correspond to fusion/fission of ortholo-
gous genes in other genomes. The detection of this kind of
events is due to the method of identification of ICDS but
remains however a minor inconvenience [3]. It is however
possible that a low percentage of specific ICDSs does cor-
respond to sequencing errors, inducing thus artifactual
phylogenetic relationships. Researchers should rese-
quence these regions before assuming that the ICDS cor-
responds to a frameshift acquisition. Several studies have
compared the genome sequences of M. tuberculosis
CDC1551 and H37Rv, using high-resolution genomics
techniques [18]. This has led to the definition of regions
containing large-sequence polymorphisms (LSPs, greater
than 10 bp) and single nucleotide polymorphisms
(SNPs). The SNPs have been investigated in more detail in
various clinical isolates, to draw up a global phylogeny of
M. tuberculosis [17]. Other molecular methods, such as
analyses of the deleted regions (deligotyping), variable
numbers of tandem repeats (VNTR), mycobacterial inter-
spersed repetitive unit (MIRU) and spoligotyping, have
helped to unravel global genomic sequence diversity in
this species [34-36]. These techniques are highly useful for

epidemiological studies, but as far provide little informa-
tion pertaining to genetic differences in terms of putative
function. In contrast, studies of regions of deletion (RD)
have proved useful for both global phylogeny and study
of a loss of phenotype in both M. tuberculosis and in M.
ulcerans [25,30,37].

Frameshift acquisition generally leads to a loss of func-
tion, as shown in a number of published studies. Loss-of-
function associated with the presence of a frameshift has
been reported in both M. tuberculosis and M. bovis. For
instance, ICDS0066 in M. tuberculosis H37Rv corresponds
to a frameshift-containing gene encoding a polyketide
synthase (pks1).  This pks1 gene also contains a frameshift
in M. tuberculosis CDC1551, resulting in two different
ORFs: pks1 and pks15. In contrast, M. bovis and M. leprae
carry a full-length functional pks1 gene [38]. The pks15/1
gene is now frequently used as a marker in epidemiologi-
cal studies [39,40] and, interestingly, the pks gene con-
tains no frameshift in the W-Beijing strains of M.
tuberculosis [40], resulting in phenolglycolipid production
in most cases [41]. Our analysis shows that the pks gene of
M. africanum is also full-length suggesting that this species
produces PGL. This observation suggests that these early
strains are more closely related to M. bovis or to the last
ancestor than other M. tuberculosis strains. Similarly,
ICDS0067 in M. bovis corresponds to a putative
frameshift-containing glycosyltransferase gene. The
ortholog of this gene has no frameshift in the two strains
of M. tuberculosis (Rv2958c and MT3034). Functional
complementation of M. bovis BCG with the Rv2958c gene
from M. tuberculosis leads to the accumulation of a new
metabolite, the diglycosylated phenolglycolipid [42].
Some frameshift-containing genes have been studied
experimentally in M. tuberculosis, without considering the
possibility that these ORFs may well contain frameshift
[43,44]. Mutation by homologous recombination has
been achieved at the mntH and mmpL13 loci. In both
cases, no detectable phenotype was associated with the
mutation. Our data indicate that MmpL13 function
should be investigated in a W-Beijing strain or in M. afri-
canum. Another example that has not yet been studied is
the pks3 and pks4 genes of M. tuberculosis H37Rv, which
constitute a single ORF in CDC1551 and in M. bovis. This
suggests that – like the pks1 and pks15 genes, which are
pseudogenes in M. tuberculosis – the pks3 and pks4 genes
are probably not functional in the H37Rv strain. It would
therefore be pointless to investigate function in the
H37Rv strain by creating mutants in pks3 and pks4 genes
or by expressing constructs encoding the corresponding
polypeptides. These examples from previous publications
illustrate the major biological impact of frameshift acqui-
sition. They demonstrate the importance of choosing the
right strain or species for investigations of the function of
a particular gene. However, it is not always possible to
Page 10 of 14
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infer from the position of the frameshift whether the pro-
tein's activity will be affected. For instance, GlnA3, a
glutamine synthetase generated from a frameshift-con-
taining gene (Table 1), has been purified and shown to
retain some activity [45]. It would be interesting to
reframe these ORFs to test the impact of frameshift on
protein function. On the other hand, it has been shown in
silico that protein-coding sequences can be tolerant of
frameshift translation events and thus that frameshit
acquisition is an important reservoir for creating novel
proteins [46]. Several of the truncated ORFs described
here have also been detected in other studies, based on
different analyses [17,18,40,47,48]. However, we present
here a comprehensive comparative analysis of three
related mycobacterial species and nine strains at the ICDS
level.

We found no association between ICDS formation and
mutation in the promoter region of the corresponding
ORF. This suggests that promoter mutation and inactiva-
tion of gene expression are not the principal source of
ICDS formation and hence of pseudogene accumulation
in the M. tuberculosis complex. It may also suggest that
ICDS formation in these species is a recent process. We
favor the hypothesis that ORFs are first split into two or
three parts, inactivating their function, and are then sub-
ject to secondary mutation (in both the ICDS and the
untranslated region), leading to irreversible pseudogene
fixation. Consistent with this hypothesis, we have
observed additional mutations in the vicinity of the origi-
nal frameshift in some strains.

We have shown that ICDS investigation can be used to
infer the evolutionary relationships between strains and
species. We provide here a list of more than 150 ICDSs
that may be useful for characterizing TB strains and infer-
ring phylogenetic relationships. The genome sequences of
more than 10 TB strains will be released in the near future
[26], and will, by no doubt, identify some new common
and strain-specific ICDSs. Strain typing should clearly
combine various markers, such as SNPs, MIRU, LSPs, RD,
PE polymorphism [49] and ICDSs, in a matrix-based com-
parison from which the global phylogeny of TB isolates
may be deduced. The polymorphism associated with
these mutations is complementary to other methods
[17,34,36,37,50], hence can be used to explore genetic
diversity within a given species. Interestingly, in strain
210, from the W-Beijing family, eight of the 19 ICDSs
common to the five M. tuberculosis strains tested (H37Rv,
CDC1551, Haarlem, F11, C) corresponded to full-length
ORFs, illustrating its earlier divergence. Some of these
genes may be involved in virulence, as they concern func-
tions such as host cell invasion (ICDS0011 of H37Rv),
lipid biosynthesis (ICDS0066 and ICDS0031 of H37Rv)
and intermediary metabolism (ICDS0085 of H37Rv). To

test whether this trait was a particularity of the 210 strain
or applied more generally to the W-Beijing phylum, we
sequenced these eight ORF that were full-length in this
strain in 21 other clinical isolates of the W-Beijing (Table
3). In all cases, the ORF were corresponding to a full-
length ORF and not to an ICDS, demonstrating that these
strains are genetically homogenous. The analysis per-
formed using a strain of M. africanum showed that this
species is characterized by an even fewer number of ICDSs
common to M. tuberculosis H37Rv and CDC1551 than to
the W-Beijing strains. More genome sequences of various
strains and species are required for characterization of the
genetic differences between the W-Beijing strains and
other species of the M. tuberculosis complex. The alkA gene
has been shown to contain frameshift in both M. bovis and
some M. tuberculosis isolates from Central African Repub-
lic [48]. The presence of SNPs in the adjacent region of the
non-sense mutation has led the authors to propose a con-
vergent evolution. Although, it probably depends from
genes to genes, we instead favor the hypothesis that the
non-sense mutation was acquired by the ancestor and
spread to the progeny with acquisition of subsequent
mutations in the adjacent region. Epidemiologists should
bear in mind that a small percentage of ICDSs may corre-
spond to sequencing errors [4,11], generating artifactual
genetic differences. Our analysis did not allow for the
detection of mutations in which the frame of the coding
sequence was conserved (synonymous mutation, in frame
deletion), decreasing the total level of diversity observed.
However, comparative ICDS analysis presents the major
advantage of making it possible to associate the frameshift
with a putative function and, possibly, with a particular
phenotype. In conclusion, more attention should be paid
to ICDS detection and comparison, particularly at the
genomic scale.

Conclusion
We report here a comparative analysis of ICDSs in six iso-
lates of M. tuberculosis, two of M. bovis and one of M. afri-
canum. We show that these ICDSs can be classified as
"common to all strains" or "strain-specific". Common
ICDSs result from mutations acquired before the diver-
gence of the species, whereas strain-specific ICDSs were
acquired after this divergence. Comparative analyses of
these ICDSs allow the definition of the molecular signa-
ture of a particular strain, phylogenetic lineage or species.
We further show that ICDS formation is not correlated
with the presence of a mutated promoter, and suggest that
promoter extinction is not the main cause of pseudogene
formation. The correlation between ICDSs, function and
phenotypes could have important evolutionary implica-
tions and provides population geneticists with a list of tar-
gets, which could undergo selective pressure and thus
alters relationships between the various lineages of M.
tuberculosis strains and their host.
Page 11 of 14
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Methods
Databases
The genome sequences of M. tuberculosis H37Rv and
CDC1551 and M. bovis AF2122/97 were taken from TIGR
website [51]. The genome sequences of M. tuberculosis
strains 210 or F11, C and Haarlem have been consulted
on the TIGR or Broad Institute websites [52]. The genome
sequence of M. bovis BCG 1173P2 has been taken from
National Center for Biotechnology Information (NCBI)
website (accession number, AM408590). The genome
sequence of M. africanum GM041182 was consulted on
line at the Sanger centre [53].

Detection of common ICDS
The genomic sequences of M. tuberculosis CDC1551, M.
tuberculosis H37Rv, M. bovis AF2122/97 and M. bovis BCG
1173P2 have been scanned for couple of adjacent coding
sequences that exhibit common homologs after transla-
tion. Such pair of coding sequences is considered as an
ICDS if no paralogy relationship exists between the two
coding sequences. The detailed description of ICDS detec-
tion is described in [3]. The ICDSs detected in each strain
were then cross-compared by all-against-all blastn
searches. For each ICDS, the best hits (E < 10-65) detected
in the different strains were manually analysed to discrim-
inate common and strain-specific ICDS.

Sequencing analysis
Chromosomal DNA of M. tuberculosis isolates from vari-
ous lineages (Table 3) was used as a template for PCR
amplification of the selected locus. The primers used to
amplify and sequence were designed as previously
described [3], using an optimized version of CADO4MI
[54]. The nucleotide and deduced amino-acid sequences
were analyzed with DNA Strider [55].

Promoter analysis
A region of 200 bp upstream the initiation codon was
extracted for each of the 99 ICDSs specific to M. tuberculo-
sis H37Rv, CDC1551 and M. bovis AF2122/97 (Additional
files 2, 3 and 4). As a control group, 200 bp upstream the
initiation codon was extracted for 99 genes (full-length)
randomly selected from M. tuberculosis H37Rv. These 99
genes are full-length in M. tuberculosis H37Rv, CDC1551
and M. bovis AF2122/97. In each case (promoter to be
tested and control group), the promoter regions of the 3
strains were aligned using ClustalW [56] and the sequence
variation was recorded. The number of differences
observed in the upstream region was statistically com-
pared using the Chi2 test.

Statistical analysis
The statistical significance of the distribution of the fre-
quency of sequence polymorphism observed in the
upstream ICDS regions and upstream full-length regions,

was tested using a Chi square test (X2). The chi square test
is used to determine relationship between two distribu-
tions. The calculated values were obtained: X2: 1,367, df:
1, P value: 0.2423, hence the difference between 2 groups
are not statistically significant (α < 0.05).

Abbreviations
ICDS, Interrupted CoDing Sequence. ORF, Open Reading
Frame.
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