2114 independent reflections 1826 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.034$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-[2-(4-Nitrophenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione

## Carlos Bustos,<sup>a</sup> Luis Alvarez-Thon,<sup>b</sup>\* Daniela Barría,<sup>a</sup> Maria Teresa Garland<sup>c</sup> and Christian Sánchez<sup>a</sup>

<sup>a</sup>Instituto de Ciencias Químicas, Universidad Austral de Chile, Avenida Los Robles s/ n, Campus Isla Teia, Casilla 567, Valdivia, Chile, <sup>b</sup>Departamento de Ciencias Físicas. Universidad Andres Bello, Avenida República 220, Santiago de Chile, Chile, and <sup>c</sup>Laboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile Correspondence e-mail: lalvarez@unab.cl

Received 19 May 2011; accepted 1 June 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.084; data-to-parameter ratio = 8.2.

In the molecular structure of the title compound,  $C_{21}H_{15}N_3O_4$ , the interplanar angle between the benzovl units is  $89.7 (1)^{\circ}$ . The corresponding angles between the phenylhydrazono and the benzovl groups are 31.4 (3) and 60.8 (2) $^{\circ}$ , respectively. In the crystal, a strong resonance-assisted intramolecular hydrogen bond  $(N-H \cdots O)$  and a weak intramolecular hydrogen bond  $(C-H \cdots N)$  strongly affect the observed conformation of the molecule. The crystal packing is determined by a strong intermolecular hydrogen bond (N- $H \cdots O$ ), giving rise to a helical chain along the *a* axis. In addition, two weak intermolecular contacts (C-H···O) are observed.

#### **Related literature**

For details of the synthesis, see: Bustos et al. (2007, 2009); Yao (1964). For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1993, 1994); Bustos et al. (2011).



#### **Experimental**

#### Crystal data

| $C_{21}H_{15}N_3O_4$       | V = 1790.9 (3) Å <sup>3</sup>                |
|----------------------------|----------------------------------------------|
| $M_r = 373.36$             | Z = 4                                        |
| Orthorhombic, $P2_12_12_1$ | Mo $K\alpha$ radiation                       |
| a = 8.2994 (7) Å           | $\mu = 0.10 \text{ mm}^{-1}$                 |
| b = 8.6250 (7) Å           | T = 150  K                                   |
| c = 25.018 (2) Å           | $0.30 \times 0.28 \times 0.12 \ \mathrm{mm}$ |
|                            |                                              |

#### Data collection

| Bruker D8 Discover with SMART |
|-------------------------------|
| CCD area-detector             |
| diffractometer                |
| 13939 measured reflections    |

#### Refinement

| $R[F^{2} > 2\sigma(F^{2})] = 0.034$ | H atoms treated by a mixture of                          |
|-------------------------------------|----------------------------------------------------------|
| wR(F^{2}) = 0.084                   | independent and constrained                              |
| S = 1.00                            | refinement                                               |
| 2114 reflections                    | $\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$      |
| 257 parameters                      | $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ |

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                    | D-H                                          | $H \cdot \cdot \cdot A$                      | $D \cdots A$                                                  | $D - \mathbf{H} \cdots A$                  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
| $N2-H1\cdots O2$<br>$N2-H1\cdots O1^{i}$<br>$C5-H5\cdots O3^{ii}$<br>$C15-H15\cdots N1$<br>$C20-H20\cdots O2^{iii}$ | 0.96 (3)<br>0.96 (3)<br>0.95<br>0.95<br>0.95 | 2.25 (3)<br>2.15 (2)<br>2.60<br>2.42<br>2.44 | 2.793 (2)<br>2.956 (2)<br>3.419 (3)<br>2.849 (3)<br>3.352 (2) | 115.3 (19)<br>142 (2)<br>145<br>107<br>161 |
| Symmetry codes:<br>$z + \frac{1}{2}, -y + \frac{1}{2}, -z.$                                                         | (i) $x + \frac{1}{2}, -y$                    | $v + \frac{3}{2}, -z;$ (ii)                  | $-x + \frac{3}{2}, -y +$                                      | $1, z - \frac{1}{2};$ (iii)                |

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

The authors thank the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06-10-R) for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2291).

#### References

Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.

Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994). Acta Cryst. B50, 617-625. Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.

Bustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigments, 74, 615-621.

Bustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267-268.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yao, H. C. (1964). J. Org. Chem. 29, 2959-2962.

Acta Cryst. (2011). E67, o1587 [doi:10.1107/S1600536811021143]

## 2-[2-(4-Nitrophenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione

### C. Bustos, L. Alvarez-Thon, D. Barría, M. T. Garland and C. Sánchez

#### Comment

The crystal structure of 2-[(4-nitro-phenyl)-hydrazono]-1,3-diphenyl-propane-1,3-dione is reported. This compound belongs to a family that contain a six-membered  $\pi$ -conjugated ring closed *via* strong intramolecular resonance assisted hydrogen bonds, N–H···O, RAHB (Resonance Assisted Hydrogen Bond) which, *inter alia*, could have remarkable importance as bistate in molecular switches (Bertolasi *et al.*, 1993; Bertolasi *et al.*, 1994; Bustos *et al.*, 2011). On the other hand, it is well known that the phenyl diazonium salts are capable of coupling with a series of  $\beta$ -diketonate anions to give  $\beta$ -diketohydrazones containing N–H···O moieties (Yao, 1964; Bustos *et al.*, 2007; Bustos *et al.*, 2009). Using this reaction (Yao, 1964) we have prepared the title compound.

The molecular structure of the title compound,  $C_{21}H_{15}N_3O_4$ , exhibits a strong intramolecular hydrogen bond (N2–H1···O2) and a weak intramolecular hydrogen bond (C15–H15···N1) (Fig. 1 and Tab. 1). In the crystal structure, strong intermolecular hydrogen bonds (N2–H1···O1<sup>i</sup>) link the molecules into helical chains along the *a* axis, which may be the reason why the title compound crystallizes in the chiral space group  $P_{21}2_{12}1_2$  (see Fig. 2 and Tab. 1), [symmetry code: (i) x + 1/2, -y + 3/2, -z]. On the other hand, weak intermolecular contacts of the type C5–H5···O3<sup>ii</sup> and C20–H20···O2<sup>iii</sup>, further stabilize the crystal packing to construct the entire three-dimensional network, see Fig. 3 and Tab. 1, [symmetry codes: (ii) -x + 3/2, -y + 1, -1/2 + z; (iii) x + 1/2, -y + 1/2, -z]. The interplanar angle between the benzoyl moieties is 89.7 (1)°. The corresponding angles between the phenyl-hydrazono and the benzoyl groups, are 31.4 (3)° and 60.8 (2)°, respectively.

#### **Experimental**

In a 500 ml flask, 2.24 g (0.01 mole) of 1,3-diphenylpropane-1,3-dione were dissolved in 100 ml of a ethanolic solution that contained 0.4 g (0.01 mole) of sodium hydroxide and 3.65 g (0.045 mole) of sodium acetate. The resulting  $\beta$ -diketonate solution was diluted with water to a final volume of about 220 ml, stirred and cooled at 268 K. In another 50 ml beaker a diazonium ion solution was prepared adding 1.39 g (0.01 mole) of 4-nitroaniline (99%) in 8 ml of hydrochloric acid (5 mol/*L*), cooling at 268 K, and adding a saturated aqueous solution containing 0.69 g (0.01 mole) of sodium nitrite. The diazonium salt solution was then added dropwise with vigorous stirring at 268 K into the  $\beta$ -diketonate solution. During the addition a yellow solid precipitate of the title compound was formed which was filtered by suction, washed with an abundant quantity of water and dried in the vacuum at 313 K (Yield: 91% of crude product). Single crystals suitable for X-ray studies were obtained by recrystallization from ethanol.

#### Refinement

All hydrogen atoms were found in difference Fourier maps. The hydrogen attached to N2 was refined freely against the diffraction data, but all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ . In the absence of significant anomalous dispersion effects Friedel pairs were also merged.

**Figures** 



Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The strong intramolecular hydrogen bond (N2–H1…O2) is depicted with dashed lines.



Fig. 2. Perspective view along the *b* axis showing the formation of a zigzag chain, along the *a* axis, linked by strong intermolecular hydrogen bonds, N2–H1…O1<sup>i</sup> (dashed lines), [symmetry code: (i) x + 1/2, -y + 3/2, -z].

Fig. 3. Perspective view along the *b* axis showing the formation of a chain, along the *c* axis, linked by weak intermolecular contacts (C5–H5···O3<sup>ii</sup> and C20–H20···O2<sup>iii</sup>), [symmetry codes: (ii) -x + 3/2, -y + 1, -1/2 + z; (iii) x + 1/2, -y + 1/2, -z].

## 2-[2-(4-Nitrophenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione

| Crystal data                 |                                                       |
|------------------------------|-------------------------------------------------------|
| $C_{21}H_{15}N_3O_4$         | F(000) = 776                                          |
| $M_r = 373.36$               | $D_{\rm x} = 1.385 {\rm ~Mg~m}^{-3}$                  |
| Orthorhombic, $P2_12_12_1$   | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab       | Cell parameters from 999 reflections                  |
| a = 8.2994 (7) Å             | $\theta = 1.6-26.4^{\circ}$                           |
| b = 8.6250 (7) Å             | $\mu = 0.10 \text{ mm}^{-1}$                          |
| c = 25.018 (2) Å             | T = 150  K                                            |
| $V = 1790.9 (3) \text{ Å}^3$ | Polyhedron, yellow                                    |
| Z = 4                        | $0.30 \times 0.28 \times 0.12 \text{ mm}$             |

Data collection

| Bruker D8 Discover with SMART CCD area-detect- |                                                                           |
|------------------------------------------------|---------------------------------------------------------------------------|
| OF LISS AND A                                  | 1826 reflections with $I > 2\sigma(I)$                                    |
| diffractometer                                 |                                                                           |
| Radiation source: fine-focus sealed tube       | $R_{\rm int} = 0.034$                                                     |
| graphite                                       | $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$ |
| $\varphi$ and $\omega$ scans                   | $h = -10 \rightarrow 10$                                                  |
| 13939 measured reflections                     | $k = -10 \rightarrow 10$                                                  |
| 2114 independent reflections                   | $l = -31 \rightarrow 31$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods            |
|---------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                      |
| $R[F^2 > 2\sigma(F^2)] = 0.034$ | Hydrogen site location: inferred from neighbouring sites                  |
| $wR(F^2) = 0.084$               | H atoms treated by a mixture of independent and constrained refinement    |
| <i>S</i> = 1.00                 | $w = 1/[\sigma^2(F_0^2) + (0.0526P)^2]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 2114 reflections                | $(\Delta/\sigma)_{max} \leq 0.001$                                        |
| 257 parameters                  | $\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$                       |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$                  |

### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У             | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|---------------|--------------|---------------------------|
| 01  | 0.44608 (18) | 0.97963 (18)  | 0.03744 (5)  | 0.0389 (5)                |
| O2  | 0.5740 (2)   | 0.61910 (18)  | -0.03732 (6) | 0.0466 (6)                |
| O3  | 1.0083 (2)   | 0.13731 (18)  | 0.24696 (6)  | 0.0465 (5)                |
| O4  | 1.04378 (19) | -0.02554 (17) | 0.18195 (6)  | 0.0388 (5)                |
| N1  | 0.6619 (2)   | 0.65447 (19)  | 0.07404 (7)  | 0.0296 (5)                |
| N2  | 0.7292 (2)   | 0.5252 (2)    | 0.05629 (7)  | 0.0334 (6)                |
| N3  | 0.9963 (2)   | 0.1000 (2)    | 0.19940 (7)  | 0.0337 (6)                |
| C1  | 0.6762 (2)   | 0.8692 (2)    | -0.05394 (8) | 0.0276 (6)                |
| C2  | 0.7655 (2)   | 0.9941 (3)    | -0.03441 (8) | 0.0316 (6)                |
| C3  | 0.8288 (3)   | 1.1021 (3)    | -0.06939 (9) | 0.0386 (7)                |
| C4  | 0.8022 (3)   | 1.0870 (3)    | -0.12373 (9) | 0.0398 (8)                |
| C5  | 0.7127 (3)   | 0.9651 (3)    | -0.14324 (8) | 0.0399 (7)                |
| C6  | 0.6502 (3)   | 0.8551 (3)    | -0.10873 (8) | 0.0339 (7)                |
| C7  | 0.6156 (3)   | 0.7439 (2)    | -0.01897 (8) | 0.0302 (6)                |
| C8  | 0.6125 (2)   | 0.7616 (2)    | 0.04127 (7)  | 0.0289 (6)                |
| C9  | 0.5292 (2)   | 0.8954 (2)    | 0.06604 (7)  | 0.0282 (6)                |
| C10 | 0.5405 (2)   | 0.9243 (2)    | 0.12510 (7)  | 0.0272 (6)                |

| C11 | 0.4112 (3) | 0.9999 (3) | 0.14872 (8) | 0.0353 (7) |
|-----|------------|------------|-------------|------------|
| C12 | 0.4119 (3) | 1.0314 (3) | 0.20280 (8) | 0.0436 (8) |
| C13 | 0.5415 (3) | 0.9878 (3) | 0.23385 (8) | 0.0404 (7) |
| C14 | 0.6709 (3) | 0.9125 (3) | 0.21065 (8) | 0.0348 (7) |
| C15 | 0.6721 (3) | 0.8826 (2) | 0.15632 (8) | 0.0303 (6) |
| C16 | 0.7912 (3) | 0.4192 (2) | 0.09311 (8) | 0.0300 (6) |
| C17 | 0.7726 (3) | 0.4409 (2) | 0.14817 (8) | 0.0331 (7) |
| C18 | 0.8404 (3) | 0.3353 (2) | 0.18280 (8) | 0.0331 (6) |
| C19 | 0.9223 (2) | 0.2091 (2) | 0.16230 (8) | 0.0289 (6) |
| C20 | 0.9391 (3) | 0.1843 (2) | 0.10811 (8) | 0.0336 (7) |
| C21 | 0.8739 (3) | 0.2911 (2) | 0.07362 (8) | 0.0340 (7) |
| H1  | 0.752 (3)  | 0.511 (3)  | 0.0191 (10) | 0.052 (7)* |
| H2  | 0.78270    | 1.00480    | 0.00290     | 0.0380*    |
| H3  | 0.89040    | 1.18660    | -0.05610    | 0.0460*    |
| H4  | 0.84600    | 1.16120    | -0.14770    | 0.0480*    |
| Н5  | 0.69380    | 0.95640    | -0.18060    | 0.0480*    |
| Н6  | 0.58980    | 0.77020    | -0.12230    | 0.0410*    |
| H11 | 0.32160    | 1.03010    | 0.12750     | 0.0420*    |
| H12 | 0.32290    | 1.08320    | 0.21870     | 0.0520*    |
| H13 | 0.54190    | 1.00940    | 0.27110     | 0.0480*    |
| H14 | 0.75950    | 0.88110    | 0.23210     | 0.0420*    |
| H15 | 0.76270    | 0.83370    | 0.14040     | 0.0360*    |
| H17 | 0.71400    | 0.52720    | 0.16150     | 0.0400*    |
| H18 | 0.83090    | 0.34900    | 0.22030     | 0.0400*    |
| H20 | 0.99430    | 0.09560    | 0.09500     | 0.0400*    |
| H21 | 0.88550    | 0.27720    | 0.03610     | 0.0410*    |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0424 (8)  | 0.0457 (9)  | 0.0285 (8)  | 0.0103 (8)   | -0.0056 (7) | 0.0023 (7)   |
| O2  | 0.0727 (12) | 0.0396 (9)  | 0.0274 (8)  | -0.0174 (9)  | -0.0043 (8) | -0.0027 (7)  |
| O3  | 0.0627 (11) | 0.0466 (9)  | 0.0301 (8)  | 0.0086 (9)   | -0.0044 (7) | 0.0013 (8)   |
| O4  | 0.0404 (8)  | 0.0306 (8)  | 0.0454 (9)  | 0.0061 (7)   | 0.0028 (7)  | -0.0011 (7)  |
| N1  | 0.0347 (10) | 0.0272 (9)  | 0.0269 (9)  | -0.0012 (8)  | 0.0029 (8)  | -0.0008 (8)  |
| N2  | 0.0467 (11) | 0.0303 (10) | 0.0233 (9)  | 0.0025 (9)   | 0.0042 (8)  | -0.0018 (8)  |
| N3  | 0.0341 (10) | 0.0334 (10) | 0.0337 (10) | -0.0014 (8)  | 0.0013 (8)  | 0.0006 (8)   |
| C1  | 0.0298 (11) | 0.0284 (11) | 0.0245 (10) | 0.0024 (9)   | 0.0007 (8)  | -0.0015 (9)  |
| C2  | 0.0380 (11) | 0.0327 (11) | 0.0241 (10) | 0.0008 (10)  | -0.0010 (9) | -0.0020 (10) |
| C3  | 0.0443 (13) | 0.0333 (12) | 0.0382 (12) | -0.0054 (11) | 0.0038 (11) | -0.0016 (10) |
| C4  | 0.0497 (14) | 0.0363 (13) | 0.0333 (12) | -0.0016 (11) | 0.0087 (11) | 0.0063 (10)  |
| C5  | 0.0500 (14) | 0.0477 (14) | 0.0221 (10) | -0.0011 (12) | 0.0013 (10) | 0.0009 (10)  |
| C6  | 0.0390 (12) | 0.0362 (12) | 0.0264 (10) | -0.0011 (11) | -0.0004 (9) | -0.0039 (9)  |
| C7  | 0.0324 (11) | 0.0323 (11) | 0.0259 (11) | -0.0023 (10) | -0.0030 (9) | -0.0023 (10) |
| C8  | 0.0325 (11) | 0.0302 (11) | 0.0240 (10) | -0.0036 (9)  | 0.0001 (9)  | 0.0007 (9)   |
| C9  | 0.0273 (10) | 0.0313 (11) | 0.0259 (10) | -0.0028 (9)  | -0.0010 (8) | 0.0017 (9)   |
| C10 | 0.0298 (10) | 0.0256 (10) | 0.0262 (10) | -0.0028 (9)  | 0.0012 (9)  | 0.0013 (9)   |
| C11 | 0.0324 (11) | 0.0431 (13) | 0.0304 (11) | 0.0050(11)   | -0.0039 (9) | -0.0004 (10) |

| C12                  | 0.0352 (12)              | 0.0642 (16) | 0.0315 (11) | 0.0047 (12)        | 0.0038 (10) | -0.0072 (12) |
|----------------------|--------------------------|-------------|-------------|--------------------|-------------|--------------|
| C13                  | 0.0428 (13)              | 0.0565 (14) | 0.0218 (10) | -0.0043 (12)       | 0.0000 (9)  | -0.0029 (10) |
| C14                  | 0.0349 (12)              | 0.0398 (12) | 0.0296 (11) | -0.0040 (10)       | -0.0066 (9) | 0.0035 (10)  |
| C15                  | 0.0322 (11)              | 0.0285 (11) | 0.0302 (11) | -0.0016 (9)        | -0.0013 (9) | -0.0015 (9)  |
| C16                  | 0.0377 (12)              | 0.0256 (11) | 0.0268 (10) | -0.0048 (9)        | 0.0039 (9)  | 0.0014 (9)   |
| C17                  | 0.0433 (13)              | 0.0286 (11) | 0.0275 (10) | 0.0024 (10)        | 0.0073 (9)  | -0.0012 (9)  |
| C18                  | 0.0451 (12)              | 0.0300 (11) | 0.0241 (10) | -0.0003 (10)       | 0.0056 (10) | -0.0012 (9)  |
| C19                  | 0.0337 (11)              | 0.0242 (10) | 0.0288 (10) | -0.0039 (9)        | 0.0021 (9)  | 0.0014 (9)   |
| C20                  | 0.0420 (12)              | 0.0271 (11) | 0.0318 (11) | -0.0001 (10)       | 0.0055 (10) | -0.0035 (9)  |
| C21                  | 0.0470 (13)              | 0.0309 (11) | 0.0242 (10) | -0.0020 (11)       | 0.0059 (10) | -0.0056 (9)  |
| Geometric param      | neters (Å, °)            |             |             |                    |             |              |
| O1—C9                |                          | 1.231 (2)   | C13—        | -C14               | 1.38        | 3 (3)        |
| O2—C7                |                          | 1.220 (2)   | C14—        | -C15               | 1.38        | 34 (3)       |
| O3—N3                |                          | 1.237 (2)   | C16—        | -C21               | 1.38        | 9(3)         |
| O4—N3                |                          | 1.232 (2)   | C16—        | -C17               | 1.39        | 9 (3)        |
| N1—N2                |                          | 1.324 (2)   | C17—        | -C18               | 1.37        | 7 (3)        |
| N1—C8                |                          | 1.302 (2)   | C18—        | -C19               | 1.38        | 32 (3)       |
| N2—C16               |                          | 1.396 (3)   | C19—        | -C20               | 1.38        | 30 (3)       |
| N3—C19               |                          | 1.457 (3)   | C20—        | -C21               | 1.37        | (3)          |
| N2—H1                |                          | 0.96 (3)    | C2—H        | 12                 | 0.95        | 00           |
| C1—C6                |                          | 1.393 (3)   | C3—I        | 13                 | 0.95        | 000          |
| C1—C7                |                          | 1.479 (3)   | C4—I        | 14                 | 0.95        | 00           |
| C1—C2                |                          | 1.396 (3)   | C5—I        | 15                 | 0.95        | 00           |
| C2—C3                |                          | 1.382 (3)   | C6—I        | 16                 | 0.95        | 00           |
| C3—C4                |                          | 1.383 (3)   | C11—        | -H11               | 0.95        | 00           |
| C4—C5                |                          | 1.377 (4)   | C12—        | -H12               | 0.95        | 00           |
| C5—C6                |                          | 1.384 (3)   | C13—        | -H13               | 0.95        | 00           |
| С7—С8                |                          | 1.515 (3)   | C14—        | -H14               | 0.95        | 00           |
| С8—С9                |                          | 1.481 (2)   | C15—        | -H15               | 0.95        | 00           |
| C9—C10               |                          | 1.501 (2)   | C17—        | -H17               | 0.95        | 00           |
| C10-C11              |                          | 1.388 (3)   | C18—        | -H18               | 0.95        | 00           |
| C10-C15              |                          | 1.390 (3)   | C20—        | -H20               | 0.95        | 00           |
| C11—C12              |                          | 1.380 (3)   | C21—        | -H21               | 0.95        | 00           |
| C12—C13              |                          | 1.379 (3)   |             | vi                 |             |              |
| 01C1                 |                          | 3.128 (2)   | C15         | C19 <sup>x1</sup>  | 3.50        | 02 (3)       |
| 01…C2                |                          | 3.205 (2)   | C15         | O4 <sup>xi</sup>   | 3.24        | 9(3)         |
| $O1 \cdots C7^{1}$   |                          | 3.384 (3)   | C15         | N1                 | 2.84        | .9 (3)       |
| 01…02 <sup>i</sup>   |                          | 3.203 (2)   | C16…        | C6 <sup>iii</sup>  | 3.58        | 30 (3)       |
| $O1 \cdots N2^{1}$   | $\cdot N2^{1}$ 2.956 (2) |             | C18…        | O3 <sup>x11</sup>  | 3.38        | 34 (2)       |
| O2…N2                |                          | 2.793 (2)   | C19         | C15 <sup>vi</sup>  | 3.50        | 2 (3)        |
| O2…C2 <sup>i</sup>   |                          | 3.276 (2)   | C19         | C14 <sup>vi</sup>  | 3.51        | 6 (3)        |
| O2…C20 <sup>ii</sup> |                          | 3.352 (2)   | C20         | O2 <sup>viii</sup> | 3.35        | 2 (2)        |
| O2…N1                |                          | 2.896 (2)   | СЗ…Н        | 21 <sup>xi</sup>   | 3.08        | 800          |
| O2…O1 <sup>iii</sup> |                          | 3.203 (2)   | С4…Н        | 13 <sup>xiii</sup> | 3.05        | 00           |
| O3…C18 <sup>iv</sup> |                          | 3.384 (2)   | С5…Н        | 13 <sup>xiii</sup> | 2.96        | 00           |

| O3···C5 <sup>v</sup>  | 3.419 (3) | C7…H1                    | 2.50 (3) |
|-----------------------|-----------|--------------------------|----------|
| O4…C15 <sup>vi</sup>  | 3.249 (3) | C8…H15                   | 2.8400   |
| O4…C11 <sup>vii</sup> | 3.168 (3) | C8…H2                    | 2.7000   |
| O4…C12 <sup>vii</sup> | 3.138 (3) | С9…Н2                    | 2.7900   |
| O4…C14 <sup>vi</sup>  | 3.222 (3) | C11····H4 <sup>xiv</sup> | 2.9700   |
| O1…H1 <sup>i</sup>    | 2.15 (2)  | C12····H4 <sup>xiv</sup> | 3.0400   |
| 01H21 <sup>i</sup>    | 2.8300    | С15…Н17                  | 3.0900   |
| O1…H11                | 2.5200    | H1…O2                    | 2.25 (3) |
| O2…H2 <sup>i</sup>    | 2.7800    | H1…C7                    | 2.50 (3) |
| O2…H20 <sup>ii</sup>  | 2.4400    | H1…H21                   | 2.3400   |
| O2…H1                 | 2.25 (3)  | H1…O1 <sup>iii</sup>     | 2.15 (2) |
| O2…H6                 | 2.5000    | H2…C8                    | 2.7000   |
| O3…H14 <sup>iv</sup>  | 2.9000    | H2…C9                    | 2.7900   |
| O3…H12 <sup>vii</sup> | 2.7400    | H2…O2 <sup>iii</sup>     | 2.7800   |
| O3…H18                | 2.4400    | H3…H21 <sup>xi</sup>     | 2.4400   |
| $O3 \cdots H5^{v}$    | 2.6000    | H4···C11 <sup>xv</sup>   | 2.9700   |
| O4…H11 <sup>vii</sup> | 2.7200    | H4····C12 <sup>xv</sup>  | 3.0400   |
| O4…H12 <sup>vii</sup> | 2.6600    | H5····O3 <sup>ix</sup>   | 2.6000   |
| O4…H14 <sup>vi</sup>  | 2.7900    | H5…H13 <sup>xiii</sup>   | 2.5200   |
| O4…H15 <sup>vi</sup>  | 2.8300    | Н6…О2                    | 2.5000   |
| O4…H20                | 2.4500    | H6…O4 <sup>ii</sup>      | 2.6100   |
| O4…H6 <sup>viii</sup> | 2.6100    | H11…O1                   | 2.5200   |
| O4…H18 <sup>iv</sup>  | 2.8700    | H11····O4 <sup>x</sup>   | 2.7200   |
| N1…O2                 | 2.896 (2) | H12····O3 <sup>x</sup>   | 2.7400   |
| N1…C15                | 2.849 (3) | H12…O4 <sup>x</sup>      | 2.6600   |
| N2…O1 <sup>iii</sup>  | 2.956 (2) | H12…N3 <sup>x</sup>      | 2.7600   |
| N2…O2                 | 2.793 (2) | H13····C4 <sup>xvi</sup> | 3.0500   |
| N3…C14 <sup>vi</sup>  | 3.160 (3) | H13····C5 <sup>xvi</sup> | 2.9600   |
| N1…H15                | 2.4200    | H13····H5 <sup>xvi</sup> | 2.5200   |
| N1…H17                | 2.4900    | H14…O4 <sup>xi</sup>     | 2.7900   |
| N3…H12 <sup>vii</sup> | 2.7600    | H14…N3 <sup>xi</sup>     | 2.8500   |
| N3…H14 <sup>vi</sup>  | 2.8500    | H14…O3 <sup>xii</sup>    | 2.9000   |
| C1…O1                 | 3.128 (2) | H15…O4 <sup>xi</sup>     | 2.8300   |
| C2…O1                 | 3.205 (2) | H15…N1                   | 2.4200   |
| C2…C9                 | 3.299 (3) | H15…C8                   | 2.8400   |
| C2…O2 <sup>iii</sup>  | 3.276 (2) | H17…N1                   | 2.4900   |
| C5···O3 <sup>ix</sup> | 3.419 (3) | H17…C15                  | 3.0900   |
| C6···C16 <sup>i</sup> | 3.580 (3) | H18…O3                   | 2.4400   |
| C7…O1 <sup>iii</sup>  | 3.384 (3) | H18····O4 <sup>xii</sup> | 2.8700   |
| C9…C2                 | 3.299 (3) | H20…O4                   | 2.4500   |
| $C11\cdots O4^{x}$    | 3.168 (3) | H20…O2 <sup>viii</sup>   | 2.4400   |

| $C12\cdots O4^{x}$      | 3.138 (3)    | H21····C3 <sup>vi</sup> | 3.0800       |
|-------------------------|--------------|-------------------------|--------------|
| C14····O4 <sup>xi</sup> | 3.222 (3)    | H21…H1                  | 2.3400       |
| C14…N3 <sup>xi</sup>    | 3.160 (3)    | H21····H3 <sup>vi</sup> | 2.4400       |
| C14···C19 <sup>xi</sup> | 3.516 (3)    | H21…O1 <sup>iii</sup>   | 2.8300       |
| N2—N1—C8                | 121.30 (17)  | C16—C17—C18             | 119.07 (18)  |
| N1—N2—C16               | 119.06 (17)  | C17—C18—C19             | 119.23 (18)  |
| O3—N3—O4                | 122.94 (17)  | N3—C19—C20              | 118.89 (16)  |
| O3—N3—C19               | 118.60 (16)  | N3—C19—C18              | 118.65 (18)  |
| O4—N3—C19               | 118.46 (16)  | C18—C19—C20             | 122.45 (18)  |
| N1—N2—H1                | 121.1 (16)   | C19—C20—C21             | 118.27 (18)  |
| C16—N2—H1               | 119.0 (15)   | C16—C21—C20             | 120.51 (19)  |
| C2—C1—C6                | 119.61 (19)  | C1—C2—H2                | 120.00       |
| C2—C1—C7                | 122.52 (18)  | С3—С2—Н2                | 120.00       |
| C6—C1—C7                | 117.76 (18)  | С2—С3—Н3                | 120.00       |
| C1—C2—C3                | 120.03 (19)  | С4—С3—Н3                | 120.00       |
| C2—C3—C4                | 119.9 (2)    | C3—C4—H4                | 120.00       |
| C3—C4—C5                | 120.4 (2)    | С5—С4—Н4                | 120.00       |
| C4—C5—C6                | 120.3 (2)    | С4—С5—Н5                | 120.00       |
| C1—C6—C5                | 119.7 (2)    | С6—С5—Н5                | 120.00       |
| O2—C7—C8                | 117.28 (17)  | С1—С6—Н6                | 120.00       |
| O2—C7—C1                | 121.23 (18)  | С5—С6—Н6                | 120.00       |
| C1—C7—C8                | 121.38 (16)  | C10—C11—H11             | 120.00       |
| N1—C8—C9                | 115.89 (16)  | C12—C11—H11             | 120.00       |
| N1—C8—C7                | 123.35 (16)  | C11—C12—H12             | 120.00       |
| C7—C8—C9                | 120.18 (15)  | C13—C12—H12             | 120.00       |
| O1—C9—C10               | 120.60 (16)  | С12—С13—Н13             | 120.00       |
| C8—C9—C10               | 120.79 (15)  | C14—C13—H13             | 120.00       |
| 01—C9—C8                | 118.57 (16)  | C13—C14—H14             | 120.00       |
| C11—C10—C15             | 119.33 (17)  | C15—C14—H14             | 120.00       |
| C9—C10—C11              | 116.66 (16)  | C10—C15—H15             | 120.00       |
| C9—C10—C15              | 123.99 (16)  | C14—C15—H15             | 120.00       |
| C10-C11-C12             | 120.5 (2)    | С16—С17—Н17             | 120.00       |
| C11—C12—C13             | 120.1 (2)    | С18—С17—Н17             | 120.00       |
| C12—C13—C14             | 119.83 (19)  | С17—С18—Н18             | 120.00       |
| C13—C14—C15             | 120.4 (2)    | C19—C18—H18             | 120.00       |
| C10—C15—C14             | 119.9 (2)    | С19—С20—Н20             | 121.00       |
| C17—C16—C21             | 120.44 (18)  | С21—С20—Н20             | 121.00       |
| N2-C16-C17              | 121.43 (18)  | C16—C21—H21             | 120.00       |
| N2-C16-C21              | 118.12 (18)  | C20—C21—H21             | 120.00       |
| C8—N1—N2—C16            | 175.19 (18)  | N1—C8—C9—C10            | 15.3 (2)     |
| N2—N1—C8—C7             | 4.7 (3)      | C7—C8—C9—O1             | 9.2 (3)      |
| N2—N1—C8—C9             | 175.89 (16)  | C7—C8—C9—C10            | -173.16 (16) |
| N1—N2—C16—C17           | 5.0 (3)      | O1—C9—C10—C11           | 26.0 (3)     |
| N1—N2—C16—C21           | -174.39 (19) | O1—C9—C10—C15           | -152.83 (18) |
| O3—N3—C19—C18           | -12.6 (3)    | C8—C9—C10—C11           | -151.62 (18) |
| O3—N3—C19—C20           | 166.19 (18)  | C8—C9—C10—C15           | 29.6 (3)     |
| O4—N3—C19—C18           | 167.23 (18)  | C9—C10—C11—C12          | -179.9 (2)   |
| O4—N3—C19—C20           | -14.0 (3)    | C15-C10-C11-C12         | -1.0 (3)     |

| C6—C1—C2—C3 | -0.6 (3)     | C9—C10—C15—C14  | -179.29 (19) |
|-------------|--------------|-----------------|--------------|
| C7—C1—C2—C3 | 175.4 (2)    | C11-C10-C15-C14 | 1.9 (3)      |
| C2—C1—C6—C5 | -0.2 (3)     | C10-C11-C12-C13 | 0.0 (4)      |
| C7—C1—C6—C5 | -176.4 (2)   | C11—C12—C13—C14 | 0.1 (4)      |
| C2—C1—C7—O2 | -161.6 (2)   | C12—C13—C14—C15 | 0.9 (4)      |
| C2—C1—C7—C8 | 14.5 (3)     | C13-C14-C15-C10 | -1.9 (3)     |
| C6—C1—C7—O2 | 14.5 (3)     | N2-C16-C17-C18  | -178.0 (2)   |
| C6—C1—C7—C8 | -169.39 (19) | C21-C16-C17-C18 | 1.4 (3)      |
| C1—C2—C3—C4 | 0.6 (3)      | N2-C16-C21-C20  | 179.2 (2)    |
| C2—C3—C4—C5 | 0.1 (4)      | C17—C16—C21—C20 | -0.3 (4)     |
| C3—C4—C5—C6 | -0.9 (4)     | C16-C17-C18-C19 | -1.3 (3)     |
| C4—C5—C6—C1 | 0.9 (4)      | C17-C18-C19-N3  | 178.75 (19)  |
| O2—C7—C8—N1 | 42.0 (3)     | C17—C18—C19—C20 | 0.0 (3)      |
| O2—C7—C8—C9 | -128.9 (2)   | N3-C19-C20-C21  | -177.62 (19) |
| C1—C7—C8—N1 | -134.3 (2)   | C18-C19-C20-C21 | 1.1 (3)      |
| C1—C7—C8—C9 | 54.9 (3)     | C19—C20—C21—C16 | -1.0 (3)     |
| N1—C8—C9—O1 | -162.31 (17) |                 |              |

Symmetry codes: (i) *x*-1/2, -*y*+3/2, -*z*; (ii) *x*-1/2, -*y*+1/2, -*z*; (iii) *x*+1/2, -*y*+3/2, -*z*; (iv) -*x*+2, *y*-1/2, -*z*+1/2; (v) -*x*+3/2, -*y*+1, *z*+1/2; (vi) *x*, *y*-1, *z*; (vii) *x*+1, *y*-1, *z*; (viii) *x*+1/2, -*y*+1/2, -*z*; (ix) -*x*+3/2, -*y*+1, *z*-1/2; (x) *x*-1, *y*+1, *z*; (xi) *x*, *y*+1, *z*; (xii) -*x*+2, *y*+1/2, -*z*+1/2; (xiii) -*x*+3/2, -*y*+2, *z*-1/2; (xiv) *x*-1/2, -*y*+5/2, -*z*; (xv) *x*+1/2, -*y*+5/2, -*z*; (xvi) -*x*+3/2, -*y*+2, *z*+1/2.

*Hydrogen-bond geometry* (Å, °)

| D—H···A                       | <i>D</i> —Н   | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-------------------------------|---------------|--------------|--------------|------------|
| N2—H1…O2                      | 0.96 (3)      | 2.25 (3)     | 2.793 (2)    | 115.3 (19) |
| N2—H1…O1 <sup>iii</sup>       | 0.96 (3)      | 2.15 (2)     | 2.956 (2)    | 142 (2)    |
| C5—H5···O3 <sup>ix</sup>      | 0.95          | 2.60         | 3.419 (3)    | 145        |
| C15—H15…N1                    | 0.95          | 2.42         | 2.849 (3)    | 107        |
| C20—H20····O2 <sup>viii</sup> | 0.95          | 2.44         | 3.352 (2)    | 161        |
|                               | > +2/2 +1 1/2 |              |              |            |

Symmetry codes: (iii) x+1/2, -y+3/2, -z; (ix) -x+3/2, -y+1, z-1/2; (viii) x+1/2, -y+1/2, -z.



Fig. 1







Fig. 3