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Abstract: Recent technological developments in proteomics have shown promising initiatives in identifying novel biomarkers 
of various diseases. Such technologies are capable of investigating multiple samples and generating large amount of data 
end-points. Examples of two promising proteomics technologies are mass spectrometry, including an instrument based on 
surface enhanced laser desorption/ionization, and protein microarrays. Proteomics data must, however, undergo analytical 
processing using bioinformatics. Due to limitations in proteomics tools including shortcomings in bioinformatics analysis, 
predictive bioinformatics can be utilized as an alternative strategy prior to performing elaborate, high-throughput pro-
teomics procedures. This review describes mass spectrometry, protein microarrays, and bioinformatics and their roles in 
biomarker discovery, and highlights the signifi cance of integration between proteomics and bioinformatics.
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Introduction
Discovery of biomarkers constitutes an essential part of biomedical research. The association of biomarkers 
to diseases advances understanding of cellular and molecular mechanisms of diseases since biomarkers can 
be direct causes of diseases, secondary players in disease initiation and progression, or mere signals of 
pathological conditions. In addition, the appearance of molecular biomarkers distinctly in certain pathologies 
will greatly assist in disease detection. More specifi cally, the presence of molecular biomarkers in specifi c 
stages of diseases will enable their use in disease diagnosis and prognosis. Molecular biomarkers can also 
play an important role in therapy as drug targets. Otherwise, such biomarkers can be used to assess the 
effi ciency of therapeutic strategies, whereby the presence of certain molecules could be indicative of 
treatment goals and/or toxic effects of drugs during the course of therapy.

Research initiatives targeting biomarkers had been slow at various stages, in particular discovery and 
validation. Many research efforts had engaged the evaluation of very few molecules in a limited number 
of samples at one time. However, the initiation of molecular profi ling studies aided by the completion of 
Human Genome Project and the recent development of biotechnological tools has revolutionized the 
search for disease biomarkers. Recent studies can, therefore, generate enormous amount of data end-points 
in a short period of time, thus termed “high-throughput.” High-throughput studies not only would enhance 
the discovery of novel biomarkers, but would also elucidate molecular and cellular interactions.

It has been calculated earlier that proteins constitute the main bulk of therapeutic targets accounting 
for more than 98% of drug targets (Drews, 2000). It has also been recently estimated that almost 10% 
of the genome is directly involved in pathogenesis with a fraction of these being potential targets of 
therapeutic intervention (Hopkins and Groom, 2002; Betz, 2005). These observations have legitimized 
the emergence of proteomics as a result of the biological signifi cance of proteins. Among the many 
goals of proteomics is understanding all aspects of proteins including their expression, function, inter-
action, and structure. It is hoped that proteomics analyses lead to discovery of novel disease bio-
markers that can be utilized for detection, prognostication, and treatment of diseases. In order to reach 
this goal, two important challenges must be encountered in terms of studying cellular proteomes, or 
complete sets of proteins in cells. The fi rst is development of new technologies that would allow simul-
taneous investigation of numerous samples and multiple target proteins. The second challenge is the 
development of bioinformatics tools for the purpose of handling and analyzing the large data output.
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Role of Bioinformatics 
in Proteomics
With the explosion of data generated from 
proteomics studies, it has become a bottleneck 
dealing with this tremendous amount of informa-
tion. Hence, the integration of bioinformatics into 
proteomics has become greatly needed to transform 
this information into meaningful knowledge. Such 
knowledge can be used to attain better understand-
ing of biological systems as a whole, let alone an 
individual signaling pathway or a biological 
mechanism. A signifi cant part of bioinformatics in 
proteomics, as well as other high-throughput stud-
ies, entails data management and mining. Manage-
ment of proteomics data include the ability to store, 
search, query, and retrieve certain information; 
functions that have largely been achieved mainly 
by three major protein databases: SWISS-PROT, 
TrEMBL, and NCBI. These databases allow inves-
tigators access large amount of data from different 
species with variable redundancy and annotations 
in protein sequences. Nevertheless, a major short-
coming of protein databases is the existence of 
large amount of hypothetical and unknown proteins 
(Ahram and Springer, 2004).

Data mining in proteomics involves the ability to 
analyze and interpret the data generated by pro-
teomics technologies. Bioinformatics tools used in 
proteomics can be divided into three main categories: 
data interpretation, pattern recognition, and predic-
tive analysis. These tools will be discussed through-
out this review. For some of these computational 
methods, the databases provided in SWISSS-PROT 
and NCBI can be integrated in order to transform 
proteomics data into informative output.

In this review, two proteomics technologies that 
have been developed with high level of innovation 
in order to fi t into the promises of proteomics, 
namely mass spectrometry (MS) and protein 
microarrays, will be discussed. As will be illus-
trated, both of these technologies have been suc-
cessfully used in analyzing biological and clinical 
samples in search for disease biomarkers. The 
integration of analytical bioinformatics in pro-
teomics and their limitations will also be discussed. 
In addition, the growing need and development of 
predictive bioinformatics will be presented.

Mass Spectrometry
Currently, mass spectrometry (MS) is the most 
widely used method in high-throughput proteomics 

studies. A mass spectrometer can measure the 
masses of small molecules such as peptides by 
converting them into ions and sorting them via a 
stream of electrical fi elds according to their mass/
charge (m/z) ratio. Basic MS instruments are 
composed of three components: an ionization 
source that converts particles into ions, a mass 
analyzer that sorts ions according to their m/z, and 
an ion detector that measures m/z. Recent and 
continuing development and improvement of these 
instruments have made them greatly suitable for 
high-throughput proteomics studies including the 
invention of soft ionization methods and the 
innovation of hybrid instruments composed of two 
mass analyzers.

Two common types of soft ionization methods 
exist: Matrix-Assisted Laser Desorption/Ionization 
(MALDI) and electrospray ionization (ESI). In 
MALDI, samples containing peptides are embed-
ded into specifi c matrix molecules. The matrix 
absorbs the ionization laser beam and transfers the 
energy into the analyte. Sample analysis by ESI, 
on the other hand, involves direct injection of 
analyte into the ionizing chamber converting pep-
tides into smaller ions. In both approaches, ionized 
peptides are directed via a mass analyzer towards 
a detector, which generates MS spectra with each 
peak representing a m/z ratio of an ion.

Different mass analyzers can be combined with 
ESI and MALDI ionization sources. Time-of-fl ight 
(TOF) analyzer is usually associated with MALDI 
ion sources. In contrast, ESI can be integrated with 
wider variety of mass analyzers including ion trap 
and quadrupole. Among ion-trap mass analyzer is 
Fourier transform ion cyclotron resonance 
(FTICR), which is a special type of ion traps where 
ions are trapped in a magnetic fi eld rather than an 
electrical one. FTICR is a powerful mass analyzer 
providing the highest sensitivity, resolution, and 
mass accuracy. For example, it has been reported 
that FTICR-MS can identify peptides at concentra-
tions as low as zeptomoles (10−21 moles) (Belov 
et al. 2000).

The generated MS spectra can then be analyzed 
by search programs that computationally compare 
the actual MS spectra to hypothetical spectra. The 
simplest method by which proteins can be identi-
fi ed is via protein mass fi ngerprinting (PMF). This 
method is based on the fact that since proteins 
generate peptides of distinct lengths when digested 
by a specifi c protease, the identity of proteins can 
be determined according to their PMF. PMF works 
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best when the analyzed sample is composed of a 
purifi ed protein. Protein identifi cation can also be 
performed in case of a simple mixture of proteins 
where database searching can be conducted repeat-
edly with successive removal of peptides assigned 
to a conclusive match (Jensen et al. 1997). A good 
example is the identifi cation of protein spots in a 
two dimensional electrophoretic gel. Such spots 
commonly contain more than one protein that 
either possess similar molecular weight and charge 
(Gygi et al. 2000) or are protein contaminants such 
as cytokeratins (Shevchenko et al. 1996).

The introduction of tandem mass spectrometry 
(MS/MS) instruments has greatly improved MS 
technologies. These instruments are composed of 
two mass analyzers where following determination 
of peptide masses by the fi rst mass analyzer, few 
peptide ions are individually selected and frag-
mented by collision-induced dissociation (CID) 
yielding even smaller ions. These ions are analyzed 
further by a second mass analyzer. Hybrid MS 
instruments include innovative combinations of 
mass analyzers, which can be of the same or dif-
ferent type. Examples include MALDI TOF-TOF 
where both mass analyzers are TOF, and MALDI–
Qq-TOF that is composed of a quadrupole as the 
fi rst mass analyzer and TOF as the second one. The 
dual mass analysis leads to determination of partial 
amino acid sequences of proteins resulting in more 
accurate identifi cation of proteins than PMF only. 
Another major advantage of dual MS instruments 
is the ability to start with complex samples and the 
generation of amino acid sequences independently 
of sequence databases, although an informative 
database is still required for highly accurate 
results.

Interpretation of MS/MS data output is a rate-
limiting step in accurate peptide identifi cation. 
Several limitations in data analysis in accurate 
identifi cation of proteins exist. In fact, Resing and 
Ahn (2005) have mentioned that only up to 25% 
of MS data could be interpreted accurately. These 
limitations are related to the MS instrument itself, 
the sample, and/or the database. MS instruments 
differ in their resolution and sensitivity of detec-
tion. For example, whereas ion-trap MS is of 
limited resolution, FTICR MS possesses the high-
est resolution and mass accuracy and is the most 
sensitive MS instrument (Domon and Aebersold, 
2006). In terms of the database used for data inter-
pretation, highly accurate results are obtained when 
the protein sequences in the utilized database are 

nearly complete. In addition, the use of large pro-
tein database can result in higher level of false-
positive identifi cations (Resing et al. 2004; Kapp 
et al. 2005).

The analyzed proteins may also severely hinder 
accurate identifi cation. Protein complexity may 
stem from their synthesis in different isoforms or 
their modifi cation in vivo or in vitro. The minimal 
level of modification of prokaryotic proteins 
enables better identifi cation than for eukaryotic 
proteins (Lipton et al. 2002). Amino acid differ-
ences in a protein sequence resulting from DNA 
polymorphism among individuals may contribute 
to protein complexity and, hence, prevent protein 
identifi cation. Nonspecifi c peptides can be gener-
ated either by intracellular proteases or during 
sample preparation. Importantly, peptides can be 
chemically modifi ed in vitro during sample prepa-
ration where, for example, methionines can be 
oxidized (Johnson et al. 2005). In fact, search 
programs have diffi cultly differentiating certain 
amino acids since they can carry identical or 
similar molecular weights such as leucine and 
isoleucine (Johnson et al. 2005). This is also true 
for phenylalanine and oxidized methionine. Pairs 
of amino acids may also be mistaken for a single 
residue such as two consecutive glycines from 
asparagines.

Following peptide identifi cation by search pro-
grams, validation of these results is absolutely 
needed. This can be done by considering multiple 
factors such as missed cleavage, peptide mass, 
peptide modification, and number of peptides 
identifi ed. Another approach is to utilize discrimi-
nant analyses such as Peptideprophet, which is a 
Bayesian statistical computational program that 
ranks peptides according to probability scores. 
Such a computational method enhances the per-
formance and accuracy of search programs by 
reducing the rate of false-positive identifi cations 
(Kapp et al. 2005). Another discriminant approach 
facilitates the information provided by peptide 
sequences in predicting chromatographic elution 
time (Petritis et al. 2003). Strattmatter et al. (2004) 
have developed a function based on a combination 
of the scores generated by search programs, peptide 
mass, the observed versus calculated peptide mass, 
the cleaved nature of the peptide, and the actual 
versus estimated chromatographic retention time 
for each peptide. This method was utilized in order 
to identify proteins shed from the extracellular 
surface of hamster cells using mouse and human 
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protein databases with limited false-positive 
assignments (Ahram et al. 2005).

Surface Enhanced Laser 
Desorption/Ionization (SELDI)
Complex diseases cannot be labeled by a single 
protein biomarker. Hence, a considerable portion, 
if not the whole proteome, needs to be scanned in 
search for rather a particular profi le of the particu-
lar diseases. A powerful and more versatile 
technology named Surface Enhanced Laser 
Desorption/Ionization (SELDI) branched out of 
MALDI-TOF mass spectrometry has been devel-
oped and can provide a solution for high-throughput 
analyses of cellular proteomes (Yip and Hutchens, 
1992). This technology enables researchers to 
search for single biomarkers, a group of biomark-
ers, or a proteome profi le. In SELDI, a sample is 
applied on surface of a chip rather than mixed with 
a matrix molecule as conducted in MALDI. The 
chip is then placed in a vacuum chamber of the 
SELDI instrument where peptides and small pro-
teins are ionized and travel towards a detector 
inversely according to their masses.

With SELDI, multiple samples can be simulta-
neously analyzed generating numerous data points 
making this instrument a true high-throughput 
proteomics instrument. Two major advantages of 
SELDI is the ability to analyze highly complex 
samples, and the low volume of needed for analy-
sis. The versatility of SELDI stems from the fact 
that chip surface can made of a defi ned chemical 
property (e.g. hydrophobic, cationic, and anionic) 
allowing certain classes of proteins to adsorb. 
Otherwise, the chip can be coated with antibodies 
to capture specifi c antigens as has been reported 
earlier in measuring prostate-specifi c antigen and 
prostate-specifi c membrane antigen (Wright et al. 
2000; Xiao et al. 2001; Adam et al. 2002).

SELDI has been utilized in search for biomark-
ers for Alzheimer’s disease (Austen et al. 2000; 
Carrette et al. 2003) as well as for cancers of the 
prostate (Paweletz et al. 2001; Liu et al. 2003; 
Lehrer et al. 2005), bladder (Vlahou et al. 2001), 
colon (Engwegen et al. 2006), and breast (Ricolleau 
et al. 2006). Although direct determination of pro-
teins represented as mass peaks is not possible, 
different means can be utilized to reveal the iden-
tity of specifi c peaks. In a recent report, SELDI 
analysis of cerebrospinal fl uid (CSF) samples of 
patients with multiple sclerosis revealed the 

presence of a differential peak when compared to 
subjects with other diseases (Irani et al. 2006). This 
peak was identifi ed by further MS analyses as 
cystatin C, an inhibitor of the lysosoaml cysteine 
protease cathepsin B. Although burdensome and 
elaborate, proteins represented by specifi c SELDI 
spectra peaks can also be identifi ed by a series of 
liquid chromatography fractionation as has been 
illustrated by Diamond et al. (2003), Sanchez et al. 
(2004), and Yang et al. (2004).

In one study, proteins extracted from LCM-
microdissected prostate normal and tumor cells 
were analyzed by SELDI. The mass spectra pat-
terns of the proteins revealed several remarkable 
alterations as compared to those of matched normal 
samples (Petricoin et al. 2002). However, due to 
the dynamic heterogeneity of proteomes even 
within the same individual, consistent detection of 
differential peaks is not always feasible. This com-
plexity has prompted the group of Petricoin and 
Liotta to integrate an artifi cial neural network 
algorithm to search for “hidden” patterns. In a 
prominent study, the group has been able to dif-
ferentiate ovarian cancer patients from normal 
subjects and patients with other ovarian diseases 
with unprecedented sensitivity of 100% and 
specifi city of 95% (Petricoin et al. 2002). This very 
similar approach has been utilized in detecting 
gastric cancers with high sensitivity and specifi city 
in differentiating the disease (Ebert et al. 2004).

Although these results are promising, serious 
concerns have been raised in terms of the robust-
ness and reproducibility of the approach. One such 
concern is the inability of the current SELDI-TOF 
instruments to directly sequence and identify the 
peptides/proteins that generate the discriminatory 
peaks, and thus be able to independently validate 
the markers by other analytical approaches. Some 
investigators suggest that these differential low-
molecular-weight (LMW) products may not be 
produced by the diseased cells themselves, but 
rather they may be generated by epiphenomena 
within the microenvironment (Diamandis, 2003; 
Diamandis, 2004; Seibert et al. 2005; Poon, 2007). 
However, recent reports (Lowenthal et al. 2005; 
Lopez et al. 2007) indicate that the LMW frag-
ments constitute unique disease-specifi c protein 
fragment isoforms that appear to emanate from low 
abundant tumor cell input. As we transition from 
patterns of unknown analytes to fi ngerprints of 
multiplexed known markers, there is agreement of 
the importance of quality control, quality assurance, 
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and the development of high operating standards 
in order to minimize potential bias that can result 
from sample collection, handling and processing 
(Liotta and Petricoin, 2008).

Protein Microarrays
The success of DNA microarrays has encouraged 
scientists to invent a similar technology for pro-
teins, hence termed protein microarrays. Different 
types of protein microarrays have been introduced 
and can be categorized according to their end-point 
purpose. Similar to SELDI, protein microarrays 
can aid in search for single biomarkers, a group of 
biomarkers, or a proteome profi le, depending on 
the type of microarray. In general, they can be 
categorized into three groups: expression-based, 
function-based, and interaction-based microarrays. 
Expression-based protein microarrays are more 
common and better developed. It aims to investi-
gate protein expression within a sample. Expression-
based microarrays can also be of two types: 
forward phase and reverse phase microarrays. 
Forward phase microarrays entail spotting thou-
sands of bait molecules on a glass or membrane-
coated slide. Each spot would then represent a 
specifi c bait for a single protein. Usually the bait 
molecule is an antibody (Haab, 2001), although 
other capture molecules such as aptamers (small 
DNA or RNA molecules) or phage lysates have 
been reported (Choi et al. 2005). By incubating a 
sample containing mixed populations of proteins 
onto the spotted slides, protein molecules would 
bind specifi cally to the corresponding bait mole-
cule. Captured proteins can then be detected by 
directly labeling the proteins before applying them 
onto the slide. This direct labeling method has been 
utilized in identifying biomarkers of prostate can-
cer (Miller et al. 2003) and radiation-regulated 
proteins (Sreekumar et al. 2001). With the direct 
labeling method, it is possible to perform com-
parative expression analysis of two or more sam-
ples with proteins in each sample labeled with a 
distinct tag (Haab, 2005).

Otherwise, an indirect labeling method, also 
known as sandwich immunoassay, can be used 
where bound proteins are targeted by a second bait 
such as a different antibody that targets a different 
domain. This method is limited to analyzing the 
expression of proteins within a single sample. 
Although the requirement for two independent bait 
molecules may limit multiplexing, this method can 

be more specifi c and sensitive than the direct 
labeling approach since two bait molecules are 
required to target the same proteins rather than one 
molecule. The sandwich immunoassay has been 
illustrated in measuring the expression the epider-
mal growth factor receptor and ERB2 and monitor-
ing EGF-dependent phosphorylation in human 
tumor cells (Nielsen et al. 2003).

Forward-phase protein microarrays are in 
contrast to another design of expression micro-
array technology termed “reverse-phase protein 
microarrays” (Paweletz et al. 2001). This technology 
involves spotting the analytes (i.e. protein extracts) 
rather than bait molecules, with each spot repre-
senting a single test sample. Since proteins are 
expressed at a wide range of orders of magnitude, 
lysates can be spotted at different dilutions provid-
ing an internal standard curve and an opportunity 
for quantitative measurement. It is worthy to 
mention that spotted lysates can be obtained from 
microdissected cells from tissues allowing for 
studies of pure cell populations. For example, dif-
ferential protein expression in microdissected 
prostate cancer cells has been compared to that in 
patient-matched normal and premalignant cells 
from the same tissue samples (Paweletz et al. 
2001). In addition to expression pattern, signal 
transduction circuitry can be studied using reverse-
phase protein microarrays (Paweletz et al. 2001; 
Nishizuka et al. 2003; Petricoin and Liotta, 2003). 
Two reports have shown that the activation of Akt 
pathway is responsible for cell viability in both 
ovarian and prostate cancers as cancer cells 
progress from premalignancy to malignancy 
(Paweletz et al. 2001; Wulfkuhle et al. 2003). 
Whereas with forward-phase proteins microarrays, 
one can analyze multiple proteins in a few samples 
per one microarray, reverse-phase protein microar-
rays enable investigation of one or various proteins 
in multiple samples per one microarray.

Both forward-phase and reverse-phase protein 
microarrays are hampered, though, by the avail-
ability of a specifi c bait molecule. A huge endeavor 
of the HUPO Antibody Initiative has been under-
taken by the scientists of the Swedish Royal 
Institute of Technology led by Mattihas Uhlén to 
generate, validate, catalog, and annotate antibodies 
that target human proteins with high specifi city and 
low cross-reactivity to other proteins (Uhlén et al. 
2005). The main objective of this initiative is to 
create a protein atlas for localized exression of 
proteins in human tissues. Recently, the National 
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Institutes of Health have established a similar 
initiative termed Protein Capture Tools that empha-
sizes on monoclonal antibodies (Haab et al. 2006; 
Hober and Uhlén, 2008). The European Union has 
also funded another program, Proteome Binder, 
with special focus not only antibodies and antibody 
related reagents like single chain antibodies (scFv), 
but also on other affi nity reagents such as nucleic 
acid aptamers, protein scaffolds, peptides and 
chemical entities (Taussig et al. 2007).

The second type of protein microarrays, func-
tional microarrays, aims to assign function to 
proteins. This can be achieved by conducting a 
micro-scale enzyme assay whereby product forma-
tion can be measured. The enzymatic activities of 
purifi ed 119 yeast proteins predicted to be tyrosine 
kinases have been investigated using a functional 
microarray where kinase substrates are arrayed on 
a solid surface (Zhu H et al. 2000). Purifi ed proteins 
are then added individually to the microarrays in 
the presence of 32Pγ-ATP. The ability of 27 of the 
119 proteins to phosphorylate certain substrates 
has confi rmed their kinase activity.

Interaction protein microarrays can play an 
important role in determining protein function as 
well in therapeutics. Interaction arrays can be 
designed to investigate interaction of certain pro-
teins to various types of molecules including other 
proteins, peptides, nucleic acids, lipids, carbohy-
drates, and small molecules (MacBeath and 
Schreiber, 2000; Ge et al. 2000; Iyer et al. 2001; 
Linnell et al. 2001; Zhu et al. 2001). For example, 
by attaching over 90% of yeast proteins onto a 
microarray, Zhu and colleagues were able to iden-
tify protein-phospholipid interactions as well as 
new calmodulin-interacting proteins (Zhu et al. 
2001). In addition, effects of DNA mutations and 
polymorphism on DNA-protein binding have been 
studied using interaction protein microarrays 
(Boutell et al. 2004). Both functional arrays and 
interaction arrays can also prove invaluable in drug 
discovery where binding of small ligands to protein 
targets can be multiplexed, in addition to analyzing 
the effect of different small molecules on enzyme 
activity.

Predictive Bioinformatics 
in Proteomics
As mentioned earlier, bioinformatics is expected 
to play a major role in analyzing proteomics data. 
However, it is still a long shot to understand what 

these data mean and how they can be useful. A 
major reason for functional defi ciency is the exis-
tence of large number of unidentified protein 
sequences in protein databases accounting for 
almost 60% in one report (Ahram and Springer, 
2004). A branch of bioinformatics that can play an 
informative role in proteomics is based on predica-
tive computational tools. Predictive bioinformatics 
can overcome the technical limitations of proteomics 
by contributing to the annotation of proteins and 
determination of their function and structure. 
Several tools have been reported by which protein 
localization, function and structure can be 
examined theoretically before moving into the 
experimental arena. Identifi cation of homologous 
regions of proteins can lead to predicting protein 
function and localization. In addition, protein 
localization can be predicted based on presence of 
specifi c amino acid sequence. Many of these tools 
are offered in the SWISS-PROT and some of them 
are reviewed elsewhere (Emanuelsson and von 
Heijne, 2001).

Understanding protein topology is critical for 
determining protein structure and function and, 
hence, developing novel therapeutics. Although 
membrane proteins are thought to constitute 
20–30% of annotated genomes (Steven and 
Arkin, 2000; Wallin and von Heijne, 1998; Krogh 
et al. 2001), the 3D structures of only 1% of these 
proteins have been determined (Melen et al. 2003). 
A class of proteins of special interest is membrane 
proteins, in particular plasma membrane proteins. 
A signifi cant role of these proteins is that they 
constitute more than 45% of current drug targets 
(Drews, 2000) with 25%–30% of drugs targeting 
G-protein coupled receptors (Hopkins and 
Groom, 2002). Thus, construction of computa-
tional tools that predict protein topology is imper-
ative for large-scale proteomics studies. These 
tools operate by predicting the presence of trans-
membrane segments. However, a major pitfall of 
all methods is the erroneous prediction of the 
N-terminal signal peptides as transmembrane seg-
ments as a result of their hydrophobic nature 
(Ahram and Springer, 2004).

In a recent study, a human proteome database 
was analyzed using fi ve predictive computational 
methods in search for membrane proteins (Ahram 
et al. 2006). These fi ve methods are commonly used 
and based on different computational approaches. 
In order to eliminate false-positive predictions, a 
sixth method, SignalP, which discriminates between 
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signal peptides and transmembrane segments, have 
also been utilized. Based on these analyses, the ratio 
of human proteins with transmembrane segments 
is estimated to fall between 15% and 39% with a 
consensus of 13%. Such a broad range of prediction 
depends on the selectivity of the individual method 
in predicting integral membrane proteins. These 
methods can play a critical role in determining 
protein structure and, hence, identifying suitable 
drug targets in humans.

Another major effort was conducted in search 
for novel secreted proteins using both biological 
approach and a computational strategy (Clark et al. 
2003). The latter was based on analysis of genomic 
and expressed sequence tags (ESTs). This study 
resulted in the isolation of over 1000 cDNA clones 
with 25% of them representing novel genes. An 
important conclusion of this study is the signifi -
cance of applying multi-directed approaches in the 
identifi cation of proteins.

Conclusion
Exciting advances have been posted in proteomics. 
These advances have mainly been observed in the 
technical fi eld with the development and improve-
ment of technologies such as mass spectrometry, 
SELDI, and protein microarrays. However, these 
technologies are still limited in many areas includ-
ing specifi city and sensitivity of detection. In 
addition, data mining can also see signifi cant atten-
tion for better accuracy of protein analysis. It is 
the integration of these technologies as well as the 
development of bioinformatics tools that can speed 
up the discovery of protein targets for therapeutics 
and lead to more accurate and safer drugs.
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