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Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of
reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is
often described as a behavioral artifact, because these are highly correlated with error rates affecting
psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust
behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a
two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making
lateral choices increased with stimulus similarity and was present in conditions of high discriminability.
While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased
choice sequences obeyed the generalized matching law and increased task efficiency when stimulus
similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past
rewards but not past choices to make their current choices. We also found that the amount of lateralized
choices made during the first day of training predicted individual differences in the average learning
behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories
in mice.

T
he mouse constitutes a practical model system for studying the neuronal circuits underlying visual discrim-
ination, decision-making and perceptual learning1. Neurons in the mouse primary visual cortex have highly
tuned receptive fields2,3, and mice can discriminate simple4,5 and complex6 shapes. Mainly for these reasons,

we are now aiming to study the interaction between the visual-learning5 and visual-discrimination7 capabilities of
rodents.

Mouse vision can be indirectly assessed by using a variety of behavioral methods. Some of them involve
measuring reflexive eye movements to moving bars8, whereas others require the animals to perform a visual
discrimination task where they are trained to select a discriminative visual stimulus4,5,7,8. In such tasks, individual
lateral biases (i.e. a stereotypy of response location) constitute a challenge for psychophysical measures (v.gr.
visual acuity) because they are highly-correlated with error rates. One common practice among experimenters is
to remove such lateralized biases by introducing a spatial bias towards the opposite arm of the maze4,5. Maybe not
surprisingly, some authors consider exploratory lateralization an artifact of laboratory conditions or even a
neuropathological reflection. Some other researchers suggest, however, that behavioral asymmetries could be
ubiquitously distributed among animals. Moreover, it has been proposed that exploratory biases could be
advantageous for learning and could also increase success in foraging and escaping from predators (for review
see ref. 9).

Lateralization can be described both at the ‘individual level’ or at the ‘population level’. In the first case, the
population is made up of two equally sized subgroups of lateralized individuals. Although consisting of lateralized
individuals, the population as a whole is not lateralized (i.e. on average). Conversely, when lateralization occurs at
the population level, this means that the population is formed by coherently lateralized individuals10.

Here, we hypothesized that lateralization in mice could constitute an efficient and stable strategy within a broad
spectrum of behavioral responses to solve a discrimination problem of graded difficulty. To test this idea, we
trained mice in a visual discrimination swimming task that we implemented recently7. We found that that the
mice solved the task not only by using the discriminative stimulus as a relevant source of information for
behavioral control but also displayed idiosyncratic lateral biases which increased in frequency with higher
stimulus similarity. Individual biases varied from mouse to mouse: some individuals showed an intrinsic pref-
erence for the left option, while others did so for the right option, but there was no net bias when averaging the

OPEN

SUBJECT AREAS:
PATTERN VISION

LEARNING AND MEMORY

Received
11 September 2014

Accepted
2 December 2014

Published
19 December 2014

Correspondence and
requests for materials

should be addressed to
M.T. (mariomtv@

hotmail.com)

SCIENTIFIC REPORTS | 4 : 7569 | DOI: 10.1038/srep07569 1

mailto:mariomtv@hotmail.com
mailto:mariomtv@hotmail.com


choices from all the mice. We propose that the mice could benefit
from having different degrees and sides of individual lateralization
without suffering the disadvantages conveyed by directional asym-
metries at the population level, such as predictability of behavior9.
The analytical tools we provide here will allow to compare explor-
atory lateralization between different mouse strains and under a
variety of experimental conditions.

Methods
We used behaviorally naı̈ve, unselected, wild-type C57BL/6 male mice (P40–50, 21
6 3 g at the beginning of the experiment). All mice were reared in mixed-sex
family groups until weaning at 21 days of age. The mice were housed individually
at 22uC under a 12/12 h light/dark cycle (lights on at 8:00), 35–40% relative
humidity, ad libitum access to food and water, and a fast-track device for physical
exercise (PLexx, Netherlands). All mice were held under identical conditions.
Groups of 4-to-6 animals were carefully handled by a single experimenter and
habituated to the training room 3 days before starting with the experiments.
Training was performed in a single daily session held during the light phase
(between 10:00 and 16:30), 5 days a week. All animal experiments were carried out
at the Max Planck Institute for Medical Research in accordance with the animal
welfare guidelines of the Max Planck Society and were approved by the regional
commission in Karlsruhe (G-171/10).

To train the mice, we used a well-established, two-alterative, forced-choice water
discrimination task under a ‘free response’ paradigm that allowed the animals to
control the decision time autonomously4,5 (Fig. 1A). Water temperature (21 6 1uC)
and room illumination were kept constant throughout the experiments and the pool
was wiped down daily with 70% ethanol. We confirmed that the mice did not see the
hidden transparent platform (see ref. 5). For each trial, the animals were considered to
have made a choice once they had crossed a line that delineated a decision area which
offered visual access to both images. To encourage faster discrimination learning, we
increased the cost of errors by immediately repeating the swimming trials that pro-
duced incorrect choices up to a maximum of 5 times until the animal made the correct
choice (Fig. 1B). We defined these sets of swims, ranging from 1-to-5, as a ‘training
unit’, and it was considered as being correct only when the mouse made a correct
choice during the first trial. The mice remained on the platform for 30 s before being
carefully removed from the pool by the experimenter. The inter-trial interval was
10 s, and the period between training units was 1–2 min (i.e. distributed practice).
We used daily training sessions consisting of 3 blocks of 10 ‘training units’ with 10-
min breaks. During rest periods, the mice were transferred to individual chambers
with a warm plate.

Each experiment consisted of two phases. During phase 1 (‘pre-training’,
duration: 1 week; training units 1–150, see below), the mice were familiarized with
the swimming task, and learned to associate a discriminative image (S0

D) with a
predictive value. In this pre-training phase, the animals learned that swimming
towards the S0

D and reaching a transparent, submerged platform was rewarded
with removal from the water, whereas swimming towards the non-reinforced
image (S0

D; 50% gray) was not. During phase 2 (‘training’, duration: 2 weeks;
training units 151–450), the reinforced SD image was changed (yet, it was identical
for all groups) and 3 sub-groups of 10 mice each were trained with three different
SD images. The structural similarity index (SSIM) between pairs of images was
measured using parametric descriptions derived from image quality metrics, as
described before7. Briefly, the images consisted of white shapes on a black back-
ground, or vice versa (i.e. shape was the only relevant ‘feature’); they were of
similar size and were further standardized using a symmetric Gaussian low-pass
filter (60 pixel size, 30-pixel standard deviation; 0.30 cycles per degree [c/d]), to
remove all frequency components that exceeded the average mouse’s visual acuity
of 0.48 c/d5. The data in Figure 1 were published previously7 and serve as the basis
for the current analysis.

For each training unit, we calculated the mean probability (6S.E.M) of making
a correct choice on the first presentation of the SD image (%correct), and of
making 5 consecutive errors (%error; this means that %correct choices and
%errors are not complementary in our working conditions). The average changes
in these scattered patterns over time were visualized by using a Savitzky-Golay
filter (span 5 30 trials, degree 5 1) that served as a low-parameter estimate to
compare group data from different training regimens. We used a digital video
camera mounted above the pool to record each swimming path throughout the
experiments. For each trajectory, we analyzed continuous measures of path length
(i.e. cumulative Euclidean distance) and escape latency (i.e. time from release from
the chute to task completion). Learning was inferred both by correct choice and
continuous measures from conditioned responses (see below). To avoid positional
learning, the sides of the discriminative stimulus (SD) and the platform (left or
right) were changed continuously according to a Gellerman-like schedule: i.e., a
pseudo-random pattern in which no more than 3 trials are repeated on one side,
and that produces a score of 50% correct choices if a subject shows simple or
double alternation4,5.

The strength of the side-bias was quantified as the number of consecutive swims
towards the same arm of the pool (right or left). For the quantitative assessment of
behavioral laterality, we implemented a laterality index (Li):

Li~
R{L½ �
RzL½ � ð1Þ

where R and L denote right and left choices, respectively. This index was used either as
the average of choices for every 10 trials for each mouse, or as the group average per
training unit. To explore the possibility that biased, alternating or more complex
choice sequences emerged during the acquisition, we implemented a pair-wise
alignment method that consisted in sliding each query sequence along the choice
records from each mouse. A sequence was considered to be present in the choice
record when the alignment matched perfectly for the entire length of the query
sequence (i.e. sequence similarity 5 1). The probability of occurrence of a choice
sequence was then calculated by dividing the number of times that it was found in the
choice records by the maximum number of times that it could fit within the total
length of the choice record without interfering with any identical sequence that
generated a count in previous trials (very important for alternating sequences).
Comparing the probabilities instead of the number of cases was crucial because: i) the
choice records varied in length for each mouse and ii) the alignment method impli-
citly increases the counts of shorter sequences contained in longer ones.

In operant conditioning, the matching law is a quantitative relationship that holds
true between relative response and reinforcement rates in concurrent reinforcement
schedules11. We tested whether biased and alternating choice sequences complied
with matching behavior using a generalized matching law with the following form:

CL

CR
~C

RL

RR

� �a

ð2Þ

where C and R denote the number of steady-state responses and the number of
steady-state reinforcers for the left, or right option, respectively. The coefficient a
denotes the sensitivity to the reinforcement ratio, while c is a bias term unrelated to
reinforcer frequency or magnitude12,13. We fit the data for each aligned sequence with
the logarithmic form of the equation using least-squares regression:

log
CL

CR

� �
~alog

RL

RR

� �
z log c ð3Þ

and extracted the slope (a), the intercept (logc), and the coefficient of determination
for each regression (R2; i.e. the square of the sample correlation coefficient between
outcomes and predicted values).

We also analyzed the response-by-response behavior with a multiple linear
regression model that used past reinforcers as well as past choices to predict the mice’s
choices in each trial14,15. Assuming symmetric effects of past reinforcers (i.e. for right
or left choices), the model was then reduced to solving the following generalized
logistic regression:

log
pR,i

pL,i

� �
~
X

j~1
aj rR,i{j{rL,i{j
� �

z
X

j~1
bj cR,i{j{cL,i{j
� �

zc ð4Þ

where pR,i is the probability of choosing the right alternative (i.e. probability when cR,i

5 1), and pL,i 5 (1 2 pR,i) is the probability of choosing the left option (binomial
distributions). cR,i and cL,i are binary variables that represent the choice of the right
and left alternatives on the ith trial, and r is the magnitude of reinforcement received
for choosing a particular alternative on the jth past trial, which otherwise is zero (r 5 1
was fixed for each correct choice). The a and b coefficients measure the influence of
past reinforcers and choices, and the intercept term c captures preference that is not
accounted for by past reinforcers or choices (similar to the bias term in the generalized
matching law). Here, a unit reinforcer obtained in j trials in the past increases the log
odds of choosing an alternative by aj if the reinforcer was received for choosing that
alternative; otherwise, it decreases the log odds by aj. This applies similarly to the
effects of past choices, where a significant bj means that the current choice depends on
a choice made j trials ago14. In other words, this model provides a convenient way to
test the null hypothesis (H0) which states that the factor in question does not affect the
measured response16. Excluding the terms associated with the b parameters (forcing
all bj 5 0) yields a model that depends on the history of obtained reinforcers only,
whereas excluding the terms associated with the a parameters (forcing all aj 5 0)
yields a regression that depends only on the history of choices. Including both a and b
allowed us to assess the effects that reinforcer and choice history have on current
choice. The intercept term c shifts preference towards one of the alternatives, irre-
spective of reinforcement (i.e. it captures a bias that is not due to either reinforcer
frequency or reinforcer magnitude).

We derived a local estimation of task efficiency as follows:

e~1{
X{1

Xrandom{1

� �
ð5Þ

where X is the group average for the number of swimming trials per training unit, and
Xrandom corresponds to the average number of swimming trials required to complete
each training unit by making random choices (R1000: binomial distribution, n 5 1000
‘subjects’). Next, we implemented two different methods to estimate the relative
change in swimming efficiency. In the first one, we divided the average efficiency of
the query sequence by the average efficiency of a sequence of trials of equal length
taken just before executing the query sequence (i.e. to estimate the baseline). In the
second method, we divided the average efficiency of the query sequence by the
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average efficiency within a block of 10 trials occurring 10 trials before executing the
query sequence.

Analysis algorithms were written in MATLAB 7.8 (MathWorks, Inc.; Natick,
USA). Learning was assessed with repeated measures ANOVA tests (consecutive
blocks of 30 training units), all followed by Bonferroni post hoc tests. We switched to
non-parametric tests (Wilcoxon Signed Rank test; Kruskal-Wallis test followed by
Dunn post hoc tests) whenever the assumptions required to apply the parametric
versions were not met. All results are shown as averages 6 S.E.M; significance was set
at P , 0.05.

Results
Learning with different degrees of visual discriminability. We
exposed 30 mice to an initial one-week period of ‘pre-training’
(150 training units), which allowed them to become familiar with
the swimming pool and the task5. During this phase, the animals
learned that a highly discriminative image (S0

D) predicted the
location of the transparent platform inside the pool. The average
correct choice increased towards an asymptotic level of 95% 6 1%
(average of last 30 units; n 5 30 mice), whereas the number of errors,
the total swimming distance and the escape latency for correct

choices decreased as a function of training (Fig. 1C). All these
values were highly correlated (r . 0.9 for all groups) and the
within-group variability decreased with learning.

Next, we formed three random sub-groups of 10 mice each and
trained them to discriminate images with maximum (SSIM 5 1, red),
intermediate (SSIM 5 0.32, green), and low (SSIM 5 0.04, blue)
similarity levels during the second and third weeks of the experi-
ments (see Methods, Fig. 1D). As expected, the mice failed to dis-
criminate between identical SD and SD images with SSIM 5 1 (SSIM1;
Wilcoxon test, P 5 0.17, n 5 10), whereas training with a SSIM of
0.32 and 0.04 yielded above-random choice levels (Wilcoxon tests, P
, 0.01; Fig. 1D). These two groups had different learning rates
(SSIM0.32: 0.63%/training unit, n 5 10; SSIM0.04: 2.02%/training
unit, n 5 10), but reached similar correct choice levels at the end
of the training phase (one-way ANOVA, F2,29 5 123.5, P , 0.001,
Bonferroni’s post hoc test, P . 0.05; Fig. 1D). These results indicate
that the learning rate increased when stimulus similarity was
lowered.

Figure 1 | Emergence of side-biased choice behavior during a visual discrimination task. (A) A drawing that we’ve made depicting the visual

discrimination task where two monitors facing the ends of the arms of a Y-watermaze simultaneously display the discriminative (SD, reinforced) and non-

reinforced (SD) images (100% contrast). A submerged transparent platform below the SD serves as the unconditioned stimulus (US). The position of both

the platform and SD in either arm varies pseudo-randomly over consecutive trials. During training, mice are released into the pool from a release chute and

they learn to swim towards the SD (correct choice) in order to reach the platform and escape from the water. (B) Flowchart of a ‘training unit’ where the

mice are presented with a given pair of SD/SD, a trial that can be repeated up to 5 times if the mouse makes incorrect choices. (C) %correct choice increased

as learning progressed during pre-training whereas the %errors, length of the swimming path (i.e. to reach the platform; ‘Path length’), and the time from

the beginning to the end of the trial (‘Latency’) decreased asymptotically. (D) After pre-training was completed, three sub-groups of mice were trained

with different degrees of similarity between SD and SD: SSIM 5 1 (SSIM1; red), SSIM 5 0.32 (SSIM0.32; green) and SSIM 5 0.04 (SSIM0.04; blue). The

average learning curves (continuous lines) were approximated by a Savitzky-Golay filter (see Methods). At the bottom of each plot: the choices of

individual mice (y-axis) are displayed as panels with either black (right choices) or white (left choices) rectangles as a function of the first trial of each

training unit (x-axis). Individual side-biases are reflected as horizontal white or black blocks of different lengths. Number of mice per group in

parentheses.
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By inspecting the individual responses, we noticed that the mice
displayed different choice sequences during training. Some of these
sequences consisted of swimming repeatedly to the same arm of the
pool during the training phase4,5,17. To estimate whether side-biased
choices could be influenced by stimulus similarity, we first labeled
and plotted the trials in which the mice swam to the right (black
squares) or left (white squares) arms (lower panels in Fig. 1D). The
lower diagrams in Figure 1D show that alternation in the side of the
spatial bias, from right-to-left or vice versa, could occur quickly,
within just a few trials. Subsequently, we counted the number of
side-biased sequences of different length derived from these three
experimental groups.

Stimulus similarity determines the probability of side-biased
swimming. The probability of displaying side-biased swimming
decayed mono-exponentially with the length of the biased
sequence (Fig. 2A–B). Yet, the decay constant (l) for the
probability of side-biased behavior decreased, non-linearly, with
stimulus similarity (pre-training: l 5 0.2, R2 5 0.98; SSIM1: l 5

0.04, R2 5 0.86; SSIM0.32: l 5 0.05, R2 5 0.89; SSIM0.04: l 5 0.08, R2

5 0.94; inset in Fig. 2B). Thus, the prevalence of side-biased
swimming was influenced, in a graded manner, by stimulus
similarity.

We then wondered whether the bias from each individual showed
any predominance towards a ‘preferred side’. We averaged the later-
ality of choices per subject (left 5 21, right 5 11) in blocks of 10
trials and computed their frequency distribution referenced to the
preferred side (i.e. referenced to the mode). We found that the mice
tended to alternate and balance the laterality of their choices when
they were trained with high discriminability (symmetric distribution
for SSIM0.04; Fig. 3A). However, a preferred side for side-biased
swimming gradually emerged as stimulus similarity was increased
(skewed distributions for SSIM0.32 and SSIM1; Fig. 3A). The skew-
ness in the SSIM1 distribution is a direct consequence of frequent
individual lateralization because, although alternations could occur
very fast, the probability of swimming towards the preferred arm was
allays bigger than that of swimming towards the non-preferred arm
(t-test, P , 0.001). Notably, the preferred arm was specific for each
mouse (see below).

The concern that side-biased swimming could be influenced by
additional sources of sensory information (v.gr. asymmetric illu-
mination settings along the longitudinal axis of the pool) or by innate
population biases, was ruled out by plotting the group average later-
ality for all mice as a function of training (Fig. 3B). The average
laterality of group choices was balanced between both arms of the
pool throughout training (blocks of 30 training units; Wilcoxon test,
P 5 0.95 for all groups), leading to no net side preference when
considering all swimming trials from all the mice (SSIM1: laterality
index 5 0.02% 6 0.08%; SSIM0.32: laterality index 5 20.14% 6
0.05%; SSIM0.04: laterality index 5 20.07% 6 0.04%; one-way
ANOVA, F2,26 5 2.24, P 5 0.32). Thus, the population, taken as a
whole, showed no net bias. These results illustrate how a zero bias at
the population level does not imply that individual laterality must be
zero.

The probability of choosing specific swimming sequences is
graded by stimulus similarity. We next used a sequence
alignment method to explore whether the emergence of different
swimming strategies depended on stimulus similarity. We searched
for the occurrence of specific sequences with different amounts of
choices to the left (LL…L), the right (RR…R), or alternating choices
(‘LR…L’ or ‘RL…R’). Figure 4A shows an example of the matching of
such sequences (red squares) to the choice records of individual mice
from the SSIM0.04 group. To refine the analysis, we added the counts
of complementary sequences (v.gr. [‘LL…L’ 1 ‘RR…R’], [‘LR…L’ 1
‘RL…R’]) and normalized them to an equivalent number of training
trials, thus allowing group comparisons. We quantified their

probability of occurrence dividing the number of cases by the
maximum number of repetitions per sequence that could fit within
the choice record for each mouse, this without interfering with any
sequence that generated a count in previous trials (crucial for
alternating sequences). We applied this analysis to: i) the original
choice record (i.e. what the mice actually did; black circles); ii) a
randomized choice pattern equal in length to the original choice
record (binomial distribution; yellow circles); and, iii) the platform
location record (i.e. how a choice pattern with perfect discrimination
would have looked like; gray circles; Fig. 4B–C). In accordance with
our previous results, all probabilities decayed with sequence length
whereas the probability of choosing side-biased sequences increased
with stimulus similarity (Kruskal-Wallis test, F2,29 5 29.2.9, P ,

0.0001, Dunn’s multiple comparison test, right plot, Fig. 4B). By
using the cumulative probabilities for side-biased swimming
(length of sequences from 3 to 9) we confirmed that biased
swimming could not be accounted for by using a random-choice
maker. In contrast, the probability of finding alternating sequences
decreased with stimulus similarity (Kruskal-Wallis test, F2,29 5 32.2,
P , 0.0001, Dunn’s multiple comparison test, right plot, Fig. 4C).

Figure 2 | Stimulus discriminability determines the amount of side-
biased choices during training. (A) The probability of finding side-biased

sequences of different lengths (x-axis) increases with stimulus similarity:

SSIM1 (red), SSIM0.32 (green) and SSIM0.04 (blue). (B) The

log(probability) of side-biased swimming behaves linearly with respect to

the length of the biased sequences. We defined biased sequences as having

$4 trials because removing the first 3 trials maximized the coefficient of

determination for all linear regressions (derived from all groups), depicted

by the black arrow in the left inset. The three decay constants for the

probability of side-biased swimming decrease, in a non-linear fashion,

with stimulus similarity (right inset).
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This analysis demonstrates that the mice adapted their task-solving
strategies depending upon stimulus similarity.

Side-biased behavior complies with the generalized matching law.
We asked whether the mice matched the proportion of biased and
alternating swims to the proportion of reinforcers received from
choosing them (see Methods). For this analysis, we selected blocks
of 30 training units with choice-records in steady-state with respect
to the last 30 trials of each group (Kruskal-Wallis test, P , 0.05)14.
Next, we counted the number of times that each sequence occurred
within the choice record for each mouse (i.e. frequency of sequences),
and calculated the corresponding reward value as the sum of the
correct choices for those sequences (i.e. frequency of reward).
Figure 5 shows the log frequency for biased (Fig. 5A) and
alternating (Fig. 5B) choice sequences as a function of the log net
amount of reinforcer received from choosing them. Independently of
stimulus similarity, biased sequences had better linear regressions to
the generalized matching law than alternating sequences of equal
length (biased sequences: R2 5 0.89 6 0.02; alternating sequences:
R2 5 0.53 6 0.09; t-test, P , 0.0001). The sensitivity to reinforcement
(the slope of the linear regression models) was positive for all biased
sequences (t-test, P , 0.001 in all cases) and independent of stimulus
similarity (one-way ANOVA, F3,23 5 0.5595, P 5 0.91; the
coefficients of the linear fits to the data shown in Fig. 5 are listed

in Table 1). The slopes (i.e. the sensitivity) smaller than one and the
negative intercept of the regression models (i.e. the bias term)
indicate that mice under-matched for reinforcement (i.e. less
behavior was allocated to the alternative that provided greater
reinforcement). These results demonstrate that biased choice
sequences obeyed the generalized matching law during steady-state
behavior.

The side-biased sequences from the SSIM0.04 group that was
trained in conditions of high discriminability also complied with
the matching law (Fig. 5A). The average %correct choice of those
sequences decreased towards chance level (i.e. 50%) as their fre-
quency increased; the opposite occurred for alternating sequences
(Fig. 6). Thus, biased choice sequences occur without using discrim-
inative information even in conditions of high discriminability.

Side-biased behavior depends on reinforcer history but not on
past choices. The generalized matching law predicts average
choice behavior for arbitrary combinations of reinforcer frequency,
but it does not specify how the animals produce matching behavior at
a ‘response-by-response’ level. To estimate the dependence of biased
behavior on the history of past reinforcers and choices, we applied a
multiple linear logistic regression model to approximate the average
choice behavior for each trial (see Methods). The coefficients of the
model were computed using a history of 10 trials and their statistical

Figure 3 | Lateralization at the individual level, but not at the population level. (A) Probability distributions for the laterality of choices (blocks of 10

trials) extracted from the choice records of individual mice for the SSIM1 (red), SSIM0.32 (green) and SSIM0.04 (blue) groups. The arrangement of these

distributions was referenced with respect to the preferred side for lateral bias from each individual, identified as the side of the pool towards which the

statistical mode was closest. The skewness in the two first distributions indicate that mice in SSIM1 and SSIM0.32 showed a tendency to have a preferred

arm during side-biased behavior. (B) Balanced group average laterality for all experimental groups during acquisition. Number of mice per group in

parentheses.
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significance was determined by using a permutation test that shuffled
1,000 times the trial order for the variable of interest to yield a P value
for the permutation test (dotted lines in Fig. 7).

We first applied the model considering past reinforcers only
(Fig. 7A). The positive coefficients for the SSIM1 group (Fig. 7A)
indicate that biased choices increased the log odds of picking the
same alternative on the next trial due to the effects of reinforcer
history. In contrast, the negative coefficients for the groups that were
trained with lower stimulus similarity (i.e. pre-training, SSIM0.32 and
SSIM0.04) indicate that choosing a particular alternative decreased
the odds of picking the same alternative again on the subsequent trial
(first past reinforcer, pre-training: 20.79 6 0.01; SSIM1: 0.76 6 0.03;
SSIM0.32: 20.09 6 0.03; SSIM0.04: 20.47 6 0.03; Fig. 7A). The decay-
ing effect of past reinforcers was much slower and more persistent in
SSIM1 than in any other group (tdecay, pre-training: 0.16 6 0.10;
SSIM1: 0.39 6 0.05; SSIM0.32: 0.09 6 0.06; SSIM0.04: 0.16 6 0.08).

To better capture the response patterns of choice behavior, we
incorporated both past reinforcers and past choices into the model14,
and found that mostly past reinforcers (first past reinforcer, pre-

training: 21.66 6 0.06; SSIM1: 0.61 6 0.07; SSIM0.32: 20.67 6

0.08; SSIM0.04: 20.99 6 0.11), but not past choices (first past choice,
pre-training: 0.59 6 0.02; SSIM1: 0.14 6 0.02; SSIM0.32: 0.38 6 0.04;
SSIM0.04: 0.37 6 0.04), influenced choice behavior for the SSIM1

group (Fig. 7B).

Side-biased sequences produce a local increase in task-solving
efficiency with zero discriminability. Using sliding epochs of 10
trials, we determined the group probability of solving the task with
side-biased sequences as a function of training (Fig. 8A). All groups
began the training phase with a non-zero average probability for
side-biased swimming of ,70% (biased sequences $ 4 trials; one-
way ANOVA, F2,26 5 3.51, P 5 0.17), but the prevalence of making
side-biased choices either increased to ,82% for the SSIM1 group, or
decreased to ,32% and to ,7% for the SSIM0.32 and SSIM0.04

groups, respectively (paired t-tests, P , 0.005; Fig. 8A).
We implemented a measure of efficiency based on the number of

swimming trials that were required to solve the task (see Methods).
Solving the task in a side-biased manner throughout the entire phase

Figure 4 | Graded probability for biased and alternating sequences by stimulus similarity. (A) Example of the sequence analysis we performed on the

choice records from the SSIM0.04 mice. The occurrence of sequences is depicted by red squares superimposed on the choice diagrams (black: right choices;

white: left choices) from individual mice (y-axis) as a function of the training unit (x-axis). The choice records of different total length are shown over a

gray background, with the query sequences displayed below the choice diagrams. (B–C) Probability of occurrence of different sequences based on real

choices (black circles), random choices (binomial distribution; yellow circles), and the real platform location (gray circles) for biased- (B) and alternating-

(C) sequences. The probability axes have different scales depending on peak probabilities. For comparative purposes, colored panels on the fourth

column display the probability of actual choices for each group: pre-training (black), SSIM1 (red), SSIM0.32 (green) and SSIM0.04 (blue). On the right

column: statistical tests using cumulative probabilities (i.e. the area under the probability curves, AUC) for all the mice from each group using Dunn’s

Multiple Comparison test.
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was ,10% more efficient than making random or other choices
(completely biased: 537.5 6 0.2 trials/300 training units, n 5 1000
‘subjects’; random choosing: 590.5 6 0.7 trials/300 training units, n
5 1000 ‘subjects’; ‘choosing the arm where the platform was in the
previous trial’: 765.5 6 0.1 trials/300 training units, n 5 1000 ‘sub-
jects’, one-way ANOVA, F2,2996 5 2684.2, P , 0.001). Next, we
measured average swimming efficiency when mice adopted side-
biased or alternating sequences of different lengths (see Methods).
This analysis revealed that adopting side-biased sequences of 6 or
more trials increased task efficiency by ,5%, whereas adopting
alternating sequences decreased it by ,5–20% for the SSIM1 group
(Kruskal-Wallis test, P , 0.05; colored asterisks in Fig. 8B–C). In
contrast, adopting side-biased sequences reduced task efficiency by
,6–9% during pre-training and for the SSIM0.04 group. Therefore,
adopting side-biased sequences yielded a local increase in task effi-

ciency for the SSIM1 group, but the opposite occurred for the
SSIM0.32 and SSIM0.04 groups.

The strength of the side-bias predicts individual learning
trajectories. We asked how side-biased choices interact with
discriminative learning by using the same visual task described in
Figure 1A. We pre-trained a group of 88 naı̈ve mice (Fig. 9A) and,
using the first 30 training trials from day one of exposure to the task
(average %correct choice record of around chance level; Wilcoxon
test, P . 0.5, n 5 88; not shown), extracted a side-bias index for each
mouse as the average length of its biased sequences. Subsequently, we
used the frequency distribution of these side-bias indexes to median-
split the group of mice into faster and slower learners of this
discrimination task (mean: 2.07 6 0.11 trials; median: 1.8 trials;
Fig. 9B). The values for correct-choice (Fig. 9C) and error records

Figure 5 | Steady-state side-biased behavior complies with the generalized matching law. Each point represents the log frequency of the occurrence of a

particular choice sequence vs. the log sum of reward values for that specific sequence, for the different experimental groups. (A) The log frequencies of

choices are linearly-related to their log reinforcer frequency for all biased sequences from all groups. Note how the logarithmic transformations portrayed

the data and their variability into linear functions. (B) Alternating sequences display worse linear regressions than biased ones (see Table 1 for

further details). Color represents the length of the choice sequence.
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(Fig. 9D) remained well separated between the two groups (repeated
measures ANOVA test, P 5 0.0001). Faster learners had a higher
discrimination performance than slower ones at the end of training
(faster learners: 96% 6 1% correct; slower learners: 90% 6 2%
correct; paired t-test, P 5 0.02; two-sample Kolmogorov-Smirnov
test, P , 0.01), providing performance extremes suitable for
additional comparisons.

We assessed the robustness of the classification method by making
random combinations of the mice’s membership in each sub-group

(without altering the characteristics of the original data set) and
testing whether the sub-groups could result from a random clas-
sification of the mice; i.e. the null hypothesis, H0, without taking
the classification index into consideration. A repeated measures
ANOVA test rejected the H0 in favor of the alternative hypothesis
because only 4 out of 9999 tests presented equal or higher F values
than the one obtained by using the side-bias index as a classifier (P 5

0.0004; Fobs 5 7.11; Fig. 9E). Next, we calculated the probability of
detecting group differences between randomly-selected faster and

Table 1 | Coefficients of the linear fits to the response rates of biased sequences against their reinforcement rates. We extracted the sensitivity
(i.e. the slope), the intercept (i.e. the bias term) and the coefficient of determination for each regression (R2; i.e. the square of the sample
correlation coefficient between outcomes and predicted values)

Biased Sequences

Sequence length Sensitivity (m) Bias (b) R-squared

3 0.57 6 0.02 0.26 6 0.45 0.98 6 0.00
4 0.42 6 0.01 0.07 6 0.38 0.98 6 0.00
5 0.34 6 0.01 0.05 6 0.32 0.98 6 0.01
6 0.28 6 0.02 0.31 6 0.29 0.96 6 0.02
7 0.24 6 0.01 0.53 6 0.08 0.93 6 0.04
8 0.21 6 0.01 0.80 6 0.19 0.91 6 0.06
9 0.19 6 0.01 1.25 6 0.19 0.87 6 0.07

Alternating Sequences

Sequence length Sensitivity (m) Bias (b) R-squared

3 0.37 6 0.03 0.81 6 0.36 0.90 6 0.09
4 0.28 6 0.03 0.50 6 0.15 0.86 6 0.12
5 0.19 6 0.02 0.75 6 0.26 0.72 6 0.23
6 0.12 6 0.04 1.33 6 0.38 0.47 6 0.21
7 0.06 6 0.07 1.97 6 0.70 0.38 6 0.15
8 0.01 6 0.12 2.66 6 1.17 0.22 6 0.13
9 0.04 6 0.15 3.23 6 1.24 0.22 6 0.10

Figure 6 | Side-biased sequences have a correct choice probability around chance level. Log frequency of choices vs. log reinforcer frequency with color

representing the group average %correct choice probability. (A) Although sporadic, the mice displayed some biased sequences with %correct choice

values around chance level in conditions of high discriminability (SSIM0.04). In contrast, they showed higher performance levels with alternating

sequences (lower panel). (B) Pooling the sequences from all groups reveals that the mice were not discriminating when choosing biased sequences, but

they did discriminate when choosing some of the alternating ones.
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slower learners as a function of sample size (Fig. 9F). By generating
1000 random combinations per group, we found that these differ-
ences could be detected for groups of $20 mice.

Discussion
The mice used multiple strategies with different efficiencies to solve
our two-alterative, forced-choice, visual discrimination task5,17. One
task-solving strategy consisted in adopting a side-biased behavior in

which they repeatedly swam to the same side of the pool. Indeed, we
found that the mice could display idiosyncratic individual biases
when choosing between alternative routes; the prevalence of such
side-biased behavior increased with stimulus similarity. Our metrics
for side-biased choices indicate that such behavior was consistent
across animals and prevalent in all groups. Clearly, in conditions of
high visual discriminability (SSIM0.04), the mice decreased the usage
of both biased and random search strategies in favor of visually-

Figure 7 | Side-biased behavior mainly depends on past reinforcers. Weighted coefficients for two multi-regression linear models as a function of the

number of past trials relative to the current trial. These coefficients estimate how past reinforcers (A) and past reinforcers plus past choices

(B) influence current choice behavior (see Methods). The coefficients of the model were computed using a history of 10 trials and their statistical

significance was determined by using a permutation test that shuffled 1,000 times the trial order for the variable of interest to yield a P value for the

permutation test (dotted lines).

Figure 8 | Dynamic changes in the probability of bias formation and its local efficiency. (A) The average probability of finding biased sequences of $4

trials per mouse as a function of training (blocks of 10 training units). The panel on the right depicts the group probability of finding biased sequences of

$4 trials within epochs of 30 training units placed either at the beginning, middle, or end of training. The relative changes in task efficiency depending on

the choice of biased (B) and alternating sequences (C) were assessed with two different methods. In the first one, we divided the average efficiency of the

query sequence by the average efficiency of a sequence of trials of equal length taken just before executing the query sequence (i.e. to estimate the

baseline). In the second method, we divided the average efficiency of the query sequence by the average efficiency of 10 trials observed 10 trials before

executing the query sequence. Asterisks depict significant changes (Kruskal-Wallis test, P , 0.05).
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guided ones. Yet, the prevalence of side-biased behavior increased
with lower discriminability. We have shown recently that abrupt
drops in the amount of side-biased choices precede the onset of a
successful discrimination in individual mice7. One attractive pos-
sibility is that changes in the amount of lateral choices could indir-
ectly reflect the involvement of attentional mechanisms engaged in
the task.

A recent review by G. Vallortigara and L.J. Rogers provides a
variety of interesting examples of perceptual and behavioral asym-
metries among vertebrates. Such examples include the preferential
use of a visual hemifield during activities such as foraging or escape
from predators9. Interestingly, these authors suggest that lateraliza-
tion on a population level can provide animals with some clear dis-
advantages. At the individual level, any bias favoring left or right
position could leave the animal less able to attend, or to respond to
stimuli that appear on the non-preferred side. On the other hand, at

the group level, if more than 50% of the individuals in a population
were to show a similar direction of bias, then their behavior would
become predictable to others9. In contrast, individually lateralized
subjects could benefit from having individually different biases,
because their escape responses would be less predictable to a pred-
ator. Furthermore, lateralized individuals, particularly those with
lateralized eyes, could perform two tasks controlled by opposite brain
hemispheres at the same time10. Our analysis revealed that lateraliza-
tion varied in strength and polarity from mouse to mouse, but had a
value close to zero when averaged across the population. Although
our results indicate that average population laterality was zero, this
does not imply that individuals were not lateralized or that individual
lateralization does not have a detrimental influence in the estimation
of psychophysical measures.

Our experimental paradigm was based on a training schedule that
prohibited placing the discriminative stimulus and platform in the

Figure 9 | Side-bias predicts individual differences throughout learning. (A) Performance of 88 behaviorally-naı̈ve mice during pre-training.

(B) Frequency histogram for the average side-bias index during the first day. Two sub-groups were formed by a median split (black and gray bars).

Learning curves (C) and % errors (D) for these groups yielded inferior and superior learners that remained well-separated throughout training. (E) We

tested the null hypothesis (H0) that random permutations of the mice might produce sub-groups with similar behavioral differences against the

alternative hypothesis (Ha) which claimed that side-bias was an effective index to classify the population. The frequency distribution for F is positively

skewed. The one-sided P-value of the test was calculated as the proportion of sampled randomizations where F was greater than or equal to the observed

Fobs values. The results indicate that reject H0 in favor of Ha (a 5 0.05). (F) P-value for the one-way ANOVA comparison between randomly-selected sub-

groups of different amount of classified mice.
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same arm of the pool for more than 3 consecutive trials. This implied
that choosing the same arm systematically would have produced a
correct choice within a training unit after a maximum of three error
repetitions, whereas other less efficient strategies, such as making
random choices, could have reached up to five error repetitions. By
implementing a measure based on counting the number of swim-
ming trials that were required to solve each training unit, we found
that the mice displayed multiple response variants with different
swimming efficiencies that arose from the selective usage of discrim-
inative information (in our specific working conditions: efficiency
and %correct choices were not linearly related). In this respect, we
found that choosing side-biased sequences with zero discriminability
optimized the task efficiency locally, whereas choosing alternating
sequences decreased it. In contrast, adopting a biased behavior in
conditions of high discriminability reduced the task efficiency.
Moreover, the prevalence of side-biased strategies was dynamic
and could either increase or decrease, depending on the amount of
discriminative information present. These observations strictly
depend on the implicit rules, specific to each behavioral task. To
our knowledge, this is the first report that shows an increase in task
efficiency using lateralization at the individual level in a visual dis-
crimination task for mice.

To optimize their choices, animals must continually update their
behavioral strategies according to changes in their surroundings.
Reinforcement learning theories provide a powerful theoretical
framework for the understanding of choice behavior in dynamic
environments, for they hold that future actions are chosen so as to
maximize a long-term sum of positive outcomes, which can be
accomplished through a set of value functions that represent the
amount of expected reward associated with particular actions15. To
match behavior to income, animals must integrate the rewards
earned earlier from specific behaviors, and maintain an appropriate
representation of the value of competing alternatives (i.e. reward
frequency). Quantitatively, this is captured by the matching law11,
which states that the long-term average ratio of choices matches the
long-term average ratio of reinforcers. Our results showed that
biased-choices fully complied with the matching law, suggesting that
the mice were able to discover the implicit rules of the task (v.gr. the
statistical properties of the spatial distribution of the SD) and update
their behavior to improve their income.

Recent studies with monkeys14 and rats18 show that the history of
past rewards exerts a strong influence on current choice. We imple-
mented a response model to predict individual choices based on
weighted combinations of recently-obtained reinforcers as well as
previous choices14. Our findings showed that the location of past
reinforcers, but not past choices, strongly influenced subsequent
choices made by the mice from the SSIM1 group (i.e. with stimulus
similarity of 1) which had a high prevalence of side-biased behavior.
For these mice, the positive coefficients in the logistic model implied
a tendency to persist on biased behavior, whereas the negative coeffi-
cients for the SSIM0.32 and SSIM0.04 groups indicated a tendency to
alternate. Also, the decaying effect of past reinforcers in the SSIM1

group was much slower than in SSIM0.32 and SSIM0.04
15. Therefore,

these results demonstrate that mice can adjust the degree to which
memories of past reinforcers influence their behavior. We propose
that there should be an adaptive balance between the usage of dis-
criminative information and side-biased strategies to solve discrim-
ination problems.

Using a similar task, Carandini and co-workers provide a clear
example that illustrates how the presence of spatial-biases can be
detrimental when psychometric curves are being characterized for
individual mice17. Their results indicate that the mice’s discriminat-
ive choices are influenced not only by sensory information, but also
by estimates of reward value, recent failures and past rewards. Their
mice followed sub-optimal strategies influenced by non-visual fac-
tors and showed large spatial biases which varied slowly over the

daily sessions. Our data are in agreement with their observations,
but also revealed that biased-strategies can emerge in the presence of
a well-balanced, constant reward regime, and that alternation in the
laterality of biases can occur in just a few trials. A question that
remains open: what exactly triggers and influences the alternation
in the preferred side when mice are strongly lateralized?

Our analysis further evidenced that the choices were not inde-
pendent during steady-state behavior and that large side-biases were
not random because they were consistent across animals (see also ref.
17). How do discriminative (sensory) and biased (non-sensory)
strategies interact during discrimination learning in this behavioral
task? We developed a robust method to sort mice into fast and slow
learners using the side-bias index as a classifier. We found that the
strength of the side-bias, collected during the first day of training,
predicted individual differences in the average learning of the mice
performing this task.

Variability in behavior provides the means by which new behaviors
can be developed and individual factors are gaining recognition in
behavioral neuroscience because they tend to correlate with the pres-
ence and severity of many neurobiological alterations19. Altogether, this
framework constitutes a powerful tool to dissect the learning traject-
ories of individual mice performing this and other discrimination tasks.
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